JP2686260B2 - Operating method of once-through boiler - Google Patents

Operating method of once-through boiler

Info

Publication number
JP2686260B2
JP2686260B2 JP14666787A JP14666787A JP2686260B2 JP 2686260 B2 JP2686260 B2 JP 2686260B2 JP 14666787 A JP14666787 A JP 14666787A JP 14666787 A JP14666787 A JP 14666787A JP 2686260 B2 JP2686260 B2 JP 2686260B2
Authority
JP
Japan
Prior art keywords
boiler
load
once
water
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14666787A
Other languages
Japanese (ja)
Other versions
JPS63311003A (en
Inventor
盛士 三宅
俊雄 小河内
勝 森尾
Original Assignee
バブコツク日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコツク日立株式会社 filed Critical バブコツク日立株式会社
Priority to JP14666787A priority Critical patent/JP2686260B2/en
Publication of JPS63311003A publication Critical patent/JPS63311003A/en
Application granted granted Critical
Publication of JP2686260B2 publication Critical patent/JP2686260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は貫流ボイラの運転方法に係り、特に気水分離
器を含む再循環回路を有する貫流ボイラの運転方法に関
するものである。 〔従来の技術〕 低負荷時にはボイラ圧力を低圧力で運転し、負荷が上
昇するにつれボイラ圧力を上げていき、定格負荷では定
格圧力まで上昇させるボイラの運転法を変圧運転方法と
いうが、これは低負荷時に定格圧力までボイラ圧力を上
げて運転すると、圧力を上げるための給水ポンプ動力費
がかかることを主な理由としている。 第4図は、変圧運転貫流ボイラの配管系統図を示すも
のである。ボイラの運転に際しては脱気器125で脱気さ
れた給水は給水ポンプ101を経て高圧給水加熱器102で所
定温度に加熱されたのちボイラ内の節炭器104に供給さ
れ、ここから水壁105、ケージ106で加熱され気水分離器
107に入り、蒸気は1次過熱器110、2次過熱器111、3
次過熱器112でさらに加熱されたのち、タービン主塞止
弁114、タービン加減弁115を経てタービン116に供給さ
れ、発電機17を回転し所定の電力を発生する。タービン
で仕事をして低温、低圧となった蒸気は復水器118で冷
却され復水となる。この復水は復水ポンプ119、低圧給
水加熱器120を経て脱気器125に循環する。 ボイラ負荷が低いときは、ボイラ火炉の熱負荷に対し
水壁105やケージ106を保護するため余分の給水を水壁10
5に送ってやることが必要で、余分の水は気水分離器107
で蒸気と分離され下部のタンクに貯水され、ここに貯め
られた貯水はボイラ再循環ポンプ(BCP)108によりボイ
ラ再循環流量調整弁360を経て節炭器104、水壁105、ケ
ージ106に送られる。このように蒸発未完了のボイラ水
(缶水)を系外に出すことなく再循環するとともに、蒸
気として蒸発した分だけ給水を給水流量調整弁103を経
て循環系統内に供給するようにしている。これを循環運
転という。 このようなボイラにおいては、高負荷時には節炭器10
4、水壁105、ケージ106を流れる間に給水はすべて蒸発
し、蒸発がちょうど完了した時点で気水分離器107に入
るようになっている。この場合火炉熱負荷に対して、ケ
ージ106の出口で蒸発が完了する程度の給水をしておけ
ば、水壁などが過分に加熱されてオーバーヒートすると
いうことはない。したがってこの場合はボイラ再循環ポ
ンプ108、ボイラ再循環流量調整弁360は作動することな
く、ボイラ再循環回路は閉止される。この運転状態を貫
流運転という。 循環運転から貫流運転に規定の負荷で移行させて、ボ
イラ再循環ポンプ108を停止するまでの一連の動作を行
なわせるために、ボイラ起動に際して、第3図に示すよ
うにボイラ入力指令(負荷)に対して、ボイラに供給す
る燃料および給水をどのように増やしていくかというこ
とがプログラム的に決められている。すなわち、貫流運
転に移行した後の通常運転では、例えば給水が所定の温
度と圧力の蒸気になるのに必要な給水燃料比率となるよ
うに制御されていた。 ボイラを起動時の低温低圧状態から、高負荷時の高温
高圧状態にもっていくためには、伝熱管や炉壁などから
なるボイラ本体構造物を昇温させるとともに、ボイラ伝
熱管内を流れる流体、つまりボイラ内に保持されている
流体をも高温高圧状態に昇温昇圧させることが必要であ
る。したがって、ボイラの起動時には、給水に対する燃
料量を通常の貫流運転時に比較して多めに供給するよう
にしている。また、起動時あるいは通常の負荷運転状態
からにかかわらず一旦規定負荷以下の循環運転域に低下
してのちに、再度負荷を上昇させるときは、規定負荷に
達するとボイラ再循環流量調整弁360を強制的に全閉し
てボイラ再循環ポンプ108を停止させるようにしてい
る。これらの操作が行なわれることにより、循環運転と
貫流運転が規定負荷で切り替えられることになる。 〔発明が解決しようとする問題点〕 上記方法ではボイラ起動時の循環運転から貫流運転に
移行した直後に、給水に対する燃料の比率が高くなるた
め、水壁出口およびケージ部のメタル温度や流体温度が
異常に高くなることがあり、かつまたこの時期が給水流
量の少ない負荷状態のときであることからアンバランス
になりやすいなどの問題がある。 また貫流運転に移行する負荷で弁360通過量があって
もこれを強制的に全閉させる回路を有しているボイラで
は、さらに給水に対する燃料比率が一時的に上昇して、
水壁出口メタル温度アンバランスやメタルや流体温度の
異常上昇を生じる問題があった。 本発明の目的は、上記従来技術の問題点を解決し、起
動時の循環運転から貫流運転へ移行する際に、給水に対
する燃料の比率が一時的に高くなることによって起こ
る、水壁出口およびケージ部のメタル温度や流体温度が
異常に高くなる不都合を回避することができる貫流ボイ
ラの運転方法を提供することにある。 貫流運転に移行後の通常運転ではボイラの温度が上昇
した後であり給水、燃料の比率を給水が所定の温度と圧
力の蒸気になるに必要な値に維持することにより、温度
の異常高やアンバランスの問題はない。 〔問題点を解決するための手段〕 上記目的を達成するため本発明は、起動時あるいは低
負荷時に、缶水を気水分離器、再循環ポンプおよび再循
環流量調整弁を介して水壁へ再循環する貫流ボイラの運
転方法において、通常運転時の循環運転から貫流運転へ
移行する負荷(X)に比較して、起動時の循環運転から
貫流運転へ移行する負荷(X+α)の値を高く設定する
とともに、起動時に、前記負荷(X)以上の負荷域にお
いて、給水量に対する燃料量の比が所定値を超えないよ
うに制御することを特徴とする貫流ボイラの運転方法を
提供するものである。 〔実施例〕 第2図に本発明の実施例を説明するための制御系統図
を示す。燃料指令信号41に対して、測定された燃料油流
量42と起動バーナに使われる軽油の軽油流量43を加算す
る加算器44による合計値が合計燃料信号45となる。そし
て偏差演算器46の出力信号が比例積分演算器47を経て、
加算器48で特性リレー49から先行信号と加算されて燃料
油流量制御弁52の開度信号となる。この開度信号は、最
少流量を制限するミニマムストップ信号と高信号選択リ
レー50によって比較され高い信号が、自動・手動切替器
51を経て、燃料油流量制御弁52に到る。 要求指令信号のほうは、空気流量信号53に基づいて特
性リレー54により空燃比から補正した信号と燃料指令信
号41の低いほうの値を低選択リレー55で選択し、加算器
56を経て合計燃料量の要求信号となる。 ボイラ起動時は、通常運転時の給水燃料比率制御とは
別に、切替器57が“ON"されており、比較リレー58の信
号が加算される。すなわち、発電機出力指令信号59をも
とにして、特性リレー60によって負荷に対する給水燃料
比率目標値を作る。合計燃料量信号45を、割算リレー61
で節炭器入口給水流量信号62で割った値が、給水燃料比
率63となるので、この給水燃料比率63と特性リレー60の
出力信号とを偏差演算器64で比較して、目標値を超過し
た分だけ、燃料流量制御目標信号を低減させるように作
動する。 上記制御回路によるボイラ負荷に対する合計燃料、給
水量、水壁通過給水・燃料比率の関係を第1図に示す。
第1図Aに示すように、ボイラ負荷が0から100%に変
化する際に、通常運転時(負荷の大小にかかわらず、起
動時を除いた、ボイラの負荷運転状態にある運転をい
う)には燃料(イ)から(ロ)に増加する。ただし、起
動時においては燃料量は2点破線で示すように規定負荷
Xまで(ハ)から(ニ)まで増加し、(ニ)から(ホ)
までは負荷増加に対する燃料量の増加割合は減少する。
(ホ)以後は通常運転時の燃料増加線に沿って負荷とと
もに増加する。ボイラが起動を完了して通常運転に入っ
たのちに、負荷が減少してX以下になったときの燃料量
は(ホ)と(イ)を結ぶ実線に沿った値をとるものであ
る。 一方、給水量は第1図Bに示すごとく、起動時には
ヘ、ト、チ、リ、ヌの順序で増加させることになる。一
度通常の貫流運転に入ったのちに負荷が減少して循環運
転に戻り、再び貫流運転に移行する場合は、給水はヘ、
ト、ル、リ、ヌのように増加させるのである。したがっ
て、通常運転時の循環運転から貫流運転への移行は負荷
Xで行なうのに対し、起動時には、循環運転から貫流運
転への移行は負荷X+αにて行なうのである。すなわ
ち、移行負荷を若干高くとるのである。 給水・燃料の比率(燃料量/給水量)は第1図Cのよ
うに、貫流運転への移行負荷(X)以上の負荷である値
を超えないように制御する。第1図Cに示した水壁通過
給水・燃料比率の設定値曲線(実際には折線カーブ)
は、第2図の制御系統図において特性リレー60によって
設定される値であり、そのような制御を行なうように第
2図の系統図において、合計燃料流量45、節炭器入口給
水流量62、割算リレー61、偏差演算器64、比例リレー58
の制御系統が作用することになる。 〔発明の効果〕 本発明によれば、ボイラ起動時の循環運転から貫流運
転に移行した後の水壁出口部やケージ部のメタル温度
や、流体温度の異常上昇を防止することができ、温度ア
ンバランスもなくすことができる。
The present invention relates to a method for operating a once-through boiler, and more particularly to a method for operating a once-through boiler having a recirculation circuit including a steam separator. [Prior art] When the load is low, the boiler pressure is operated at a low pressure, the boiler pressure is increased as the load rises, and at the rated load, the boiler operation method is called the variable pressure operation method. The main reason is that if the boiler pressure is increased to the rated pressure when the load is low and the boiler is operated, power supply pump power cost is required to increase the pressure. FIG. 4 shows a piping system diagram of the variable pressure operation once-through boiler. During operation of the boiler, the feed water degassed by the deaerator 125 is heated to a predetermined temperature by the high-pressure feed water heater 102 via the water feed pump 101 and then supplied to the economizer 104 in the boiler, from which the water wall 105 is supplied. , Steam-water separator heated in cage 106
Entering 107, steam is primary superheater 110, secondary superheater 111, 3
After being further heated by the next superheater 112, it is supplied to the turbine 116 via the turbine main shut-off valve 114 and the turbine control valve 115, and rotates the generator 17 to generate a predetermined electric power. The steam that has become low temperature and low pressure by working in the turbine is cooled by the condenser 118 and becomes condensed water. This condensate is circulated to the deaerator 125 via the condensate pump 119 and the low-pressure feed water heater 120. When the boiler load is low, extra water is supplied to protect the water wall 105 and cage 106 against the heat load of the boiler furnace.
It is necessary to send it to 5 and extra water is steam separator 107
The steam is separated from the steam in the lower tank, and the stored water is sent to the economizer 104, water wall 105, and cage 106 by the boiler recirculation pump (BCP) 108 through the boiler recirculation flow rate adjustment valve 360. To be In this way, the boiler water (canned water) that has not been vaporized is recirculated without being discharged to the outside of the system, and the amount of water vaporized as vapor is supplied to the circulation system through the feed water flow rate adjusting valve 103. . This is called circulation operation. In such a boiler, the economizer 10
4, all the feed water evaporates while flowing through the water wall 105 and the cage 106, and enters the steam separator 107 when the evaporation is just completed. In this case, if water is supplied to the furnace heat load to the extent that evaporation is completed at the outlet of the cage 106, the water wall and the like will not be overheated and overheated. Therefore, in this case, the boiler recirculation pump 108 and the boiler recirculation flow rate adjusting valve 360 do not operate, and the boiler recirculation circuit is closed. This operating state is called once-through operation. In order to perform a series of operations from the circulation operation to the once-through operation at a specified load and stopping the boiler recirculation pump 108, at the time of starting the boiler, as shown in FIG. 3, the boiler input command (load) On the other hand, it is programmatically decided how to increase the fuel and water supply to the boiler. That is, in the normal operation after the transition to the once-through operation, for example, the feed water is controlled so as to have a feed water fuel ratio required to become steam having a predetermined temperature and pressure. In order to bring the boiler from the low temperature / low pressure state at startup to the high temperature / high pressure state at high load, the boiler body structure including the heat transfer tube and the furnace wall is heated, and the fluid flowing in the boiler heat transfer tube is In other words, it is necessary to raise the temperature of the fluid held in the boiler to a high temperature and high pressure state. Therefore, when the boiler is started, the fuel amount for the water supply is supplied in an amount larger than that in the normal flow-through operation. When the load is increased again after the load has dropped to the circulating operation range below the specified load regardless of the start-up or normal load operation state, when the specified load is reached, the boiler recirculation flow rate adjustment valve 360 is turned on. The boiler recirculation pump 108 is forcibly closed to stop it. By performing these operations, the circulation operation and the once-through operation are switched with the specified load. [Problems to be Solved by the Invention] In the above method, since the ratio of fuel to feed water becomes high immediately after the circulation operation at boiler startup is changed to the once-through operation, the metal temperature and the fluid temperature of the water wall outlet and the cage part May become abnormally high, and there is a problem that an imbalance is likely to occur because the load is low at this time. Also, in a boiler that has a circuit that forcibly fully closes the valve 360 even if there is a passing amount of the valve 360 due to the load that shifts to the once-through operation, the fuel ratio to the water supply further temporarily increases,
There was a problem that the water temperature at the outlet of the water wall was unbalanced and the temperature of the metal and fluid increased abnormally. An object of the present invention is to solve the above-mentioned problems of the prior art, and to cause a temporary increase in the ratio of fuel to water supply when transitioning from circulation operation at startup to once-through operation. It is an object of the present invention to provide a method for operating a once-through boiler, which can avoid the disadvantage that the metal temperature and the fluid temperature of a part become abnormally high. In the normal operation after the transition to the once-through operation, after the temperature of the boiler has risen, the ratio of feed water and fuel is maintained at a value necessary for the feed water to become steam at a predetermined temperature and pressure, thereby increasing the temperature There is no problem of imbalance. [Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention, at the time of start-up or at the time of low load, transfers the can water to a water wall via a steam separator, a recirculation pump and a recirculation flow rate adjusting valve. In the operation method of the recirculating once-through boiler, the value of the load (X + α) that shifts from the circulating operation at startup to the once-through operation is higher than the load (X) that shifts from the circulating operation to the once-through operation during normal operation. A method for operating a once-through boiler, which is set and controlled so that the ratio of the amount of fuel to the amount of water supplied does not exceed a predetermined value in a load range equal to or higher than the load (X) at startup. is there. [Embodiment] FIG. 2 shows a control system diagram for explaining an embodiment of the present invention. A total fuel signal 45 is a total value obtained by an adder 44 that adds the measured fuel oil flow rate 42 and the light oil flow rate 43 of the light oil used for the starter burner to the fuel command signal 41. Then, the output signal of the deviation calculator 46 passes through the proportional-plus-integral calculator 47,
The adder 48 adds the preceding signal from the characteristic relay 49 to form an opening signal of the fuel oil flow rate control valve 52. This opening signal is compared with the minimum stop signal that limits the minimum flow rate by the high signal selection relay 50, and the high signal is automatically / manually switched.
The fuel oil flow rate control valve 52 is reached via 51. For the request command signal, the signal selected by the characteristic relay 54 based on the air flow rate signal 53 from the air-fuel ratio and the lower value of the fuel command signal 41 are selected by the low selection relay 55, and the adder is added.
After 56, it becomes a request signal for the total fuel amount. When the boiler is started, the switching device 57 is turned “ON” and the signal from the comparison relay 58 is added, in addition to the feed water fuel ratio control during normal operation. That is, based on the generator output command signal 59, the characteristic relay 60 creates the target value of the feed water fuel ratio to the load. Total fuel quantity signal 45, divide relay 61
The value obtained by dividing by the feedwater flow rate signal 62 at the economizer inlet becomes the feedwater fuel ratio 63, so compare this feedwater fuel ratio 63 and the output signal of the characteristic relay 60 with the deviation calculator 64 and exceed the target value. It operates so as to reduce the fuel flow rate control target signal by that amount. Fig. 1 shows the relationship between the total fuel, the amount of water supply, and the water supply / fuel ratio passing through the water wall with respect to the boiler load by the control circuit.
As shown in FIG. 1A, when the boiler load changes from 0 to 100%, during normal operation (regardless of the size of the load, it refers to the operation in the load operating state of the boiler excluding startup) The fuel increases from (a) to (b). However, at the time of start-up, the fuel amount increases from (C) to (D) up to the specified load X, as shown by the two-dot broken line, and from (D) to (E).
Until then, the rate of increase in the amount of fuel with respect to the increase in load decreases.
(E) After that, it increases with the load along the fuel increase line during normal operation. After the boiler completes the start-up and enters the normal operation, the fuel amount when the load decreases to X or less takes a value along the solid line connecting (e) and (a). On the other hand, as shown in FIG. 1B, the water supply amount is increased in the order of F, T, C, R, and N at the time of starting. Once the normal once-through operation is started, the load is reduced, the circulation operation is resumed, and the once-through operation is resumed.
It increases like To, Le, Li, Nu. Therefore, the transition from the circulation operation to the once-through operation in the normal operation is performed by the load X, while the transition from the circulation operation to the once-through operation is performed by the load X + α at the start. That is, the transitional load is slightly higher. The ratio of water supply / fuel (fuel amount / water supply amount) is controlled so as not to exceed a value which is a load equal to or higher than the load (X) for transition to the once-through operation, as shown in FIG. 1C. Set value curve for water supply through the water wall / fuel ratio shown in Fig. 1C (actually a broken line curve)
Is a value set by the characteristic relay 60 in the control system diagram of FIG. 2, and in the system diagram of FIG. 2 so as to perform such control, the total fuel flow rate 45, the economizer inlet feed water flow rate 62, Division relay 61, deviation calculator 64, proportional relay 58
The control system will operate. [Advantages of the Invention] According to the present invention, it is possible to prevent the metal temperature of the water wall outlet part and the cage part after the transition from the circulation operation at the boiler startup to the once-through operation, and to prevent an abnormal rise in the fluid temperature. Unbalance can be eliminated.

【図面の簡単な説明】 第1図は、ボイラ負荷に対する燃料流量、給水流量、水
壁通過給水・燃料比率の実施例図、第2図は、本発明の
実施例を説明するための制御系統図、第3図は、ボイラ
入力に対する燃料流量、給水流量のプログラム設定値を
示す従来例図、第4図は、従来の貫流ボイラの系統図で
ある。 41……燃料指令信号、42……燃料油流量、43……軽油流
量、44,48,56……加算器、45……合計燃料量、46……偏
差演算器、47……比例積分演算器、49,54,60……特性リ
レー、50……高信号選択リレー、51……自動・手動切替
器、52……燃料油流量制御弁、53……空気流量、55……
低信号選択リレー、57……切換器、58……比例リレー、
59……発電機出力指令、61……割算リレー、62……節炭
器入口給水流量(SHスプレ含まず)、63……給水燃料比
率信号、64……偏差演算器。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an embodiment diagram of a fuel flow rate, a feed water flow rate, a water wall passage feed water / fuel ratio with respect to a boiler load, and FIG. 2 is a control system for explaining an embodiment of the present invention. FIG. 3 and FIG. 3 are conventional example diagrams showing program set values of fuel flow rate and feed water flow rate with respect to boiler input, and FIG. 4 is a system diagram of a conventional once-through boiler. 41 …… Fuel command signal, 42 …… Fuel oil flow rate, 43 …… Light oil flow rate, 44,48,56 …… Adder, 45 …… Total fuel quantity, 46 …… Deviation calculator, 47 …… Proportional integral calculation Device, 49, 54, 60 ... characteristic relay, 50 ... high signal selection relay, 51 ... automatic / manual switching device, 52 ... fuel oil flow control valve, 53 ... air flow rate, 55 ...
Low signal selection relay, 57 …… switch, 58 …… proportional relay,
59 …… Generator output command, 61 …… Division relay, 62 …… Coal saver inlet feed water flow rate (not including SH spray), 63 …… Water feed fuel ratio signal, 64 …… Deviation calculator.

Claims (1)

(57)【特許請求の範囲】 1.起動時あるいは低負荷時に、缶水を気水分離器、再
循環ポンプおよび再循環流量調整弁を介して水壁へ再循
環する貫流ボイラの運転方法において、通常運転時の循
環運転から貫流運転へ移行する負荷(X)に比較して、
起動時の循環運転から貫流運転へ移行する負荷(X+
α)の値を高く設定するとともに、起動時に、前記負荷
(X)以上の負荷域において、給水量に対する燃料量の
比が所定値を超えないように制御することを特徴とする
貫流ボイラの運転方法。
(57) [Claims] In the operation method of the once-through boiler, in which the can water is recirculated to the water wall through the steam separator, the recirculation pump and the recirculation flow rate adjustment valve at the time of startup or low load, from the circulation operation during normal operation to the once-through operation. Compared to the transferred load (X),
Load (X +) that shifts from circulation operation at startup to once-through operation
The operation of the once-through boiler is characterized in that the value of α) is set to a high value, and at the time of startup, the ratio of the fuel amount to the water supply amount does not exceed a predetermined value in the load range of the load (X) or more. Method.
JP14666787A 1987-06-12 1987-06-12 Operating method of once-through boiler Expired - Fee Related JP2686260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14666787A JP2686260B2 (en) 1987-06-12 1987-06-12 Operating method of once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14666787A JP2686260B2 (en) 1987-06-12 1987-06-12 Operating method of once-through boiler

Publications (2)

Publication Number Publication Date
JPS63311003A JPS63311003A (en) 1988-12-19
JP2686260B2 true JP2686260B2 (en) 1997-12-08

Family

ID=15412895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14666787A Expired - Fee Related JP2686260B2 (en) 1987-06-12 1987-06-12 Operating method of once-through boiler

Country Status (1)

Country Link
JP (1) JP2686260B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2686262B2 (en) * 1987-07-09 1997-12-08 バブコツク日立株式会社 Operating method of once-through boiler

Also Published As

Publication number Publication date
JPS63311003A (en) 1988-12-19

Similar Documents

Publication Publication Date Title
JP5450642B2 (en) Operation method of exhaust heat recovery boiler
JP5183305B2 (en) Startup bypass system in steam power plant
JPS6211164B2 (en)
JP4507098B2 (en) Fluid circulation operation equipment and operation method for supercritical constant pressure once-through boiler
US5048466A (en) Supercritical pressure boiler with separator and recirculating pump for cycling service
US4487166A (en) Start-up system for once-through boilers
JP2686260B2 (en) Operating method of once-through boiler
JP2686259B2 (en) Operating method of once-through boiler
JP2686262B2 (en) Operating method of once-through boiler
JP2880558B2 (en) Control method of once-through boiler and control device of once-through boiler
JP5409882B2 (en) Operation method of start-up bypass system in steam power plant
EP0065408B1 (en) Control systems for boilers
JPH01212802A (en) Steam temperature control device for boiler
JP2511400B2 (en) Steam temperature control method for once-through boiler
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JP2708406B2 (en) Startup control method for thermal power plant
CA1202218A (en) Start-up system for once-through boilers
JPH11325408A (en) Operation control method of boiler
JPH0135244B2 (en)
JPS63194110A (en) Once-through boiler
JPH0330687B2 (en)
JPH07122485B2 (en) Steamer steam prevention device for once-through thermal power generation boiler system
JPS62134401A (en) Method of operating once-through boiler
JPH04259628A (en) Exhaust heat recovery steam generator
JPS6334402A (en) Method of starting thermal power plant

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees