JP2687377B2 - Magneto-optical recording method - Google Patents

Magneto-optical recording method

Info

Publication number
JP2687377B2
JP2687377B2 JP30192487A JP30192487A JP2687377B2 JP 2687377 B2 JP2687377 B2 JP 2687377B2 JP 30192487 A JP30192487 A JP 30192487A JP 30192487 A JP30192487 A JP 30192487A JP 2687377 B2 JP2687377 B2 JP 2687377B2
Authority
JP
Japan
Prior art keywords
recording
magneto
magnetic field
laser beam
clock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30192487A
Other languages
Japanese (ja)
Other versions
JPH01143043A (en
Inventor
秀嘉 堀米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP30192487A priority Critical patent/JP2687377B2/en
Publication of JPH01143043A publication Critical patent/JPH01143043A/en
Application granted granted Critical
Publication of JP2687377B2 publication Critical patent/JP2687377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光磁気記録媒体に重ね記録により情報の書き
換えを行い得る様にした光磁気記録方法に関する。 〔発明の概要〕 本発明は光磁気記録媒体に重ね記録により情報の書き
換えを行い得る様にした光磁気記録方法であって、補助
磁界発生手段を交流的に駆動するとともに、この補助磁
界発生手段からの磁化方向に対応させて記録用レーザ素
子をこの補助磁界発生手段の駆動周期より早い周期でパ
ルス発光させることによって光磁気記録媒体に信号を記
録するようにした光磁気記録方法において、この光磁気
記録媒体に記録する信号のレベルに対応してこの補助磁
界発生手段の磁化方向を変化させるとともに、この磁化
方向が第1の極性のときに所定のレベルを有する記録信
号を連続してこの光磁気記録媒体に記録し、この磁化方
向がこの第1の極性とは異なる第2の極性のときにおい
て少なくともこの記録用レーザ素子の発光後この第1の
極性へ変化する際にこの記録用レーザ素子のパルス発光
を停止させるようにすることにより、ピット(信号)の
位置ずれがなく良好な重ね記録ができるようにしたもの
である。 〔従来の技術〕 先に重ね記録による情報の書き換えを行い得る様にな
された光磁気記録装置として第3図にその要部を示す如
きものが提案されている。 この第3図において(1)は光磁気ディスクを示し、
この光磁気ディスク(1)としては例えばガラス基板
(2)に垂直磁化膜(3)を被着することによって構成
すると共にこの光磁気ディスク(1)を中心軸O−O′
を中心として回転させ得る様に成している。 また(4)は光磁気ディスク(1)の垂直磁化膜
(3)に記録用レーザビームLBを照射する光ヘッド部を
示し、この光ヘッド部(4)は半導体レーザ素子(5)
とレンズ(6a)(6b)とを備えると共にこの光ヘッド部
(4)を光磁気ディスク(1)の面と所定間隔を保ちつ
つ光磁気ディスク(1)の半径方向上を移動させ得る様
に成している。この場合この光ヘッド部(4)において
は半導体レーザ素子(5)は後述する半導体レーザ素子
駆動回路(5a)よりの情報に応じた駆動信号に従って記
録用レーザビームLBを発光し、このレーザビームLBをレ
ンズ(6a)(6b)を通して光磁気ディスク(1)の垂直
磁化膜(3)に局所的に照射し、この照射部分の垂直磁
化膜(3)の温度をキュリー点以上に上昇させ得る様に
成されている。 また(7)は光磁気ディスク(1)の垂直磁化膜
(3)に一定周期数例えば14.9MHzの交流磁界を印加す
るための電磁石を示し、この電磁石(7)を光磁気ディ
スク(1)を挟んで光ヘッド部(4)に対向させて配す
ると共にこの電磁石(7)を光ヘッド部(4)と連動さ
せて光磁気ディスク(1)の半径方向を移動させ得る様
に成している。この場合この電磁石(7)は後述する磁
界駆動回路(8)に供給される磁界クロック(9a)がハ
イレベル“1"のときは例えば矢印Aに示す方向に流れる
電流をこの電磁石(7)のコイル(7a)に供給し、電磁
石(7)より矢印Xに示す様の磁界Hcを発生してこの光
磁気ディスク(1)の垂直磁化膜(3)に印加する如く
し、またこの磁界クロック(9a)がローレベル“0"のと
きは例えば矢印Aとは逆方向の矢印Bに示す方向に流れ
る電流をこの電磁石(7)のコイル(7a)に供給し、こ
の電磁石(7)より矢印Yに示す様な磁界−Hcを発生し
てこの光磁気ディスク(1)の垂直磁化膜(3)に印加
する如くする。この場合矢印Xに示す磁界Hcと矢印Yに
示す磁界−Hcとは多賀に逆方向の磁界とすると共にその
絶対強度は等しくされ、この磁界(±Hc)は光磁気ディ
スク(1)の垂直磁化膜(3)の磁化方向を夫々磁界の
方向に配向させることができる強度とされている。即ち
磁界Hc及び−Hcの一定周波数例えば14.9MHzの交流磁界
をこの光磁気ディスク(1)の垂直磁化膜(3)に印加
する如くする。 この第3図例に於いては半導体レーザ素子駆動回路
(5a)及び磁界駆動回路(8)に供給する信号を以下の
如く形成していた。この第3図に於いて(10)はシステ
ムクロックを発生するシステムクロック発生器を示し、
このシステムクロック発生器(10)の出力信号を磁界ク
ロック形成回路(9)及びレーザビームクロック形成回
路(11)に供給する。(12)はこの光磁気記録装置を制
御するシステムコントローラを示し、このシステムコン
トローラ(12)よりの所定の指令信号を磁界クロック形
成回路(9)及びレーザビームクロック形成回路(11)
に供給する如くする。このレーザビームクロック形成回
路(11)はシステムクロックに同期した第4図Aに示す
如き例えば29.8MHzのレーザビームクロック(11a)を発
生し、このレーザビームクロック(11a)をアンド回路
(13)の一方の入力端子に供給する。 また磁界クロック形成回路(9)はシステムクロック
に同期すると共に第4図Bに示す如くレーザビームクロ
ック(11a)の1/2の周波数例えば14.9MHzの磁界クロッ
ク(9a)を形成し、この磁界クロック(9a)を磁界駆動
回路(8)に駆動信号として供給すると共にこの磁界ク
ロック(9a)を排他的論理和回路(14)の一方入力端子
に供給する。また(15)は記録しようとする情報に応じ
た記録データ(15a)が供給される記録データ入力端子
を示し、この記録データ入力端子(15)には第4図Cに
示す如きハイレベル“1"とローレベル“0"とに変調され
たレーザビームクロック(11a)に同期し、このレーザ
ビームクロック(11a)の2サイクルに1ピット対応し
たディジタル信号が供給され、この記録データ(15a)
を排他的論理和(14)の他方の入力端子に供給する。こ
の記録データ入力端子(15)に記録データ(15a)とし
て例えば第4図Cに示す如く「…0100100010…」の信号
がこの排他的論理話回路(14)の他方の入力端子に供給
されたときには、この排他的論理和回路(14)の出力側
に第4図Dに示す如く、磁界クロック(9a)がハイレベ
ル“1"で且つ記録データ(15a)がハイレベル“1"のと
きと磁界クロック(9a)がローレベル“0"で且つ記録デ
ータ(15a)がローレベル“0"のときとがハイレベル
“1"となりその他はローレベル“0"となる信号(14a)
が得られる。この排他的論理和回路(14)の出力信号
(14a)をアンド回路(13)の他方の入力端子に供給す
る。このアンド回路(13)の出力側にはレーザビームク
ロック(11a)がハイレベル“1"で且つこの排他的論理
和回路(14)の出力信号(14a)がハイレベル“1"のと
きにハイレベル“1"となりその他はローレベル“0"とな
る第4図Eに示す如きレーザビーム駆動パルス(13a)
が得られる。このアンド回路(13)の出力側に得られる
レーザビーム駆動パルス(13a)を半導体レーザ素子駆
動回路(5a)に供給し、このレーザビーム駆動パルス
(13a)がハイレベル“1"のときだけ半導体レーザ素子
(5)が記録用レーザビームLBをパルス的に発生する如
くする。この場合記録用レーザビームLBが照射されたと
きに例えば一方の磁界Hcのときは光磁気ディスク(1)
は記録されたこととなり、他方の磁界−Hcのときは記録
部があるときこれが消去されたこととなり、記録データ
(15a)が第4図Cに示す如き場合模式的に第4図Fに
示す様な記録パターンとなる。この第4図Fに於いて
は記録部、は消去部を示す。 斯る第3図例に依れば記録部及び消去部を記録デ
ータ(15a)に応じて形成できるので重ね記録による書
き換えができると共にレーザビームLBをパルス的に照射
するので半導体レーザ素子(5)の寿命を伸ばすことが
でき、更に再生時にエラーの原因となり易い記録部と
消去部との中間領域、所謂ノイズアップ領域が生じな
い記録を行うことができる。 〔発明が解決しようとする問題点〕 然しながら斯る第3図に示す如き光磁気記録方法に於
いては第4図E及びFに示す如く記録部を形成するレ
ーザビームLBを照射したすぐ後(即ちレーザビームクロ
ック(11a)の1サイクル後)に消去部を形成するレ
ーザビームLBを照射する場合があり、このときはすぐ前
のレーザビームLBの照射による熱が残っているのでこの
消去部となる領域が前の記録部内に入り込みこの記
録部を一部消去部としてしまい記録部の領域がそ
れだけ小さくなり、再生時に記録部として検出できな
い場合が生じたり、記録ピットの位相がずれたりする不
都合があった。 本発明は斯る点に鑑みピットの位相ずれのな良好な重
ね記録ができるようにすることを目的とする。 〔問題点を解決するための手段〕 本発明光磁気記録方法は例えば第1図に示す如く補助
磁界発生手段(7)を交流的に駆動するとともに、この
補助磁界発生手段(7)からの磁化方向に対応させて記
録用レーザ素子(5)をこの補助磁界発生手段(7)の
駆動周期より早い周期でパルス発光させることによって
光磁気記録媒体(1)に信号(15a)を記録するように
した光磁気記録方法において、この光磁気記録媒体
(1)に記録する信号のレベルに対応してこの補助磁界
発生手段(7)の磁化方向を変化させるとともに、この
磁化方向が第1の極性Hcのときに所定のレベルを有する
記録信号を連続してこの光磁気記録媒体(1)に記録
し、この磁化方向がこの第1の極性Hcとは異なる第2の
極性−Hcのときにおいて少なくともこの記録用レーザ素
子(5)の発光後この第1の極性Hcへ変化する際にこの
記録用レーザ素子(5)のパルス発光を停止させるよう
にしたものである。 〔作用〕 斯る本発明に依れば記録部を形成する第1の極性Hc
のときに記録用レーザビームLBを印加した後の消去部
を形成する最初の第1の極性−Hcへの変化時には記録用
レーザビームLBを印加しない様にしているので記録部
が消去されることがなく、記録部(ピット)の位相ず
れがなく良好な重ね記録ができる。 〔実施例〕 以下第1図及び第2図を参照しながら本発明光磁気記
録法の一実施例につき説明しよう。この第1図及び第2
図に於いて第3図及び第4図に対応する部分には同一符
号を付しその詳細説明は省略する。 この第1図例に於いては第3図の先に提案した光磁気
記録装置と同様にレーザビームクロック形成回路(11)
の出力側に得られるシステムクロックに同期した第2図
Aに示す如き例えば29.8MHzのレーザビームクロック(1
1a)をアンド回路(13)の一方の入力端子に供給する。
また磁界クロック形成回路(9)の出力側に得られるシ
ステムクロックに同期すると共に第2図Bに示す如くレ
ーザビームクロック(11a)の1/2の周波数例えば14.9MH
zの磁界クロック(9a)を磁界駆動回路(8)に駆動信
号として供給し、またこの磁界クロック(9a)を排他的
論理和回路(14)の一方の入力端子に供給する。この場
合磁界駆動回路(8)に供給される磁界クロック(9a)
がハイレベル“1"のときは例えば矢印Aに示す方向に流
れる電流を電磁石(7)のコイル(7a)に供給し、この
電磁石(7)より例えば矢印Xに示す様な磁界Hcを発生
して光磁気ディスク(1)の垂直磁化膜(3)に印加す
る如くし、またこの磁界クロック(9a)がローレベル
“1"のときは例えば矢印Aとは逆方向の矢印Bに示す方
向に流れる電流をこの電磁石(7)のコイル(7a)に供
給し、この電磁石(7)より矢印Yに示す様な磁界−Hc
を発生してこの光磁気ディスク(1)の垂直磁化膜
(3)に印加する如くする。このとき矢印Xに示す磁界
Hcと矢印Yに示す磁界−Hcとは互に逆方向の磁界とする
と共にその絶対強度は等しくなる如くし、この磁界±Hc
は光磁気ディスク(1)の垂直磁化膜(3)の磁化方向
を夫々磁界の方向に配向されることができる強度とす
る。即ち磁界Hc及び−Hcが繰り返す一定周波数例えば1
4.9MHzの交流磁界をこの光磁気ディスク(1)の垂直磁
化膜(3)に印加する如くする。 本例に於いては記録しようとする情報に応じた記録デ
ータ(15a)をデューティ補正回路(16)に供給する。
この記録データ(15a)としては第2図Cに示す如くレ
ーザビームクロック(11a)に同期し、このレーザビー
ムクロック(11a)の2サイクルに1ビットが対応した
ディジタル信号である。またこのデューティ補正回路
(16)にはシステムクロック回路(10)よりのシステム
クロックが供給されると共にシステムコントローラ(1
2)よりの指令に従って次の様に動作する如くなされて
いる。即ち光ヘッド部(4)が光磁気ディスク(1)の
例えば半分より内周側に対応しているときには第2図C
に一点鎖線で示す如く記録データ(15a)をこのハイレ
ベル“1"の後縁をレーザビームクロック(11a)の半サ
イクル期間延長した記録信号(16a)とし、またこの光
ヘッド部(4)が光磁気ディスク(1)の半分より外周
側に対応しているときには第2図Cに破線で示す如くこ
の記録データ(45a)をこのハイレベル“1"の後縁を記
録信号(16a)により更にレーザビームクロック(11a)
の半サイクル期間延長すると共にこのハイレベル“1"の
前縁をこのレーザビームクロック(11a)の半サイクル
期間遅延した記録信号(16b)とする。このデューティ
補正回路(16)の出力側に得られる記録信号(16a)又
は(16b)を排他的論理和回路(14)の他方の入力端子
に供給し、この排他的論理和回路(14)の出力信号(14
a)をアンド回路(13)の他方の入力端子に供給し、こ
のアンド回路(13)の出力信号を半導体レーザ素子
(5)の発光を駆動する半導体レーザ素子駆動回路(5
a)に供給し、この半導体レーザ素子駆動回路(5a)よ
りの出力信号により半導体レーザ素子(5)の発光を駆
動する。その他は第3図と同様に構成する。 以下本発明に依る光磁気記録装置の動作につき説明す
る。まずこの光ヘッド部(4)が光磁気ディスク(1)
の半分より内周側に対応しているときに記録データ入力
端子(15)に第2図Cに実線で示す如き記録データ(15
a)が供給されたときはデューティ補正回路(16)の出
力側に第2図Cに一点鎖線で示す如き記録信号(16a)
が得られる。従ってこのときは排他的論理和回路(14)
の出力側には第2図Dに示す如く磁界クロック(9a)が
ハイレベル“1"で且つ記録信号(16a)がハイレベル
“1"のときと磁界クロック(9a)がローレベル“0"で且
つ記録信号(16a)がローレベル“0"のときがハイレベ
ル“1"となり、その他はローレベル“0"となる出力信号
(14a)が得られ、この為にアンド回路(13)の出力側
には第2図Eに示す如くレーザビームクロック(11a)
がハイレベル“1"で且つこの排他的論理和回路(14)の
出力信号(14a)がハイレベル“1"のときハイレベル
“1"となり、その他はローレベル“0"となるレーザビー
ム駆動パルス(13a)が得られ、このレーザビーム駆動
パルス(13a)が半導体レーザ素子駆動回路(5a)に供
給され、このレーザビーム駆動パルス(13a)がハイレ
ベル“1"のときだけこの半導体レーザ素子(5)が記録
用レーザビームLBを発生し、この記録用レーザビームLB
を光磁気ディスク(1)の垂直磁化膜(3)に照射す
る。この場合この記録用レーザビームLBが照射されたと
きに例えば一方の磁界Hcのときは、光磁気ディスク
(1)に信号が記録(ピットが形成)され、このとき他
方の磁界−Hcのときは信号が消去(ピットが消去)され
たものとなり模型的に第2図Hに実線で示す如き記録パ
ターとなる。この第2図Hに於いては記録部、は消
去部を示す。またこの場合記録データ(15a)をレーザ
ビームクロック(11a)の半サイクル期間ハイレベル
“1"を延長しているので記録部を形成する一方の磁界
Hcのときに記録用レーザビームLBを発生したときはその
すぐ後の消去部を形成する他方の磁界−Hcのときは記
録用レーザビームLBは発生しない。また本例に於いては
消去残しを少くする為にこの記録用レーザビームLBの光
磁気ディスク(1)の垂直磁化膜(3)に於けるビーム
の径Poを記録トラック(17)の幅Toより大とし記録トラ
ック(17)の両側のガードバンド(17g)まで跨がる大
きさとする。この第2図Hで1点鎖線で示す円形(18)
は再生レーザビームのビーム径である。 従って本例に依れば磁界が記録部を形成する一方の
磁界Hcのときに記録用レーザビームLBを印加した後の消
去部と形成する最初の他方の磁界−Hcのときに記録用
レーザビームLBを印加しない様にしているので記録部
が消去されることがなく記録部(ピット)の位相ずれ
がなく良好な重ね記録ができる利益がある。 また本例に於いては光磁気ディスク(1)の回転速度
が一定のものに於いてはその外周部の記録密度が内周部
に比較して粗となるので、この外周側に於いて消去残り
を少なくする為この外周側の記録部の前縁の直前の他
方の磁界−Hcのときには記録用レーザビームLBを照射し
て消去部を形成する様にする。 即ち、光ヘッド部(4)が光磁気ディスク(1)の半
分より外周側に対応しているときに記録データ入力端子
(15)に第2図Cに実線で示す如き記録データ(15a)
が供給されたときはデューティ補正回路(16)の出力側
に第2図Cに破線で示す如き記録信号(16b)が得ら
れ、このときは排他的論理和回路(14)の出力側には第
2図Fに示す如き磁界クロック(9a)がハイレベル“1"
で且つ記録信号(16b)がハイレベル“1"のときと磁界
クロック(9a)がローレベル“0"で且つ記録信号(16
b)がローレベル“0"のときがハイレベル“1"となり、
その他は“0"となる出力信号(14a)が得られ、この為
にアンド回路(13)の出力側には第2図Gに示す如くレ
ーザビームクロック(11a)がハイレベル“1"で且つこ
の排他的論理和回路(14)の出力信号(14a)がハイレ
ベル“1"のときハイレベル“1"となりその他はローレベ
ル“0"となるレーザビーム駆動パルス(13a)が得られ
る。この第2図Gと第2図Eとを比較すれば明らかな如
く第2図Gに於いては破線で示すレーザビーム駆動パル
ス(13b)が増加したものとなり、このレーザビーム駆
動パルス(13b)によりレーザビームLBが半導体レーザ
素子(5)より発生するときは他方の磁界−Hcが発生し
ているときで、これにより第2図Hに破線で示す如く消
去部を形成する。その他は上述内周側と同様に動作す
る。 尚、本発明は上述実施例に限らず本発明の要旨を逸脱
することなくその他種々の構成が取り得ることは勿論で
ある。 〔発明の効果〕 本発明に依れば記録部を形成したすぐ後の消去部
を形成する磁界−Hcのときに記録用のレーザビームLBを
印加しないで記録部が消去されることがなく良好な再
生が可能となると共に記録部(ピット)の位相ずれを
生ずることのない良好な重ね記録ができる利益がある。
TECHNICAL FIELD The present invention relates to a magneto-optical recording method capable of rewriting information on a magneto-optical recording medium by overwriting. [Summary of the Invention] The present invention is a magneto-optical recording method capable of rewriting information on a magneto-optical recording medium by overwriting. The auxiliary magnetic field generating means is AC driven and the auxiliary magnetic field generating means is used. In the magneto-optical recording method, a signal is recorded on the magneto-optical recording medium by causing a recording laser element to emit light in a cycle earlier than the driving cycle of the auxiliary magnetic field generating means in accordance with the magnetization direction from The magnetization direction of the auxiliary magnetic field generating means is changed in accordance with the level of the signal to be recorded on the magnetic recording medium, and when the magnetization direction has the first polarity, the recording signal having a predetermined level is continuously supplied to the optical signal. When the recording is performed on the magnetic recording medium and the magnetization direction is the second polarity different from the first polarity, at least after the light emission of the recording laser element, the first polarity By stopping the pulse emission of the recording laser element when changing to, it is possible to perform good overwriting without any positional deviation of pits (signals). [Prior Art] As a magneto-optical recording device capable of rewriting information by overwriting, there has been proposed a device whose main part is shown in FIG. In FIG. 3, (1) shows a magneto-optical disk,
The magneto-optical disk (1) is constructed by, for example, depositing a perpendicular magnetization film (3) on a glass substrate (2), and the magneto-optical disk (1) is provided with a central axis OO ′.
It can be rotated around. Reference numeral (4) shows an optical head portion for irradiating the perpendicularly magnetized film (3) of the magneto-optical disk (1) with the recording laser beam LB. This optical head portion (4) is a semiconductor laser element (5).
And the lenses (6a) and (6b), so that the optical head part (4) can be moved in the radial direction of the magneto-optical disk (1) while keeping a predetermined distance from the surface of the magneto-optical disk (1). Is made. In this case, in this optical head section (4), the semiconductor laser element (5) emits a recording laser beam LB according to a drive signal according to information from a semiconductor laser element drive circuit (5a) described later, and this laser beam LB By locally irradiating the perpendicular magnetic film (3) of the magneto-optical disk (1) through the lenses (6a) (6b), and raising the temperature of the perpendicular magnetic film (3) in this irradiated portion to the Curie point or higher. Is made in. Further, (7) shows an electromagnet for applying an alternating magnetic field of a constant period number, for example, 14.9 MHz to the perpendicular magnetization film (3) of the magneto-optical disk (1). The electromagnet (7) is arranged so as to face the optical head portion (4) with it sandwiched therebetween, and the electromagnet (7) can be moved in the radial direction of the magneto-optical disk (1) in conjunction with the optical head portion (4). . In this case, when the magnetic field clock (9a) supplied to the magnetic field drive circuit (8) described later is at a high level "1", the electromagnet (7) supplies a current flowing in the direction indicated by arrow A to the electromagnet (7). It is supplied to the coil (7a), a magnetic field Hc shown by an arrow X is generated from the electromagnet (7) and applied to the perpendicular magnetization film (3) of the magneto-optical disk (1), and the magnetic field clock ( When 9a) is at low level "0", for example, a current flowing in the direction indicated by arrow B opposite to arrow A is supplied to the coil (7a) of this electromagnet (7), and this electromagnet (7) causes arrow Y to flow. A magnetic field -Hc as shown in (1) is generated and applied to the perpendicular magnetization film (3) of this magneto-optical disk (1). In this case, the magnetic field Hc indicated by the arrow X and the magnetic field −Hc indicated by the arrow Y are magnetic fields in opposite directions, and their absolute intensities are made equal, and this magnetic field (± Hc) is perpendicularly magnetized to the magneto-optical disk (1). The strength is such that the magnetization direction of the film (3) can be oriented in the direction of the magnetic field. That is, an alternating magnetic field having a constant frequency of the magnetic fields Hc and -Hc, for example, 14.9 MHz is applied to the perpendicular magnetization film (3) of the magneto-optical disk (1). In the example of FIG. 3, the signals supplied to the semiconductor laser device drive circuit (5a) and the magnetic field drive circuit (8) are formed as follows. In FIG. 3, (10) shows a system clock generator for generating a system clock,
The output signal of the system clock generator (10) is supplied to the magnetic field clock forming circuit (9) and the laser beam clock forming circuit (11). Reference numeral (12) denotes a system controller for controlling the magneto-optical recording device, and a predetermined command signal from the system controller (12) is applied to a magnetic field clock forming circuit (9) and a laser beam clock forming circuit (11).
To be supplied to. The laser beam clock forming circuit (11) generates a laser beam clock (11a) of, for example, 29.8 MHz as shown in FIG. 4A in synchronization with the system clock, and the laser beam clock (11a) is supplied to the AND circuit (13). Supply to one input terminal. Further, the magnetic field clock forming circuit (9) forms a magnetic field clock (9a) of 1/2 frequency of the laser beam clock (11a), for example, 14.9 MHz, as shown in FIG. 4B, in synchronization with the system clock. (9a) is supplied to the magnetic field drive circuit (8) as a drive signal and the magnetic field clock (9a) is supplied to one input terminal of the exclusive OR circuit (14). Further, (15) shows a recording data input terminal to which recording data (15a) corresponding to the information to be recorded is supplied. The recording data input terminal (15) has a high level "1" as shown in FIG. 4C. In synchronization with the laser beam clock (11a) modulated to "" and low level "0", a digital signal corresponding to one pit is supplied to two cycles of this laser beam clock (11a), and this recorded data (15a)
Is supplied to the other input terminal of the exclusive OR (14). When a signal "... 0100100010 ..." Is supplied to the recording data input terminal (15) as the recording data (15a), for example, as shown in FIG. 4C, to the other input terminal of the exclusive logic talk circuit (14). As shown in FIG. 4D, the magnetic field clock (9a) is at the high level "1" and the recording data (15a) is at the high level "1" at the output side of the exclusive OR circuit (14) and the magnetic field. When the clock (9a) is at low level "0" and the recording data (15a) is at low level "0", the high level is "1" and the other signals are at low level "0" (14a)
Is obtained. The output signal (14a) of the exclusive OR circuit (14) is supplied to the other input terminal of the AND circuit (13). When the laser beam clock (11a) is at high level "1" and the output signal (14a) of this exclusive OR circuit (14) is at high level "1", the output side of the AND circuit (13) is high. Level "1" and other low level "0" Laser beam drive pulse (13a) as shown in Fig. 4E
Is obtained. The laser beam drive pulse (13a) obtained at the output side of the AND circuit (13) is supplied to the semiconductor laser device drive circuit (5a), and the semiconductor is produced only when this laser beam drive pulse (13a) is at the high level "1". The laser element (5) is adapted to generate the recording laser beam LB in pulses. In this case, when the recording laser beam LB is applied, for example, when the magnetic field Hc is one, the magneto-optical disk (1)
Has been recorded, and when the other magnetic field −Hc has been recorded, this has been erased when there is a recording portion. In the case where the recording data (15a) is as shown in FIG. 4C, it is schematically shown in FIG. 4F. It becomes a recording pattern like this. In FIG. 4F, the recording unit and the erasing unit are shown. According to the example of FIG. 3, since the recording portion and the erasing portion can be formed according to the recording data (15a), rewriting by overwriting can be performed and the laser beam LB is irradiated in a pulsed manner, so that the semiconductor laser element (5) It is possible to extend the life of the recording medium and to perform recording without generating a so-called noise-up region, which is an intermediate region between the recording unit and the erasing unit, which is likely to cause an error during reproduction. [Problems to be Solved by the Invention] However, in the magneto-optical recording method as shown in FIG. 3, immediately after irradiation with the laser beam LB forming the recording portion as shown in FIGS. That is, the laser beam LB that forms the erased portion may be irradiated after one cycle of the laser beam clock (11a). At this time, since the heat from the irradiation of the laser beam LB immediately before remains, The area becomes a part of the previous recording section, and this recording section becomes a part of the erasing section, and the area of the recording section becomes smaller by that amount, and there are cases in which it cannot be detected as the recording section during reproduction, and the phase of the recording pits shifts. there were. The present invention has been made in view of the above problems, and an object of the present invention is to make it possible to perform excellent overlapping recording without phase shift of pits. [Means for Solving Problems] In the magneto-optical recording method of the present invention, for example, as shown in FIG. 1, the auxiliary magnetic field generating means (7) is driven in an alternating manner, and the magnetization from the auxiliary magnetic field generating means (7) is performed. The signal (15a) is recorded on the magneto-optical recording medium (1) by making the recording laser element (5) emit light in a pulse earlier than the driving cycle of the auxiliary magnetic field generating means (7) in correspondence with the direction. In the magneto-optical recording method described above, the magnetization direction of the auxiliary magnetic field generating means (7) is changed in accordance with the level of the signal recorded on the magneto-optical recording medium (1), and the magnetization direction has the first polarity Hc. At this time, a recording signal having a predetermined level is continuously recorded in the magneto-optical recording medium (1), and at least when the magnetization direction is the second polarity −Hc different from the first polarity Hc. Recording laser The pulse emission of the recording laser element (5) is stopped when the first polarity Hc changes after the element (5) emits light. [Operation] According to the present invention, the first polarity Hc forming the recording portion
At this time, the erasing portion is formed after the recording laser beam LB is applied, and the recording laser beam LB is not applied during the first change to the first polarity −Hc, so the recording portion is erased. And there is no phase shift in the recording part (pit), and good overlap recording is possible. [Embodiment] An embodiment of the magneto-optical recording method of the present invention will be described below with reference to FIGS. 1 and 2. This Figure 1 and 2
In the figure, parts corresponding to those in FIGS. 3 and 4 are designated by the same reference numerals, and detailed description thereof will be omitted. In the example shown in FIG. 1, a laser beam clock forming circuit (11) is used as in the previously proposed magneto-optical recording apparatus shown in FIG.
As shown in FIG. 2A, which is synchronized with the system clock obtained at the output side of the laser beam clock (19.8 MHz, for example, 29.8 MHz
1a) is supplied to one input terminal of the AND circuit (13).
In addition, it is synchronized with the system clock obtained at the output side of the magnetic field clock generation circuit (9) and has a frequency half that of the laser beam clock (11a), for example, 14.9 MHz, as shown in FIG. 2B.
The z magnetic field clock (9a) is supplied to the magnetic field drive circuit (8) as a drive signal, and this magnetic field clock (9a) is supplied to one input terminal of the exclusive OR circuit (14). In this case, the magnetic field clock (9a) supplied to the magnetic field drive circuit (8)
Is at a high level "1", for example, a current flowing in the direction indicated by arrow A is supplied to the coil (7a) of the electromagnet (7), and this electromagnet (7) generates a magnetic field Hc as indicated by arrow X, for example. Is applied to the perpendicularly magnetized film (3) of the magneto-optical disk (1), and when this magnetic field clock (9a) is at a low level "1", for example, in the direction shown by arrow B opposite to arrow A. The flowing current is supplied to the coil (7a) of the electromagnet (7), and the magnetic field −Hc from the electromagnet (7) as shown by the arrow Y is generated.
Is generated and applied to the perpendicular magnetization film (3) of the magneto-optical disk (1). At this time, the magnetic field indicated by arrow X
Hc and the magnetic field −Hc indicated by arrow Y are magnetic fields in mutually opposite directions, and their absolute intensities are made equal to each other.
Is the strength of the magnetization direction of the perpendicular magnetization film (3) of the magneto-optical disk (1) that can be oriented in the direction of the magnetic field. That is, a constant frequency at which the magnetic fields Hc and −Hc repeat, for example, 1
An alternating magnetic field of 4.9 MHz is applied to the perpendicular magnetization film (3) of this magneto-optical disk (1). In this example, recording data (15a) corresponding to the information to be recorded is supplied to the duty correction circuit (16).
The recording data (15a) is a digital signal which is synchronized with the laser beam clock (11a) as shown in FIG. 2C, and one bit corresponds to two cycles of the laser beam clock (11a). The system clock (10) is supplied to the duty correction circuit (16) and the system controller (1
According to the command from 2), it operates as follows. That is, when the optical head portion (4) corresponds to, for example, the inner peripheral side of a half of the magneto-optical disk (1), it is shown in FIG.
The recording data (15a) is used as a recording signal (16a) in which the trailing edge of this high level "1" is extended by a half cycle period of the laser beam clock (11a), and this optical head (4) When it corresponds to the outer peripheral side of the half of the magneto-optical disk (1), this recording data (45a) is further added to the trailing edge of this high level "1" by the recording signal (16a) as shown by the broken line in FIG. 2C. Laser beam clock (11a)
And the leading edge of the high level "1" is used as a recording signal (16b) delayed by a half cycle of the laser beam clock (11a). The recording signal (16a) or (16b) obtained at the output side of this duty correction circuit (16) is supplied to the other input terminal of the exclusive OR circuit (14), and the exclusive OR circuit (14) Output signal (14
a) is supplied to the other input terminal of the AND circuit (13), and the output signal of this AND circuit (13) drives the light emission of the semiconductor laser element (5).
a), and the semiconductor laser device (5) emits light according to the output signal from the semiconductor laser device drive circuit (5a). Other configurations are the same as those in FIG. The operation of the magneto-optical recording apparatus according to the present invention will be described below. First, the optical head portion (4) is the magneto-optical disk (1).
When the recording data input terminal (15) corresponds to the inner circumference side of the half of the recording data (15), the recording data (15
When a) is supplied, the recording signal (16a) as shown by the alternate long and short dash line in FIG. 2C is output to the output side of the duty correction circuit (16).
Is obtained. Therefore, at this time, the exclusive OR circuit (14)
2D, when the magnetic field clock (9a) is at high level "1" and the recording signal (16a) is at high level "1", the magnetic field clock (9a) is at low level "0". Moreover, when the recording signal (16a) is at the low level "0", the output signal (14a) is at the high level "1", and at the other low level "0". Therefore, the AND circuit (13) outputs On the output side, as shown in Fig. 2E, laser beam clock (11a)
Is high level "1" and the output signal (14a) of this exclusive OR circuit (14) is high level "1", it becomes high level "1", and the others become low level "0" laser beam drive A pulse (13a) is obtained, this laser beam drive pulse (13a) is supplied to the semiconductor laser device drive circuit (5a), and this semiconductor laser device is produced only when this laser beam drive pulse (13a) is at high level "1". (5) generates the recording laser beam LB, and this recording laser beam LB
Is applied to the perpendicular magnetization film (3) of the magneto-optical disk (1). In this case, when the recording laser beam LB is applied, for example, when one magnetic field Hc is applied, a signal is recorded (pits are formed) on the magneto-optical disk (1), and when the other magnetic field −Hc is applied. The signal is erased (the pits are erased), and the recording pattern as shown by the solid line in FIG. 2H is modeled. In FIG. 2H, the recording portion and the erasing portion are shown. In this case, since the recording data (15a) is extended to the high level "1" during the half cycle of the laser beam clock (11a), one magnetic field forming the recording portion
When the recording laser beam LB is generated at Hc, the recording laser beam LB is not generated at the other magnetic field −Hc that forms the erased portion immediately after. In this example, the beam diameter Po of the recording laser beam LB in the perpendicular magnetization film (3) of the magneto-optical disk (1) is set to the width To of the recording track (17) in order to reduce the unerased residue. The size is made larger so that it extends over the guard bands (17g) on both sides of the recording track (17). The circle (18) indicated by the alternate long and short dash line in FIG. 2H.
Is the beam diameter of the reproduction laser beam. Therefore, according to this example, when the magnetic field is one magnetic field Hc forming the recording portion and the first other magnetic field −Hc formed with the erasing portion after applying the recording laser beam LB, the recording laser beam Since the LB is not applied, there is an advantage that the recording section is not erased and there is no phase shift of the recording section (pit) and good overwriting is possible. Further, in the present example, in the case where the magneto-optical disk (1) has a constant rotation speed, the recording density of the outer peripheral portion becomes coarser than that of the inner peripheral portion, so that the erasing is performed on the outer peripheral side. In order to reduce the remaining portion, the recording laser beam LB is irradiated when the other magnetic field −Hc immediately before the front edge of the recording portion on the outer peripheral side is irradiated to form the erase portion. That is, when the optical head portion (4) is located on the outer peripheral side of the half of the magneto-optical disk (1), the recording data input terminal (15) has recording data (15a) as shown by the solid line in FIG. 2C.
Is supplied, a recording signal (16b) as shown by a broken line in FIG. 2C is obtained at the output side of the duty correction circuit (16), and at this time, at the output side of the exclusive OR circuit (14). The magnetic field clock (9a) as shown in Fig. 2F is at high level "1".
And the recording signal (16b) is at the high level "1" and the magnetic field clock (9a) is at the low level "0" and the recording signal (16b) is
When b) is low level “0”, it becomes high level “1”,
In the other cases, the output signal (14a) which becomes "0" is obtained. Therefore, at the output side of the AND circuit (13), the laser beam clock (11a) is at the high level "1" as shown in FIG. 2G. When the output signal (14a) of the exclusive OR circuit (14) is at the high level "1", the laser beam drive pulse (13a) is at the high level "1" and at the other low level "0". As is clear from a comparison between FIG. 2G and FIG. 2E, the laser beam drive pulse (13b) shown by the broken line in FIG. 2G is increased, and the laser beam drive pulse (13b) is increased. Thus, when the laser beam LB is generated from the semiconductor laser element (5) while the other magnetic field -Hc is generated, the erase portion is formed as shown by the broken line in FIG. 2H. Others operate similarly to the above-mentioned inner peripheral side. It should be noted that the present invention is not limited to the above-described embodiment, but can adopt various other configurations without departing from the gist of the present invention. EFFECTS OF THE INVENTION According to the present invention, the recording portion is not erased without applying the laser beam LB for recording at the magnetic field −Hc which forms the erasing portion immediately after the recording portion is formed, and is good. There is an advantage that it is possible to perform various reproductions and to perform good overlap recording without causing a phase shift of the recording portion (pit).

【図面の簡単な説明】 第1図は本発明光磁気記録方法に依る光磁気記録装置の
一実施例を示す構成図、第2図は第1図の説明に供する
線図、第3図は光磁気記録装置の例を示す構成図、第4
図は第3図の説明に供する線図である。 (1)は光磁気ディスク、(4)は光ヘッド部、(5)
は半導体レーザ素子、(7)は電磁石、(9)は磁界ク
ロック形成回路、(11)はレーザビームクロック形成回
路、(13)はアンド回路、(14)は排他的論理和回路、
(15)は記録データ入力端子、(16)はデューティ補正
回路である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of a magneto-optical recording apparatus according to the magneto-optical recording method of the present invention, FIG. 2 is a diagram used to explain FIG. 1, and FIG. Configuration diagram showing an example of a magneto-optical recording device, fourth
The figure is a diagram used to explain FIG. (1) is a magneto-optical disk, (4) is an optical head unit, (5)
Is a semiconductor laser element, (7) is an electromagnet, (9) is a magnetic field clock forming circuit, (11) is a laser beam clock forming circuit, (13) is an AND circuit, (14) is an exclusive OR circuit,
(15) is a recording data input terminal, and (16) is a duty correction circuit.

Claims (1)

(57)【特許請求の範囲】 1.補助磁界発生手段を交流的に駆動するとともに、該
補助磁界発生手段からの磁化方向に対応させて記録用レ
ーザ素子を上記補助磁界発生手段の駆動周期より早い周
期でパルス発光させることによって光磁気記録媒体に信
号を記録するようにした光磁気記録方法において、 上記光磁気記録媒体に記録する信号のレベルに対応して
上記補助磁界発生手段の磁化方向を変化させるととも
に、この磁化方向が第1の極性のときに所定のレベルを
有する記録信号を連続して上記光磁気記録媒体に記録
し、上記磁化方向が上記第1の極性とは異なる第2の極
性のときにおいて少なくとも上記記録用レーザ素子の発
光後上記第1の極性へ変化する際に上記記録用レーザ素
子のパルス発光を停止させるようにしたことを特徴とす
る光磁気記録方法。
(57) [Claims] Magneto-optical recording is performed by driving the auxiliary magnetic field generating means in an alternating manner and causing the recording laser element to emit light in a pulse earlier than the driving cycle of the auxiliary magnetic field generating means in accordance with the magnetization direction from the auxiliary magnetic field generating means. In a magneto-optical recording method for recording a signal on a medium, the magnetization direction of the auxiliary magnetic field generating means is changed according to the level of a signal to be recorded on the magneto-optical recording medium, and the magnetization direction is the first direction. A recording signal having a predetermined level is continuously recorded on the magneto-optical recording medium when it has a polarity, and at least when the magnetization direction is a second polarity different from the first polarity, at least the recording laser element A magneto-optical recording method, characterized in that the pulsed light emission of the recording laser element is stopped when changing to the first polarity after light emission.
JP30192487A 1987-11-30 1987-11-30 Magneto-optical recording method Expired - Fee Related JP2687377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30192487A JP2687377B2 (en) 1987-11-30 1987-11-30 Magneto-optical recording method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30192487A JP2687377B2 (en) 1987-11-30 1987-11-30 Magneto-optical recording method

Publications (2)

Publication Number Publication Date
JPH01143043A JPH01143043A (en) 1989-06-05
JP2687377B2 true JP2687377B2 (en) 1997-12-08

Family

ID=17902750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30192487A Expired - Fee Related JP2687377B2 (en) 1987-11-30 1987-11-30 Magneto-optical recording method

Country Status (1)

Country Link
JP (1) JP2687377B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2745518B2 (en) * 1988-01-29 1998-04-28 松下電器産業株式会社 Recording method and recording device
JP3134290B2 (en) * 1989-11-21 2001-02-13 ソニー株式会社 Magneto-optical recording device

Also Published As

Publication number Publication date
JPH01143043A (en) 1989-06-05

Similar Documents

Publication Publication Date Title
JP2575120B2 (en) Magneto-optical recording device
JPH01292603A (en) Magneto-optical data recording device
JPH03183047A (en) Magneto-optical recorder
JP3365435B2 (en) Magneto-optical recording device
JP2687377B2 (en) Magneto-optical recording method
KR960019142A (en) Optical disc drive and magneto-optical disc drive
JPH06150435A (en) Laser power control for magneto-optical disk device
JP2754240B2 (en) Magneto-optical recording device
JP3226305B2 (en) Optical recording device
JPH1092038A (en) Magnetooptical recording and reproducing device
JP2647013B2 (en) Magneto-optical recording device
JP2659577B2 (en) Magneto-optical recording / reproducing device
JP3799617B2 (en) Semiconductor laser control device
JP2706298B2 (en) Magneto-optical recording apparatus and magneto-optical recording method
JPH01248341A (en) Method for recording on magneto-optical recording medium
JPS63171456A (en) Magneto-optical recorder
JP2854882B2 (en) Magneto-optical recording apparatus and magneto-optical recording method
JP2583556B2 (en) Information recording / reproducing device
JP3421753B2 (en) Magneto-optical recording device
JPH1092041A (en) Information recording method, device therefor and information recording medium
JPH04109444A (en) Magneto-optical recording device
JPH05282726A (en) Magnetooptic recording system
JPH03214445A (en) Magneto-optical recorder
JP2006269076A (en) Controller of semiconductor laser, optical head device and device and method to drive optical recording medium
JPH04114336A (en) Magneto-optical recording device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees