JP2686070B2 - Neutral wire open phase detection circuit breaker - Google Patents

Neutral wire open phase detection circuit breaker

Info

Publication number
JP2686070B2
JP2686070B2 JP59277062A JP27706284A JP2686070B2 JP 2686070 B2 JP2686070 B2 JP 2686070B2 JP 59277062 A JP59277062 A JP 59277062A JP 27706284 A JP27706284 A JP 27706284A JP 2686070 B2 JP2686070 B2 JP 2686070B2
Authority
JP
Japan
Prior art keywords
circuit
current
output
voltage
neutral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP59277062A
Other languages
Japanese (ja)
Other versions
JPS61150610A (en
Inventor
義久 石神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP59277062A priority Critical patent/JP2686070B2/en
Publication of JPS61150610A publication Critical patent/JPS61150610A/en
Application granted granted Critical
Publication of JP2686070B2 publication Critical patent/JP2686070B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

【発明の詳細な説明】 [技術分野] 本発明は交流単相3線若しくは交流3相4線の配電線
の中性線の断線を検出して配電線を遮断する中性線欠相
検出遮断器に関するものである。 [背景技術] 交流単相3線、交流3相4線式等の中性線を有する配
電線においてその中性線が切断、緩み等にて欠落が発生
した場合、その欠落点より負荷側の中性線を介して接続
されている負荷のバランスにより、負荷側の中性線の電
位が決定される。このような状況において負荷がアンバ
ランスとなるとき負荷には異常電圧が印加されることと
なり、負荷機器の損傷に至らしめるという欠点があっ
た。 そこで提供されたのが特公昭54−5092号公報のような
遮断器であった。ところが係る従来例は第7図に示すよ
うに中性点比較回路、動作制御回路、動作設定回路等の
処理回路Aは仮想中性点形成回路Bとは別に電源回路を
必要としており、そのため回路構成が複雑化するうえに
高耐圧部が電源回路と仮想中性点形成回路Bの2箇所必
要とするという欠点があった。尚第7図中L1,L2は活
線、Nは中性線を示し、2a,2bは負荷を示す。 [発明の目的] 本発明は上述の問題点に鑑みて為されたもので、その
目的とするところは中性線の欠落を検出して配電線を遮
断し負荷の保護を図ることができ、併せて信号処理部の
電源を平滑出力電圧より得て分圧回路からなる仮想中性
点形成回路と同じ電源を供給することで構成が簡単で小
型化が可能な中性線欠相検出遮断器を提供することにあ
る。 [発明の開示] 本発明は交流単相3線、交流3相4線等の中性線を有
する配電線に挿入される開閉接点Sと、該開閉接点Sを
開成遮断する遮断駆動部1と、開閉接点Sと負荷2a,2b
との間で配電線の活線L1,L2に接続した全波整流器3
と、全波整流器3の出力側若しくは入力側の各活線L1,L
2に挿入された同一値のインピーダンス要素と、全波整
流器3の出力を平滑する平滑コンデンサC1と、平滑出力
電圧を等分に分圧して中性点の電位と分圧点の電位とを
同一電位に設定する分圧回路6と上記分圧回路6の分圧
点と中性線Nとの間に生じる電位差にて流れる電流を積
分する電流積分回路4と、該電流積分回路4の積分出力
と予め設定した基準値lとを比較して積分出力が基準値
lを越えたことを検出すると上記遮断駆動部1を駆動す
る弁別回路5とを備え、電流積分回路4及び弁別回路5
の電源を上記平滑出力電圧より得るものである。 尚上記電流積分回路4として、前記分圧点と中性線と
の間にミラー回路の電流設定部と高インピーダンス素子
とを接続し、分圧点と中性線との電位差と高インピーダ
ンス素子とで決定される設定電流を流し、該設定電流で
設定されるミラー回路の出力電流をCR積分器で積分する
電流積分回路を備えたものである。 以下実施例により説明する。 実施例1 第1図は交流単相3線の配電線に用いた実施例の回路
構成図を示し、第2図はその具体回路を示しており、遮
断駆動部1は駆動する開閉接点Sを交流単相3線の電源
ACと負荷2a,2bとの間に直列に挿入している。そして負
荷2a,2bと開閉接点Sとの間において活線L1,L2間にはダ
イオードブリッジからなる全波整流器3が接続してお
り、全波整流器3の両出力端には抵抗R1,R2を介して平
滑コンデンサC1が接続され、整流出力は平滑されるよう
になっている。抵抗R1,R2は等しい値の抵抗である。分
圧回路6は平滑出力を1/2に分圧するための回路で等し
い値の抵抗R3,R4の直列回路から構成され、その分圧出
力を電流積分回路4の入力端子I1に接続している。電流
積分回路4は上記平滑出力を電源として動作するもの
で、1対の入力端子I1,I2を備え、一方の入力端子I1
は上述の分圧出力を、他方の入力端子I2には負荷2a,2a
と開閉接点Sの間の中性線Nを接続しており、開閉接点
Sと電源ACの間の中性線Nに欠落が生じた際に発生する
電位差で両入力端子I1,I2間に流れる電流を積分するよ
うになっている。弁別回路5は上記平滑出力を電源とす
るもので、積分出力と予め設定した基準値lとを比較し
て基準値lを積分出力が越えると出力を発生して遮断駆
動部1を駆動する。遮断駆動部1は活線L1,L2から電源
を得、弁別回路5の出力で動作し開閉接点Sを開成遮断
するようになっている。 次に第2図に示す具体回路で動作を説明する。今中性
線Nが正常状態にあるとすると、中性線Nと活線L1間の
電圧は第3図(a)に示すように、また中性線Nと活線
L2間の電圧は第3図(b)に示すようになり、また両活
線L1,L2間の電圧Vbは第3図(c)のようになってい
る。そして平滑コンデンサC1に対して対称に接続された
抵抗R1、R2及びR3,R4により電圧Vbの中点の電圧が分圧
回路6の分圧点に発生する。そのため分圧点と中性線N
の間には電位差が無いため、電流積分回路4のトランジ
スタQ1のベース・エミッタ、高抵抗値の抵抗R8の回路に
は電流が流れない状態にあり、そのため電流積分回路4
の積分出力は発生しない。第3図(d)は平滑コンデン
サC1の電圧aと、分圧点の電圧bを示し、また同図
(e)は入力端子I1又はI2の電圧を示す。 次に開閉接点Sと電源ACとの間で中性線Nに欠落が生
じると、欠落点より負荷2a,2b側の電位は負荷2a,2bのイ
ンピーダンスRa,Rbの比により決定される。 従って入力端子I1とI2との間の電位差VaはVa=Vb×
[Ra/(Ra+Rb)]−(Vb/2)で表される。但しVbは活
線L1、L2間の電圧である。第4図(a)は活線L1と中性
線N間の電圧を、又同図(b)は活線L2と中性線N間の
電圧を、また活線L1、L2間の電圧Vbを、又同図(d)は
平滑コンデンサC1の電圧aと分圧点の電圧bを、更に同
図(e)は入力端子I1、I2間の電位差を示す。この時電
流積分回路4のトランジスタQ1のベース・エミッタ、抵
抗R8の回路には電流が流れる。この電流はVa/R8だけの
値であるが、入力端子I2からI1に流れ正の電流はダイオ
ードD1を介して全波整流器3へ流れる。逆の負の電流時
には全波整流器3からトランジスタQ1のベース・エミッ
タ回路に(Va/R8)/(1/hFE)だけ流れ、トランジスタ
Q1のエミッタ電流がVa/R8だけ抵抗R8を通じて流れる。
この時のトラジスタQ1のコレクタ電流[Va・hFE/R8(1
+hFE)=Va/R8]がトランジスタQ2〜Q5等から構成され
たミラー回路の設定電流がトランジスタQ2のエミッタ電
流として流れる。この電流が流れるとミラー回路の特性
によりトランジスタQ3のエミッタ電流が同じだけ流れミ
ラー回路の出力電流IとしてVa/R8が流れる。この第4
図(f)は出力電流Iを示す。この半波の出力電流Iに
より積分器のコンデンサC2の両端電圧が第4図(g)に
示すように上昇する。この積分出力は弁別回路5に入力
し、トランジスタQ6がオンする閾値として設定された基
準値lを越えるとトランジスタQ6をオンさせる。トラン
ジスタQ6がオンするとトランジスタQ7がオンしてホトカ
プラPHの発光ダイオードLEDに電流が第4図(h)に示
すように流れる。このため遮断駆動部1のホトカプラPH
のホトトランジスタQ8がオンしてトランジスタQ9をオフ
させる。このオフによりトランジスタQ10がオンしてサ
イリスタSCRをトリガする。このサイリスタSCRのオンに
より遮断機構の電磁コイルCLに励磁電流が流れて開閉接
点Sは開成駆動され電源ACを遮断し、負荷2a,2bに異常
電圧が印加されるのを防ぐのである。ここで弁別回路5
の基準値lは弁別回路5の出力を安定させるためにヒス
テリシスを持たせている。つまり“H"レベルの基準値l
はオン時のトランジスタQ6のベース・エミッタ電圧VBE6
×(R9+R11)/R11で決定され、“L"レベルの基準値l
はVBE6+ベース電流IB6×R9で決定されるようになって
いる。つまりトランジスタQ6がオンする前はトランジス
タQ11がオン状態にあり、従って積分出力は抵抗R9、R11
で分圧される。またトランジスタQ5、Q7がオンすればト
ランジスタQ12がオンするためトランジスタQ11のベース
電流が遮断されトランジスタQ11がオフとなり積分出力
が抵抗R9を介してトランジスタQ6のベースに接続される
のである。 尚中性線Nの欠落時に遮断駆動部1が動作する電圧Va
は電流積分回路4のコンデンサC2、抵抗R7により充放電
されるが、この電圧のピーク値が弁別回路5の“H"の基
準値lに達するときの値である。またこのCR積分により
欠落時の中性線Nの電圧Vaの値に応じて動作する時間が
異なるように設定できる。従って電圧Vaが低いときには
動作時間が遅く、電圧Vaが高くなると(Va=0V〜Vbまで
変化)、動作時間が早くなることにより危険度に応じた
遮断機能を持つことになる。更に短時間の雷サージ等に
よる異常電圧で誤動作するのを防止できる。 また上記実施例呑電流積分回路4では電圧Vaを抵抗R8
で除した電流Iは半波であったがダイオードD1を第5図
に示すように無くせば全波波形の電流となる。 実施例2 上記実施例1は交流単相3線用であったが、第6図に
示すように本実施例は交流3相4線用を構成しており、
L1〜L3の活線と全波整流器3の入力端間に等しい抵抗
R1,R2,R5夫々挿入してある点において実施例1と相違す
る。 [発明の効果] 本発明は交流単相3線、交流3相4線等の中性線を有
する配電線に挿入される開閉接点と、該開閉接点を開成
遮断する遮断駆動部と、開閉接点と負荷との間で配電線
の活線に接続した全波整流器と、全波整流器の出力側若
しくは入力側の各活線に挿入された同一値のインピーダ
ンス要素と、全波整流器の出力を平滑する平滑コンデン
サと、平滑出力電圧を等分に分圧して中性点の電位と分
圧点の電位とを同一電位に設定する分圧回路と、上記分
圧回路の分圧点と中性線との間に生じる電位差にて流れ
る電流を積分する電流積分回路と、該電流積分回路の積
分出力と予め設定した基準値lとを比較して積分出力が
基準値lを越えたことを検出すると上記遮断駆動部を駆
動する弁別回路とを備えてあるから、中性線の欠落が生
じると開閉接点を開成遮断することができ、結果異常電
圧より負荷を保護できるものであって、しかも電流積分
回路及び弁別回路の電源を上記平滑出力電圧より得るか
ら分圧回路からなる仮想中性点形成回路と同じ電源を共
用できそのため構成の簡略化とコンパクト化とが可能と
なり、そのうえ電流積分回路によりサージ等によって生
じる短時間の異常電圧による誤動作も防止できるという
効果を奏するものである。 尚上記電流積分回路として、前記分圧点と中性線との
間にミラー回路の電流設定部と高インピーダンス素子と
を接続し、分圧点と中性線との電位差と高インピーダン
ス素子とで決定される設定電流を流し、該設定電流で設
定されるミラー回路の出力電流をCR積分器で積分する電
流積分回路を備えれば、中性線の欠落時に生じる電位差
に応じて動作を遅延でき、電位差の大きい時程早く動作
が得られ、危険度に適応した遮断特性を持つことができ
るという効果を奏する。
Description: TECHNICAL FIELD The present invention detects a disconnection of a neutral line of an AC single-phase three-wire or an AC three-phase four-wire distribution line and disconnects the distribution line. It is related to vessels. [Background Art] In a distribution line having a neutral wire such as an AC single-phase three-wire or an AC three-phase four-wire type, when the neutral wire is cut or loosened to cause a drop, the load side The balance of the loads connected via the neutral line determines the potential of the neutral line on the load side. In such a situation, when the load becomes unbalanced, an abnormal voltage is applied to the load, which has a drawback that the load device is damaged. What was provided there was a circuit breaker as disclosed in Japanese Patent Publication No. 54-5092. However, in the conventional example, as shown in FIG. 7, the processing circuit A such as the neutral point comparison circuit, the operation control circuit, and the operation setting circuit requires a power supply circuit separately from the virtual neutral point forming circuit B, and therefore the circuit is required. In addition to the complicated structure, there is a drawback that the high breakdown voltage portion requires two places, the power supply circuit and the virtual neutral point forming circuit B. In FIG. 7, L 1 and L 2 are live lines, N is a neutral line, and 2a and 2b are loads. [Object of the Invention] The present invention has been made in view of the above problems, and an object of the present invention is to detect a lack of a neutral wire and shut off a distribution line to protect a load. In addition, the neutral line open-phase detection circuit breaker that is simple in configuration and can be downsized by obtaining the power source of the signal processing unit from the smoothed output voltage and supplying the same power source as the virtual neutral point forming circuit composed of the voltage dividing circuit To provide. DISCLOSURE OF THE INVENTION The present invention relates to an opening / closing contact S to be inserted into a distribution line having a neutral wire such as an AC single-phase three-wire and an AC three-phase four-wire, and a breaking drive unit 1 for opening and closing the opening / closing contact S. , Switching contacts S and loads 2a, 2b
Full-wave rectifier 3 connected to the live lines L 1 and L 2 of the distribution line between
And the live lines L 1 and L on the output side or the input side of the full-wave rectifier 3
The impedance element of the same value inserted in 2 , the smoothing capacitor C 1 that smoothes the output of the full-wave rectifier 3, the smoothed output voltage is divided into equal parts, and the potential of the neutral point and the potential of the voltage dividing point are divided into A voltage dividing circuit 6 that is set to the same potential, a current integrating circuit 4 that integrates a current that flows due to a potential difference generated between the voltage dividing point of the voltage dividing circuit 6 and the neutral line N, and integration of the current integrating circuit 4 The current integration circuit 4 and the discrimination circuit 5 are provided with a discrimination circuit 5 that drives the cutoff drive unit 1 when it detects that the integrated output exceeds the reference value 1 by comparing the output with a preset reference value l.
Is obtained from the smoothed output voltage. As the current integrator circuit 4, a current setting portion of the mirror circuit and a high impedance element are connected between the voltage dividing point and the neutral line, and a potential difference between the voltage dividing point and the neutral line and a high impedance element are connected. The current integrator circuit is provided with a CR integrator that allows the set current determined in step 3 to flow and integrates the output current of the mirror circuit set by the set current. Hereinafter, an embodiment will be described. Embodiment 1 FIG. 1 shows a circuit configuration diagram of an embodiment used for an AC single-phase three-wire distribution line, and FIG. 2 shows a specific circuit thereof, and the shut-off drive unit 1 has a switching contact S to be driven. AC single-phase 3-wire power supply
It is inserted in series between the AC and the loads 2a and 2b. A full-wave rectifier 3 composed of a diode bridge is connected between the live lines L 1 and L 2 between the loads 2a and 2b and the switching contact S, and a resistor R 1 is connected to both output terminals of the full-wave rectifier 3. , R 2 is connected to the smoothing capacitor C 1 so that the rectified output is smoothed. The resistors R 1 and R 2 are resistors of equal value. The voltage dividing circuit 6 is a circuit for dividing the smoothed output into halves and is composed of a series circuit of resistors R 3 and R 4 having the same value. The divided voltage output is connected to the input terminal I 1 of the current integrating circuit 4. doing. The current integrator circuit 4 operates by using the smoothed output as a power source, and is provided with a pair of input terminals I 1 and I 2 , one input terminal I 1 of which has the above-mentioned divided voltage output and the other input terminal I 2 of which. Load 2a, 2a
The neutral line N between the switching contact S and the switching contact S is connected, and the potential difference generated when the neutral line N between the switching contact S and the power supply AC is missing occurs between both input terminals I 1 and I 2. It is designed to integrate the current flowing through. The discriminating circuit 5 uses the smoothed output as a power source, compares the integrated output with a preset reference value l, and when the integrated output exceeds the reference value l, generates an output to drive the cut-off drive section 1. The shut-off drive unit 1 obtains power from the live lines L 1 and L 2 and operates by the output of the discrimination circuit 5 to open and shut the open / close contact S. Next, the operation will be described with reference to the specific circuit shown in FIG. Assuming that the neutral line N is now in a normal state, the voltage between the neutral line N and the live line L 1 is as shown in FIG.
The voltage across L 2 is as shown in FIG. 3 (b), and the voltage Vb between both live lines L 1 and L 2 is as shown in FIG. 3 (c). Then, the voltage at the middle point of the voltage Vb is generated at the voltage dividing point of the voltage dividing circuit 6 by the resistors R 1 , R 2 and R 3 , R 4 symmetrically connected to the smoothing capacitor C 1 . Therefore, the partial pressure point and the neutral line N
Since there is no potential difference between them, no current flows in the circuit of the base / emitter of the transistor Q 1 of the current integrator circuit 4 and the resistor R 8 having a high resistance value.
The integrated output of does not occur. 3 (d) shows the voltage a of the smoothing capacitor C 1 and the voltage b at the voltage dividing point, and FIG. 3 (e) shows the voltage of the input terminal I 1 or I 2 . Next, when a loss occurs in the neutral line N between the switching contact S and the power supply AC, the potential on the load 2a, 2b side from the loss point is determined by the ratio of the impedances Ra, Rb of the loads 2a, 2b. Therefore, the potential difference Va between the input terminals I 1 and I 2 is Va = Vb ×
It is represented by [Ra / (Ra + Rb)]-(Vb / 2). However, Vb is the voltage between the live lines L 1 and L 2 . FIG. 4 (a) shows the voltage between the live line L 1 and the neutral line N, and FIG. 4 (b) shows the voltage between the live line L 2 and the neutral line N, and also the live line L 1 , L 2 The voltage Vb between them, the voltage (a) of the smoothing capacitor C 1 and the voltage b at the voltage dividing point are shown in (d), and the potential difference between the input terminals I 1 and I 2 is shown in (e). At this time, a current flows in the circuit of the base / emitter of the transistor Q 1 and the resistor R 8 of the current integrating circuit 4. This current has a value of only Va / R 8, but flows from the input terminals I 2 to I 1 and the positive current flows to the full-wave rectifier 3 via the diode D 1 . At the time of negative current of the opposite, only (Va / R 8 ) / (1 / h FE ) flows from the full-wave rectifier 3 to the base-emitter circuit of the transistor Q 1 ,
Emitter current of Q 1 is flowing through only resistor R 8 Va / R 8.
Transistor Q 1 collector current [Va ・ h FE / R 8 (1
+ H FE ) = Va / R 8 ], the set current of the mirror circuit composed of the transistors Q 2 to Q 5 etc. flows as the emitter current of the transistor Q 2 . When this current flows, the emitter current of the transistor Q 3 flows by the same amount due to the characteristics of the mirror circuit, and Va / R 8 flows as the output current I of the mirror circuit. This fourth
The figure (f) shows the output current I. This half-wave output current I causes the voltage across the capacitor C 2 of the integrator to rise as shown in FIG. 4 (g). This integrated output is input to the discrimination circuit 5, and when the reference value 1 set as a threshold value for turning on the transistor Q 6 is exceeded, the transistor Q 6 is turned on. When the transistor Q 6 is turned on, the transistor Q 7 is turned on and a current flows through the light emitting diode LED of the photocoupler PH as shown in FIG. 4 (h). For this reason, the photocoupler PH of the cutoff drive unit 1
Phototransistor Q 8 of turns on and turns off transistor Q 9 . This off causes transistor Q 10 to turn on and trigger the thyristor SCR. When the thyristor SCR is turned on, an exciting current flows in the electromagnetic coil CL of the breaking mechanism to open and close the switching contact S to cut off the power supply AC and prevent an abnormal voltage from being applied to the loads 2a and 2b. Discrimination circuit 5
The reference value 1 of is provided with hysteresis in order to stabilize the output of the discrimination circuit 5. In other words, "H" level reference value l
Is the base-emitter voltage V BE6 of transistor Q 6 when on
× (R 9 + R 11 ) / R 11 determined, “L” level reference value l
Is determined by V BE6 + base current I B6 × R 9 . That is, before the transistor Q 6 is turned on, the transistor Q 11 is in the on state, so that the integrated output is the resistance R 9 , R 11
Is divided by. When the transistors Q 5 and Q 7 are turned on, the transistor Q 12 is turned on, the base current of the transistor Q 11 is cut off, the transistor Q 11 is turned off, and the integrated output is connected to the base of the transistor Q 6 via the resistor R 9. It is. The voltage Va at which the cutoff drive unit 1 operates when the neutral wire N is missing
Is charged and discharged by the capacitor C 2 and the resistor R 7 of the current integration circuit 4, and is the value when the peak value of this voltage reaches the “H” reference value 1 of the discrimination circuit 5. Further, by this CR integration, the operating time can be set to be different depending on the value of the voltage Va of the neutral line N at the time of lack. Therefore, when the voltage Va is low, the operation time is slow, and when the voltage Va is high (Va changes from 0V to Vb), the operation time is shortened, and a cutoff function according to the degree of danger is provided. Further, it is possible to prevent malfunction due to abnormal voltage due to lightning surge or the like for a short time. In the swallow current integrating circuit 4 of the above embodiment, the voltage Va is changed to the resistance R 8
The current I divided by was a half wave, but if the diode D 1 is eliminated as shown in FIG. 5, it becomes a full wave current. Example 2 The above Example 1 was for AC single phase 3 wire, but as shown in FIG. 6, this Example is for AC 3 phase 4 wire,
Equal resistance between the live line of L 1 to L 3 and the input terminal of full-wave rectifier 3.
It differs from the first embodiment in that R 1 , R 2 and R 5 are inserted respectively. [Effects of the Invention] The present invention provides a switching contact to be inserted into a distribution line having a neutral wire such as an AC single-phase three-wire and an AC three-phase four-wire, a breaking drive unit for opening and closing the switching contact, and a switching contact. Between the load and the load, the full-wave rectifier connected to the live line of the distribution line, the impedance element of the same value inserted in each live line on the output side or the input side of the full-wave rectifier, and the output of the full-wave rectifier Smoothing capacitor, a voltage dividing circuit that divides the smoothed output voltage into equal parts and sets the potential of the neutral point and the potential of the voltage dividing point to the same potential, the voltage dividing point of the voltage dividing circuit and the neutral line. When a current integration circuit that integrates a current flowing due to a potential difference generated between the current integration circuit and an integration output of the current integration circuit is compared with a preset reference value l and it is detected that the integration output exceeds the reference value l Since the discrimination circuit for driving the shut-off drive section is provided, the neutral wire is lost. A virtual neutral point consisting of a voltage divider circuit that can open and shut the open and close contacts and protect the load from abnormal voltage as a result, and because the power supply of the current integrator circuit and the discrimination circuit is obtained from the smoothed output voltage. Since the same power source as that of the forming circuit can be shared, the structure can be simplified and downsized, and further, the current integrating circuit can prevent malfunction due to abnormal voltage for a short time caused by surge or the like. As the current integrator circuit, a current setting section of the mirror circuit and a high impedance element are connected between the voltage dividing point and the neutral line, and the potential difference between the voltage dividing point and the neutral line and the high impedance element are connected. If a current integrator circuit that allows a set current to be determined and the output current of the mirror circuit set by the set current is integrated by a CR integrator is provided, the operation can be delayed according to the potential difference that occurs when the neutral line is missing. The larger the potential difference is, the quicker the operation can be obtained, and the breaking characteristic adapted to the degree of danger can be obtained.

【図面の簡単な説明】 第1図は本発明の実施例1の回路構成図、第2図は同上
の具体回路図、第3図、第4図は同上の動作説明の波形
図、第5図は同上使用の電流積分回路の他の例の要部回
路図、第6図は本発明の実施例2の回路構成図、第7図
は従来例の回路構成図であり、1は遮断駆動部、2a,2b
は負荷、3は全波整流器、4は電流積分回路、5は弁別
回路、6は分圧回路、R1〜R8は抵抗、C1はコンデンサ、
Sは開閉接点、L1,L2は活線、Nは中性線、C7はコンデ
ンサである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit configuration diagram of a first embodiment of the present invention, FIG. 2 is a specific circuit diagram of the same as above, and FIGS. 3 and 4 are waveform diagrams of operation explanation of the same as above. FIG. 6 is a circuit diagram of a main part of another example of the current integrating circuit used in the same as above. FIG. 6 is a circuit configuration diagram of a second embodiment of the present invention. FIG. 7 is a circuit configuration diagram of a conventional example. Division, 2a, 2b
Is a load, 3 is a full-wave rectifier, 4 is a current integration circuit, 5 is a discrimination circuit, 6 is a voltage dividing circuit, R 1 to R 8 are resistors, C 1 is a capacitor,
S is a switching contact, L 1 and L 2 are live lines, N is a neutral line, and C 7 is a capacitor.

Claims (1)

(57)【特許請求の範囲】 1.交流単相3線、交流3相4線等の中性線を有する配
電線に挿入される開閉接点と、該開閉接点を開成遮断す
る遮断駆動部と、開閉接点と負荷との間で配電線の活線
に接続した全波整流器と、全波整流器の出力側若しくは
入力側の各活線に挿入された同一値のインピーダンス要
素と、全波整流器の出力を平滑する平滑コンデンサと、
平滑出力電圧を等分に分圧して中性点の電位と分圧点の
電位とを同一電位に設定する分圧回路と、上記分圧回路
の分圧点と中性線との間に生じる電位差にて流れる電流
を積分する電流積分回路と、該電流積分回路の積分出力
と予め設定した基準値とを比較して積分出力が基準値を
越えたことを検出すると上記遮断駆動部を駆動する弁別
回路とを備え、電流積分回路及び弁別回路の電源を上記
平滑出力電圧より得ることを特徴とする中性線欠相検出
遮断器。 2.前記電流積分回路として、前記分圧点と中性線との
間にミラー回路の電流設定部と高インピーダンス素子と
を接続し、分圧点と中性線との電位差と高インピーダン
ス素子とで決定される設定電流を流し、該設定電流で設
定されるミラー回路の出力電流をCR積分器で積分する電
流積分回路を備えたことを特徴とする特許請求の範囲第
1記載の中性線欠相検出遮断器。
(57) [Claims] Switching contacts to be inserted into a distribution line having a neutral wire such as AC single-phase three-wire and AC three-phase four-wire, a breaking drive unit for opening and closing the switching contacts, and a distribution line between the switching contacts and the load Full-wave rectifier connected to the live line of, the impedance element of the same value inserted in each output line or input side of the full-wave rectifier, and a smoothing capacitor that smoothes the output of the full-wave rectifier,
It occurs between the voltage dividing circuit that divides the smoothed output voltage into equal parts and sets the potential at the neutral point and the potential at the voltage dividing point to the same potential, and between the voltage dividing point of the voltage dividing circuit and the neutral line. A current integrator circuit that integrates a current flowing due to a potential difference is compared with an integrated output of the current integrator circuit and a preset reference value, and when it is detected that the integrated output exceeds the reference value, the cutoff drive unit is driven. A neutral line open-phase detection circuit breaker, comprising: a discrimination circuit, wherein the power source for the current integration circuit and the discrimination circuit is obtained from the smoothed output voltage. 2. As the current integrator circuit, a current setting unit of the mirror circuit and a high impedance element are connected between the voltage dividing point and the neutral line, and it is determined by the potential difference between the voltage dividing point and the neutral line and the high impedance element. 3. The neutral line open phase according to claim 1, further comprising a current integrator circuit which allows a set current to flow and which integrates an output current of the mirror circuit set by the set current by a CR integrator. Detection circuit breaker.
JP59277062A 1984-12-24 1984-12-24 Neutral wire open phase detection circuit breaker Expired - Fee Related JP2686070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59277062A JP2686070B2 (en) 1984-12-24 1984-12-24 Neutral wire open phase detection circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59277062A JP2686070B2 (en) 1984-12-24 1984-12-24 Neutral wire open phase detection circuit breaker

Publications (2)

Publication Number Publication Date
JPS61150610A JPS61150610A (en) 1986-07-09
JP2686070B2 true JP2686070B2 (en) 1997-12-08

Family

ID=17578251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59277062A Expired - Fee Related JP2686070B2 (en) 1984-12-24 1984-12-24 Neutral wire open phase detection circuit breaker

Country Status (1)

Country Link
JP (1) JP2686070B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07112330B2 (en) * 1985-01-14 1995-11-29 松下電工株式会社 Neutral wire open phase detection circuit breaker
JPH07112328B2 (en) * 1985-01-14 1995-11-29 松下電工株式会社 Neutral wire open phase detection circuit breaker
CN113740768B (en) * 2021-07-22 2024-05-14 南方电网数字平台科技(广东)有限公司 Zero line fault detection device and method, electronic equipment and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56129871A (en) * 1980-03-14 1981-10-12 Matsushita Electric Works Ltd Detector for missing of neutral conductor
JPS57154068A (en) * 1981-03-19 1982-09-22 Mitsubishi Electric Corp Phase discriminator

Also Published As

Publication number Publication date
JPS61150610A (en) 1986-07-09

Similar Documents

Publication Publication Date Title
JPH07255124A (en) Device for protecting phase sequence wiring
JP2686070B2 (en) Neutral wire open phase detection circuit breaker
US4045822A (en) Ground fault interrupter apparatus
JP2686071B2 (en) Neutral wire open phase detection circuit breaker
JPH0619359Y2 (en) AC generator control device
JP2686069B2 (en) Neutral wire open phase detection circuit breaker
JP4739541B2 (en) AC chopper device
JP3574599B2 (en) Inrush current prevention circuit with input overvoltage limit function
JPH07112328B2 (en) Neutral wire open phase detection circuit breaker
JPH07112330B2 (en) Neutral wire open phase detection circuit breaker
JPH07112329B2 (en) Neutral wire open phase detection circuit breaker
JP2004266894A (en) Three-phase, four-wire circuit breaker provided with absent phase protection function
CA2189771A1 (en) Switch with controlled rise and fall characteristics
JPS6133412Y2 (en)
JP2696168B2 (en) AC 2-wire non-contact switch
JP2558621B2 (en) Power supply circuit
SU1661897A1 (en) Device for motor overheat protection
JPH022079Y2 (en)
JPH04334898A (en) Dimming device
SU811390A2 (en) Device for protecting electric installation from phase break
JPH0222705Y2 (en)
JPH11285253A (en) Power supply
KR850001219B1 (en) Overload relay
JPS637015Y2 (en)
JPS61132086A (en) Protecting circuit of servo motor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees