JP2686949B2 - Selective adsorption functional microfilter and its manufacturing method - Google Patents

Selective adsorption functional microfilter and its manufacturing method

Info

Publication number
JP2686949B2
JP2686949B2 JP63045929A JP4592988A JP2686949B2 JP 2686949 B2 JP2686949 B2 JP 2686949B2 JP 63045929 A JP63045929 A JP 63045929A JP 4592988 A JP4592988 A JP 4592988A JP 2686949 B2 JP2686949 B2 JP 2686949B2
Authority
JP
Japan
Prior art keywords
microfilter
tannin
porous membrane
water
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63045929A
Other languages
Japanese (ja)
Other versions
JPH01224004A (en
Inventor
和雄 豊本
恭一 斉藤
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP63045929A priority Critical patent/JP2686949B2/en
Publication of JPH01224004A publication Critical patent/JPH01224004A/en
Application granted granted Critical
Publication of JP2686949B2 publication Critical patent/JP2686949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/401Polymers based on the polymerisation of acrylic acid, e.g. polyacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/78Graft polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一般産業用水及び廃水、例えば除鉄を特に必
要とする日本酒の精製用に使用される洗米水や清酒のオ
リ下ゲ(除蛋白質)に、又は特に鉄イオンの除去が要請
される原子力復水に、微量含まれる鉄イオンと、同時に
含まれるコロイド状物質、菌、クラツド等の微粒子を同
時に除去できる有用で新規な選択吸着機能性ミクロフィ
ルターおよびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to general industrial water and waste water, for example, washing rice water used for the purification of sake that requires iron removal in particular, or squeegee of sake (deproteinized protein). ), Or especially in nuclear condensate where removal of iron ions is required, a useful and novel selective adsorption functionality capable of simultaneously removing trace amounts of iron ions and fine particles such as colloidal substances, bacteria, and clats that are simultaneously included. The present invention relates to a microfilter and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来、たとえば、清酒製造に用いられるプロセス用水
は、極めて微量の鉄分を含んでいても清酒の風味に影響
し、従って極めて良質の水源からの水を用水としてい
た。
Conventionally, for example, process water used for sake production affects the flavor of sake even if it contains an extremely small amount of iron, and therefore water from an extremely high-quality water source has been used.

やむをえず、都市近郊の地下水を利用せざるを得ない
場合は、近年の土壌の汚れによって水中に混入された鉄
を除去するために、活性炭や、タンニン製品(たとえば
田辺製薬の固定化タンニン)が使用されてきた。用水中
にはその他菌や微粒子等が含まれ、これらも除去する必
要がある。
If it is unavoidable to use underground water near the city, activated carbon or tannin products (such as immobilized tannin from Tanabe Seiyaku) are used to remove iron mixed in the water due to soil contamination in recent years. Has been used. Other water and other micro-organisms are contained in the water and it is necessary to remove these as well.

一方、水中に含まれる微量の金属イオン、たとえばナ
トリウムイオン、カルシウムイオン等はそのまま除去す
る必要がない場合が多い。
On the other hand, it is often not necessary to remove trace amounts of metal ions contained in water, such as sodium ions and calcium ions.

これまでは、特に鉄イオン等の特殊イオンと、菌、微
粒子とを同時に効率良く除去する方法が知られていなか
った。
Up to now, a method for efficiently removing special ions such as iron ions, bacteria, and fine particles at the same time has not been known.

〔本発明が解決しようとする課題〕[Problems to be solved by the present invention]

本発明の目的は、水中に含まれる微量の鉄イオン等お
よび(又は)蛋白質と微粒子などを効率良く同時に除去
することが可能な新規で有用な選択吸着機能性ミクロフ
ィルターおよびその製造方法を提供するものである。
An object of the present invention is to provide a novel and useful selective adsorption functional microfilter capable of efficiently removing a trace amount of iron ions and / or proteins and fine particles contained in water at the same time, and a method for producing the same. It is a thing.

〔課題を解決するための手段〕[Means for solving the problem]

本発明者らは、以下の手段によって上記の目的を達成
できることを見出した。
The present inventors have found that the above objects can be achieved by the following means.

すなわち、本発明は、ポリオレフィン、オレフィンと
ハロゲン化オレフィンとの共重合体、またはポリフッ化
ビニリデンからなる平均孔径0.01〜5μ、空孔率20〜80
%の実質的に三次元網目構造を有する多孔膜に、1〜25
重量%のタンニンが少なくとも多孔膜の孔の表面部分に
優先的に分布固定された内径0.05〜10mm、肉厚0.05〜5m
mの中空糸状の選択吸着機能性ミクロフィルター、およ
び上記多孔膜に電離性放射線を照射後、グリンジルメタ
クリレートをグラフトさせ、ついでタンニンを反応付加
させることを特徴とする上記ミクロフィルターの製造方
法に関する。
That is, the present invention comprises a polyolefin, a copolymer of an olefin and a halogenated olefin, or polyvinylidene fluoride having an average pore diameter of 0.01 to 5 µ and a porosity of 20 to 80.
% To a porous membrane having a substantially three-dimensional network structure,
Weight% tannin is preferentially distributed and fixed at least on the surface of the pores of the porous membrane. Inner diameter 0.05-10 mm, wall thickness 0.05-5 m
The present invention relates to a hollow fiber-shaped selective adsorption functional microfilter of m, and a method for producing the above microfilter, which comprises irradiating the porous membrane with ionizing radiation, grafting grindyl methacrylate, and then reacting and adding tannin.

以下、本発明についてさらに詳細に説明を行う。 Hereinafter, the present invention will be described in more detail.

本発明に用いられる多孔膜の材質は、ポリオレフィ
ン、オレフィンとハロゲン化オレフィンとの共重合体、
又はポリフッ化ビニリデン等から構成されていて疎水性
を有することが必要であって、これは基材膜として必要
な機械的性質の保持に役立つ。
The material of the porous membrane used in the present invention is polyolefin, a copolymer of olefin and halogenated olefin,
Alternatively, it needs to be made of polyvinylidene fluoride or the like and have hydrophobicity, which helps maintain the mechanical properties required as a base film.

ポリオレフィン、オレフィンとハロゲン化オレフィン
との共重合体としては、具体例には、ポリオレフィン樹
脂、たとえばポリエチレン、ポリプロピレン、ポリブチ
レンなどのオレフィンの単独重合体又はそれら2種以上
の重合体混合物;あるいはエチレン、プロピレン、ブテ
ン、ペンテン、ヘキセンなどのオレフィンの2種以上の
共重合体;前記オレフィンの1種又は2種以上とテトラ
フルオロエチレン、クロロトリフルオロエチレンなどの
ハロゲン化オレフィンとの共重合体などが採用される。
Specific examples of polyolefins and copolymers of olefins and halogenated olefins include polyolefin resins, for example, homopolymers of olefins such as polyethylene, polypropylene and polybutylene, or a mixture of two or more thereof; or ethylene and propylene. , A copolymer of two or more kinds of olefins such as butene, pentene, and hexene; a copolymer of one or more kinds of the above olefins and a halogenated olefin such as tetrafluoroethylene or chlorotrifluoroethylene. It

本発明のミクロフィルターは、平均孔径0.01μないし
5μの範囲にあることが、イオン吸着とコロイド状物質
除去性及び透過速度の点で好ましい。
The microfilter of the present invention preferably has an average pore size in the range of 0.01 μ to 5 μ in terms of ion adsorption, colloidal substance removability and permeation rate.

ここで平均孔径とは、ASTMF316−70に記載されている
方法で得られた値を示しており、通常エアーフロー法と
呼ばれ、空気圧を変えて乾燥膜と湿潤膜の空気透過流束
を測定し、その比から求めるものである。
Here, the average pore size indicates the value obtained by the method described in ASTM F316-70, which is usually called the air flow method, and the air permeation flux of a dry membrane and a wet membrane is measured by changing the air pressure. Then, it is obtained from the ratio.

本発明における平均孔径の範囲は、実用性能上から設
定されたものであり、これ以外の範囲では、透過速度も
しくは微粒子除去効果等の点で不適当である。
The range of the average pore size in the present invention is set from the viewpoint of practical performance, and in the range other than this range, it is inappropriate in terms of the transmission rate or the effect of removing fine particles.

空孔率は20ないし80%の範囲にあることが好ましい。
ここで空孔率とは、あらかじめミクロフィルターを水等
の液体に浸漬し、そののち乾燥させて、その前後の重量
変化から測定したものである。
The porosity is preferably in the range of 20 to 80%.
Here, the porosity is measured by previously immersing the microfilter in a liquid such as water, drying it, and measuring the weight change before and after the drying.

空孔率が本発明の範囲以外においては、それぞれ透過
速度、機械的性質等の点で好ましくない。
When the porosity is out of the range of the present invention, it is not preferable in terms of the transmission speed, mechanical properties, and the like.

本発明のミクロフィルターのベースとなる基材多孔膜
の孔構造は、種々の成型加工手段によって得ることがで
きる。
The pore structure of the substrate porous membrane which is the base of the microfilter of the present invention can be obtained by various molding processing means.

具体的には、延伸法や、電子線照射後に、化学処理に
より作られる、いわゆるエツチング法等も適用可能であ
るが、多孔膜の孔構造としては延伸法やエツチング法な
どにより得られた直孔貫通型の空孔構造よりも、たとえ
ば特公昭40−957号公報、特公昭47−17460号公報および
特公昭59−37292号公報に示されたミクロ相分離法や混
合抽出法などにより形成される三次元網目構造を有する
ものが好ましい。
Specifically, a stretching method or a so-called etching method, which is produced by chemical treatment after electron beam irradiation, is also applicable, but the pore structure of the porous membrane is a straight hole obtained by the stretching method or etching method. Rather than the through-hole structure, it is formed by the microphase separation method or the mixed extraction method disclosed in, for example, Japanese Patent Publication No. 40-957, Japanese Patent Publication No. 47-17460 and Japanese Patent Publication No. 59-37292. Those having a three-dimensional network structure are preferable.

ミクロフィルターの形状は、平膜状、チューブ状、中
空糸膜状のいずれも適用可能であるが、本発明の目的に
は、内径0.05ないし10ミリ、厚さ0.05ないし5ミリの形
状を有する中空糸状のものを用いる。
The shape of the microfilter may be a flat membrane, a tube, or a hollow fiber membrane, and for the purpose of the present invention, a hollow having an inner diameter of 0.05 to 10 mm and a thickness of 0.05 to 5 mm. Use a thread-shaped one.

本発明のミクロフィルターには、1ないし25重量%の
タンニンが固定されていなければならない。ここでミク
ロフィルターのタンニン含有率は (W2−W1)/W2×100 で示される。
The microfilter of the present invention must have 1 to 25% by weight of tannin immobilized. Here, the tannin content of the microfilter is represented by (W 2 −W 1 ) / W 2 × 100.

上記式のW1、W2は、それぞれタンニンを反応させる前
後の膜の重量である。
In the above formula, W 1 and W 2 are the weights of the film before and after the reaction with tannin.

タンニン含有率が1重量%より低いと吸着機能が小さ
く、25重量%以上になると吸着機能の効果よりも水の濾
過速度の低下が生じ、ミクロフィルターの機能低下が大
となる。
When the tannin content is less than 1% by weight, the adsorption function is small, and when it is 25% by weight or more, the filtration rate of water is decreased more than the effect of the adsorption function, and the function of the microfilter is greatly deteriorated.

ここで、タンニン含有率とは、膜のかなりマクロ的な
重量を基準にした値のことであり、たとえば、膜表面の
一部、または内部の一部だけを取り出した重量のことで
はない。基材としての多孔膜の優れた機械的性質を保持
したまま処理するには、できるだけ孔の表面に、より優
先的にタンニンを反応附加(グラフト)したほうが目的
を達しやすい。したがって、ここで言うタンニン含有率
の意味は膜の全面にわたって平均的に加味測定された値
を示しており、ごく微視的な観点での重量(%)を意味
していない。
Here, the tannin content is a value based on a considerably macroscopic weight of the film, and does not mean, for example, a weight obtained by taking out only a part of the film surface or a part of the inside. In order to treat the porous membrane as a substrate while maintaining the excellent mechanical properties, it is easier to achieve the purpose by preferentially reacting (grafting) tannin to the surface of the pores as much as possible. Therefore, the meaning of the tannin content referred to here is a value which is averaged and measured over the entire surface of the film, and does not mean the weight (%) from a microscopic viewpoint.

本発明のミクロフィルターは、多孔膜に電離性放射
線、好ましくはγ線又は電子線を照射させたのち、グリ
シジルメタクリレートをグラフト重合させ、その後タン
ニン、たとえば5倍子タンニンを反応附加させることに
より得られる。
The microfilter of the present invention is obtained by irradiating a porous membrane with ionizing radiation, preferably γ-rays or electron beams, and then graft-polymerizing glycidyl methacrylate, and then adding tannin, for example, quintuple tannin to the reaction. .

γ線又は電子線による照射は通常、真空中又は不活性
ガス中でおこなわれる。また、グラフト重合は気相重合
で行われるのが好ましい。さらに必要によっては、他の
共重合しうる2個以上の重合反応基を有するトリエチレ
ングリコールジメタクリレートのような官能性モノマー
を一緒に加えても良い。
Irradiation with γ-rays or electron beams is usually performed in vacuum or in an inert gas. The graft polymerization is preferably carried out by gas phase polymerization. Further, if necessary, another functional monomer such as triethylene glycol dimethacrylate having two or more polymerization groups capable of copolymerization may be added together.

タンニンとの反応は不活性ガス下で溶液中で行われ、
その後水洗、乾燥される。
The reaction with tannin is carried out in solution under inert gas,
After that, it is washed with water and dried.

このようにして得られる本発明の選択吸着機能性ミク
ロフィルターは、鉄イオン等と特異的に吸着反応し、か
つ同時に菌、微粒子等を効率良く除去する。
The thus-obtained selective adsorption functional microfilter of the present invention specifically adsorbs and reacts with iron ions and at the same time efficiently removes bacteria, fine particles and the like.

以下、実施例により本発明の構成及び効果を具体的に
述べるが、いずれも本発明を限定するものではない。
Hereinafter, the configuration and effects of the present invention will be specifically described by way of examples, but they do not limit the present invention.

〔実施例及び比較例〕(Examples and Comparative Examples)

微粉珪酸(ニプシルVN3LP)22.1重量部、ジオクチル
フタレート(DOP)55.4重量部、ポリエチレン樹脂粉末
〔旭化成SH−800グレード〕22.5重量部の組成物を予備
混合した後、30ミリ2軸押出機内で内径0.7mm、厚み0.2
5mmの中空糸状に押出した後、 1,1,1−トリクロルエタン〔クロロセンVG(商品名)〕
中に60分間浸漬し、DOPを抽出した。さらに温度60℃の
苛性ソーダ40%水溶液中に約20分浸漬して微粉珪酸を抽
出したあと、水洗、乾燥した。
22.1 parts by weight of finely powdered silicic acid (Nipsil VN3LP), 55.4 parts by weight of dioctyl phthalate (DOP), and 22.5 parts by weight of polyethylene resin powder [Asahi Kasei SH-800 grade] are premixed and then the inner diameter is 0.7 in a 30 mm twin-screw extruder. mm, thickness 0.2
After extrusion into a 5 mm hollow fiber, 1,1,1-trichloroethane [chlorocene VG (trade name)]
It was immersed in the solution for 60 minutes to extract DOP. Further, it was immersed in a 40% aqueous solution of caustic soda at a temperature of 60 ° C. for about 20 minutes to extract fine silicic acid, which was then washed with water and dried.

得られた多孔膜に電子加速器(加圧電圧1.5MeV、電子
線電流1mA)を用いて窒素雰囲気下で電子線を20メガラ
ド照射したのち、気相中でグリシジルメタクリレートを
グラフトした。
The obtained porous film was irradiated with 20 Mrad of electron beam in a nitrogen atmosphere using an electron accelerator (pressurization voltage: 1.5 MeV, electron beam current: 1 mA), and then glycidyl methacrylate was grafted in the gas phase.

さらに還流型ロータリーエバポレーターを用いて5倍
子タンニン(大日本製薬)3%水溶液200cc中に上記多
孔膜30mgを浸漬し、ph=7の条件下で窒素を0〜2ml/分
で吹き込みながら80℃で反応時間、1時間で処理した。
反応後に膜を水洗し、真空乾燥して実施例の中空糸状膜
を得た。
Further, 30 mg of the porous membrane was immersed in 200 cc of 5% tannin tannin (Dainippon Pharmaceutical Co., Ltd.) 3% aqueous solution using a reflux type rotary evaporator, and under the condition of ph = 7, nitrogen was blown at 0-2 ml / min at 80 ° C. The reaction time was 1 hour.
After the reaction, the membrane was washed with water and vacuum dried to obtain the hollow fiber membrane of the example.

なお、比較例は5倍子タンニンの反応附加がph=9の条
件下で5分間の反応時間で行う点を除いて、実施例と同
一の処方で行った。
The comparative example was carried out in the same formulation as in the example, except that the reaction addition of quintile tannin was carried out under the condition of ph = 9 for a reaction time of 5 minutes.

得られた中空糸状膜は次の物性を有していた。 実施例 比較例 空孔率(%) 57 59 平均孔径(μ) 0.15 0.19 タンニン含有率(%) 15 0.2 なお、測定方法は前述の方法によった。The obtained hollow fiber membrane had the following physical properties. Examples Comparative Examples Porosity (%) 57 59 Average pore diameter (μ) 0.15 0.19 Tannin content (%) 15 0.2 The measuring method was the above-mentioned method.

あらかじめ、濾過テストを行う前に、5g−Fe/m3濃度
の硫酸第一鉄アンモニウム水溶液中に、前記の2種の膜
を投入して振盪した。その後、吸着平衡に達したことを
確認したのち、塩酸で鉄を溶離して吸着量を測定した。
鉄の定量測定はo−フエナントロリン法にしたがった。
Prior to the filtration test, the above two types of membranes were put into an aqueous solution of ferrous ammonium sulfate having a concentration of 5 g-Fe / m 3 and shaken. After confirming that the adsorption equilibrium was reached, iron was eluted with hydrochloric acid to measure the adsorption amount.
The quantitative determination of iron was according to the o-phenanthroline method.

得られた鉄の吸着量を以下に示す。 The amount of iron adsorption thus obtained is shown below.

(なお測定は30℃で行った。) 膜中の鉄の濃度 (g.Fe/kg.膜) 実施例 8.5 比較例 0.2 上の表に示されるように、本発明のミクロフィルター
は、高い鉄吸着能力を有する。
(The measurement was performed at 30 ° C.) Iron concentration in the film (G.Fe / kg. Membrane) Example 8.5 Comparative Example 0.2 As shown in the table above, the microfilter of the present invention has a high iron adsorption capacity.

次に、下記に示される水質の液を使用して、実際に濾
過テストを行った。
Next, a filtration test was actually conducted using the water quality liquid shown below.

(原液性状) 原液中の微粒子濃度1) 2.5×104個/cc バクテリヤ濃度2) 1.4×103個/cc 鉄+3)イオン濃度 0.15ミリモル/ ナトリウムイオン濃度 0.50ミリモル/ 1) 孔径0.2μのポリカーボネート製平膜上で顕微鏡
によって直接測定した値 2)ブロカ染色法によって染色後、顕微鏡によって直接
測定した値。
(Undiluted solution) Fine particle concentration in undiluted solution 1) 2.5 × 10 4 particles / cc Bacterial concentration 2) 1.4 × 10 3 particles / cc Iron + 3) Ion concentration 0.15 mmol / sodium ion concentration 0.50 mmol / 1) Pore diameter 0.2μ Value directly measured with a microscope on a polycarbonate flat film 2) Value directly measured with a microscope after staining by Broca staining method.

その結果を下記に示す。 実施例 比較例 初期透過速度(/hr.m2.atm) 100 150 微粒子除去率(%) 99.5 99.4 鉄除去率(%) 95 5 ナトリウム除去率(%) 5 3 本発明のミクロフィルターが、実質的にナトリウムイ
オンに対して除去作用を及さず、一方、鉄イオンに対し
ては特に優れた除去効率を有することが分かる。さら
に、この方法により約5時間濾過テストを行ったのち、
強塩酸液にミクロフイルターを浸漬して再生し、再度鉄
イオンの除去率を測定した所、初期除去率に比して98%
の保持率を示した。
The results are shown below. Example Comparative Example Initial transmission rate (/hr.m 2 .atm) 100 150 Fine particle removal rate (%) 99.5 99.4 Iron removal rate (%) 95 5 Sodium removal rate (%) 5 3 The microfilter of the present invention is substantially It can be seen that it does not have a removing effect on sodium ions, while it has a particularly excellent removing efficiency for iron ions. Furthermore, after performing a filtration test for about 5 hours by this method,
When a microfilter was dipped in a strong hydrochloric acid solution to regenerate it and the iron ion removal rate was measured again, it was 98% of the initial removal rate.
The retention rate of

〔発明の効果〕〔The invention's effect〕

本発明の選択吸着機能性ミクロフィルターは、鉄イオ
ン除去(吸着)機能と微粒子除去機能とを合わせ持つも
ので、特に鉄イオンと微粒子、菌の存在を嫌う清酒工業
用水、及び清酒のオリ下ゲ、原子力復水用水等の精製に
好適である。
The selective adsorption functional microfilter of the present invention has both an iron ion removing (adsorbing) function and a fine particle removing function, and in particular, iron ion and fine particles, water for sake industry that dislikes the presence of bacteria, and an undigested sake of sake. It is suitable for refining water for nuclear condensate.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/44 C02F 1/44 K // D01F 6/04 D01F 6/04 C 6/46 6/46 A ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C02F 1/44 C02F 1/44 K // D01F 6/04 D01F 6/04 C 6/46 6 / 46 A

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリオレフィン、オレフィンとハロゲン化
オレフィンの共重合体、またはポリフッ化ビニリデンか
らなる平均孔径0.01〜5μ、空孔率20〜80%の実質的に
三次元網目構造を有する多孔膜に、1〜25重量%のタン
ニンが少なくとも多孔膜の孔の表面部分に優先的に反応
固定された内径0.05〜10mm、肉厚0.05〜5mmの中空糸状
の選択吸着機能性ミクロフィルター。
1. A porous membrane having a substantially three-dimensional network structure of polyolefin, a copolymer of olefin and halogenated olefin, or polyvinylidene fluoride having an average pore diameter of 0.01 to 5 μm and a porosity of 20 to 80%. A hollow fiber-shaped selective adsorption functional microfilter having an inner diameter of 0.05 to 10 mm and a wall thickness of 0.05 to 5 mm, in which 1 to 25% by weight of tannin is preferentially reactively fixed to at least the surface portion of the pores of a porous membrane.
【請求項2】多孔膜に電離性放射線を照射後、グリシジ
ルメタクリレートをグラフトさせ、ついでタンニンを反
応付加させることを特徴とする請求項(1)記載のミク
ロフィルターの製造方法。
2. The method for producing a microfilter according to claim 1, wherein the porous membrane is irradiated with ionizing radiation, grafted with glycidyl methacrylate, and then tannin is reactively added.
JP63045929A 1988-03-01 1988-03-01 Selective adsorption functional microfilter and its manufacturing method Expired - Fee Related JP2686949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63045929A JP2686949B2 (en) 1988-03-01 1988-03-01 Selective adsorption functional microfilter and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63045929A JP2686949B2 (en) 1988-03-01 1988-03-01 Selective adsorption functional microfilter and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH01224004A JPH01224004A (en) 1989-09-07
JP2686949B2 true JP2686949B2 (en) 1997-12-08

Family

ID=12732951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63045929A Expired - Fee Related JP2686949B2 (en) 1988-03-01 1988-03-01 Selective adsorption functional microfilter and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2686949B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5684109A (en) * 1993-06-22 1997-11-04 Betzdearborn Inc. Composition comprising a tannin-containing copolymer
US5643462A (en) * 1993-06-22 1997-07-01 Betzdearborn Inc. Composition and method for water clarification
US5846436A (en) * 1993-06-22 1998-12-08 Betzdearborn Inc. Composition and method for water clarification
US5916991A (en) * 1993-06-22 1999-06-29 Betzdearborn Inc. Composition and method for water clarification
US5830315A (en) * 1995-07-06 1998-11-03 Betzdearborn Inc. Treatment of Aqueous systems using a chemically modified tannin
JP4606299B2 (en) * 2005-10-19 2011-01-05 オルガノ株式会社 Separation membrane modification method and apparatus, and separation membrane modified by the method
JP2007111608A (en) * 2005-10-19 2007-05-10 Japan Organo Co Ltd Performance improvement method and apparatus for separation membrane and separation membrane with improved performance by the method
JP4974276B2 (en) * 2006-12-07 2012-07-11 オルガノ株式会社 Separation membrane modification method and apparatus, separation membrane modified by the method, and separation membrane operation method and apparatus
WO2011108579A1 (en) * 2010-03-04 2011-09-09 積水化学工業株式会社 Macromolecular water-treatment membrane, manufacturing method therefor, and water treatment method
JP5778489B2 (en) * 2011-06-08 2015-09-16 旭化成ケミカルズ株式会社 Method for producing hydrophilic porous membrane, hydrophilizing agent, hydrophilic porous membrane, and method for hydrophilizing porous membrane
JP2013086042A (en) * 2011-10-20 2013-05-13 Sekisui Chem Co Ltd Polymeric water treatment membrane
HUP1900214A1 (en) * 2019-06-14 2020-12-28 Eoetvoes Lorand Tudomanyegyetem Polypropylene or polyethylene base separator for electrochemical cells for producing alkali metal ferrates

Also Published As

Publication number Publication date
JPH01224004A (en) 1989-09-07

Similar Documents

Publication Publication Date Title
JP2749094B2 (en) Method for producing multifunctional filtration membrane having iminodiacetic acid group
US5087372A (en) Method for removing heavy metal ions from contaminated water and a porous membrane usable therefor
JP2686949B2 (en) Selective adsorption functional microfilter and its manufacturing method
JP3312634B2 (en) Chelate-type ion-adsorbing membrane and manufacturing method
JPH06104753B2 (en) Non-adsorbing hydrophilic hollow fiber porous membrane
WO2004035180A1 (en) Microporous hydrophilic membrane
JPH0829234B2 (en) Hydrophilic microporous membrane
US5344560A (en) Process for producing filtration membranes having amino acids that are capable of adsorbing proteins
JP2772010B2 (en) Method for producing chelating resin adsorbent having iminodiacetic acid group
JP2001187809A (en) Organic polymer material, its production method and heavy metal ion scavenger comprising the material
JP2796995B2 (en) Anion-selective adsorptive porous membrane and its production method
JPH01228541A (en) Manufacture of fixed tannin adsorbent
JPH0321390A (en) Removal of heavy metal ion in water
JPS63240902A (en) Treating method
JP2781581B2 (en) Method for producing affinity adsorbent having complex of iminodiacetic acid group and metal
JPH0710925A (en) Chelating resin and its production
JPH01224009A (en) Treatment of graft membrane
JPS62201604A (en) Method for removing cobalt ion
JPS6283006A (en) Manufacturing process for separating functional material
JP2002018245A (en) Antistaining porous filter membrane
JPS61157344A (en) Manufacture of metal absorbing material
JPH03195745A (en) Method for modifying surface of polymer structure
JP2802648B2 (en) Cation-selective adsorptive porous membrane and its production method
JPH02194039A (en) Selectively anion-adsorptive porous membrane and its production
JP2004035582A (en) Method for producing surface-treated polymeric microporous membrane

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees