JP2684851B2 - Stirling cycle refrigerator drive mechanism - Google Patents

Stirling cycle refrigerator drive mechanism

Info

Publication number
JP2684851B2
JP2684851B2 JP3006824A JP682491A JP2684851B2 JP 2684851 B2 JP2684851 B2 JP 2684851B2 JP 3006824 A JP3006824 A JP 3006824A JP 682491 A JP682491 A JP 682491A JP 2684851 B2 JP2684851 B2 JP 2684851B2
Authority
JP
Japan
Prior art keywords
compression
pistons
piston
drive mechanism
stirling cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3006824A
Other languages
Japanese (ja)
Other versions
JPH04263751A (en
Inventor
洋一 久森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3006824A priority Critical patent/JP2684851B2/en
Publication of JPH04263751A publication Critical patent/JPH04263751A/en
Application granted granted Critical
Publication of JP2684851B2 publication Critical patent/JP2684851B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/0435Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines the engine being of the free piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/001Gas cycle refrigeration machines with a linear configuration or a linear motor

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Vibration Prevention Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、赤外線察像素子など
の冷却に使用し、微少な振動を嫌うスターリングサイク
ルにより冷却を行う冷凍機の圧力変動を作り出す圧縮機
部の駆動機構に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a drive mechanism of a compressor section which is used for cooling an infrared image sensor or the like and produces a pressure fluctuation of a refrigerator which cools by a Stirling cycle which dislikes minute vibrations. .

【0002】[0002]

【従来の技術】従来のスターリングサイクルにより冷却
を行う冷凍機について説明する。図5に示すように、赤
外線察像素子1などが張り付けられ冷却される部分は、
ールドヘッド2と呼ばれるシリンダーであり、コール
ドヘッド2の中に再生器3を内蔵し、圧力変動により往
復運動するディスプレーサ・ピストン4を持つ。圧縮機
部5はディスプレーサ・ピストン4が往復動する膨張室
6と連通しており、圧力変動をつくりだす。その構成は
圧縮ピストン1,7と一体になった圧縮ピストンロッド
1,8の一端にはリニアモータのコイル1,9が取り付
けられており、圧縮機部5本体であるボディ10にはリ
ニアモータのマグネット1,11が固定されている。ボ
ディ10と一体になったシリンダ12と圧縮ピストン
1,7の隙間は微小で、隙間シールされている。そして
もう一つの圧縮ピストン2,13も同様な構成で、圧縮
ピストンロッド2,14とリニアモータのコイル2,1
5とマグネット2,16で構成されており、シリンダー
12とは隙間シールされており、上記の圧縮ピストン
1,7と対向する位置に設けられている。圧縮ピストン
1,7と圧縮ピストン2,13が同位相でそれぞれのリ
ニヤモータにより駆動され、両ピストン間の距離が近付
くと両ピストンの間の部屋である圧縮室18は高圧にな
り、両ピストン間の距離が遠くなると圧縮室18の圧力
は低圧になる。
2. Description of the Related Art A conventional refrigerator for cooling by a Stirling cycle will be described. As shown in FIG. 5, the portion where the infrared image sensor 1 and the like are attached and cooled are
Co Rudoheddo a cylinder called 2, a built-in regenerator 3 within the cold head 2, having a displacer piston 4 to reciprocate by pressure fluctuations. The compressor section 5 communicates with the expansion chamber 6 in which the displacer piston 4 reciprocates, and creates a pressure fluctuation. The structure is such that the linear motor coils 1 and 9 are attached to one ends of the compression piston rods 1 and 8 that are integrated with the compression pistons 1 and 7, and the body 10 that is the main body of the compressor unit 5 has the linear motor coils 1 and 9. Magnets 1 and 11 are fixed. The gap between the cylinder 12 integrated with the body 10 and the compression pistons 1 and 7 is very small and is sealed. The other compression pistons 2 and 13 have the same structure, and the compression piston rods 2 and 14 and the linear motor coils 2 and 1
5 and magnets 2 and 16, and the gap between the cylinder 12 and the cylinder 12 is sealed and provided at a position facing the compression pistons 1 and 7. The compression pistons 1 and 7 and the compression pistons 2 and 13 are driven by the linear motors in the same phase, and when the distance between the two pistons approaches, the compression chamber 18, which is the chamber between the two pistons, becomes a high pressure, and the two pistons have a high pressure. As the distance becomes longer, the pressure in the compression chamber 18 becomes lower.

【0003】この圧力が連通管17を通じて膨張室6に
伝わり、ディスプレーサ・ピストン4を駆動させる。デ
ィスプレーサ・ピストン4がコールドヘッド2の下部空
間に降りてくると、内部の動作ガスはディスプレーサ・
ピストン4に開けられた穴を通し、再生器4を通り、再
びディスプレーサ・ピストン4に開けられた穴から膨張
室6上部に流れ込む。このガスの流れにより膨張室6上
部空間では等温膨張が行われ、赤外線察像素子1を冷却
する。ディスプレーサ・ピストン4は上記の圧縮室18
からの圧力変動と、ディスプレーサ・ピストン4の下部
に設けられたバネ19により共振運動し、冷却が連続し
て行われる。また、圧縮機部5をこのような構成にする
ことにより、圧縮機部5で発生する振動を同位相で対抗
させて運動することにより打ち消し、さらに圧縮部5と
ディスプレーサ部を分離することにより、赤外線察像素
子1などが張り付けられたコールドヘッド2へ振動が伝
わらないようにしている。このような圧縮部5とディス
プレーサ部を分離した形式の冷凍機はスプリット型と呼
ばれている。
This pressure is transmitted to the expansion chamber 6 through the communication pipe 17 and drives the displacer piston 4. When the displacer piston 4 comes down to the space below the cold head 2, the working gas inside the displacer piston 4
It passes through the hole formed in the piston 4, passes through the regenerator 4, and again flows into the upper part of the expansion chamber 6 from the hole formed in the displacer piston 4. This gas flow causes isothermal expansion in the upper space of the expansion chamber 6 to cool the infrared imaging element 1. The displacer piston 4 is the compression chamber 18 described above.
And the spring 19 provided at the lower portion of the displacer piston 4 resonates to continuously cool. Further, by making the compressor unit 5 have such a configuration, the vibrations generated in the compressor unit 5 are counteracted in the same phase to move and cancel out, and by further separating the compressor unit 5 and the displacer unit, Vibration is prevented from being transmitted to the cold head 2 to which the infrared image sensor 1 and the like are attached. Such a refrigerator in which the compression section 5 and the displacer section are separated from each other is called a split type refrigerator.

【0004】以上がスターリングサイクルにより冷却を
行う冷凍機の概要であるが、次に従来の圧縮機部5の駆
動機構について詳細に説明する。図5に示した圧縮機部
5の駆動機構のように直接リニアモータで圧縮ピストン
1,7、圧縮ピストン2,13を駆動したのではリニヤ
モータの出力が大きいものを使用しなければならず、発
熱部の増大や、機器の大型化につながるため、図6に示
すように、駆動系の質量と運転周波数で共振するような
バネ定数を持つ弦巻バネ1,20を圧縮ピストン1,7
と一体になった圧縮ピストンロッド1,8に固定してい
る。同様に圧縮ピストン2,13側にも同じバネ定数を
持つ弦巻バネ2,21を設けている。圧縮ピストン1,
7と圧縮ピストン2,13が同位相で駆動されるが、運
転周波数で共振するためリニヤモータの出力が小さくな
り、発熱部を減少させ、機器を小型化する。図と同様
な動作により圧力を発生させ、この圧力が膨張室6に伝
わりディスプレーサ・ピストン4を駆動させる。
The above is the outline of the refrigerator for cooling by the Stirling cycle. Next, the drive mechanism of the conventional compressor section 5 will be described in detail. Compression piston 1,7 direct linear motor as the driving mechanism of the compressor unit 5 shown in FIG. 5, than to drive the compression piston 2 and 13 must use the output size castings linear motor, As shown in FIG. 6, the helical springs 1 and 20 having spring constants that resonate with the mass of the drive system and the operating frequency are attached to the compression pistons 1 and 7 to increase the heat generating portion and the size of the device.
It is fixed to compression piston rods 1 and 8 that are integrated with. Similarly, the helical springs 2 and 21 having the same spring constant are also provided on the compression pistons 2 and 13 side. Compression piston 1,
Although 7 and the compression pistons 2 and 13 are driven in the same phase, the output of the linear motor is reduced because they resonate at the operating frequency, the heat generating portion is reduced, and the device is downsized. Pressure is generated by the same operation as in FIG. 5, and this pressure is transmitted to the expansion chamber 6 and drives the displacer piston 4.

【0005】[0005]

【発明が解決しようとする課題】従来の圧縮部5の駆動
機構は、圧縮ピストン1,7、圧縮ピストン2,13を
弦巻バネ1,20、弦巻バネ2,21により支えている
だけなので、往復運動している圧縮ピストン1,7、圧
縮ピストン2,13が中心軸から半径方向に動いた場
合、シリンダ12と圧縮ピストン1,7およびシリンダ
12と圧縮ピストン2,13が接触する。通常、圧縮ピ
ストン1,7、圧縮ピストン2,13は接触しても凝着
しないように自己潤滑性のある樹脂材で作られている
が、摩擦により発生する摩耗粉、圧縮室から膨張室に
移り冷却部にまで到達すると低温により凝結し、ディス
プレーサ・ピストン4とコールドヘッド2の間に入り込
み凝着を起こし、機関が停止してしまう。また、圧縮ピ
ストン1,7、圧縮ピストン2,13の接触により発生
する摩擦熱が膨張室に伝わり冷却部にまで伝導すると冷
却性能が低下する。
Since the conventional drive mechanism for the compression section 5 only supports the compression pistons 1 and 7 and the compression pistons 2 and 13 by the spiral springs 1 and 20 and the spiral springs 2 and 21, the reciprocating mechanism is reciprocated. When the moving compression pistons 1, 7 and the compression pistons 2, 13 move in the radial direction from the central axis, the cylinder 12 contacts the compression pistons 1, 7 and the cylinder 12 contacts the compression pistons 2, 13. Usually, the compression piston 1,7, compression piston 2 and 13 is made of a resin material with a self-lubricating property so as not to adhesion when in contact, but wear particles generated by friction, the expansion chamber from the compression chamber When it reaches the cooling part, it is condensed due to the low temperature, enters between the displacer piston 4 and the cold head 2 and causes adhesion, and the engine stops. Further, when the frictional heat generated by the contact between the compression pistons 1 and 7 and the compression pistons 2 and 13 is transmitted to the expansion chamber and conducted to the cooling portion, the cooling performance is deteriorated.

【0006】また、上記のような問題点を解決するた
め、図7に示すような半径方向に剛性が高く、軸方向の
変位が大きく取れる渦巻状の溝が切られた板バネ22を
弦巻バネ1,20、弦巻バネ2,21の代わりに採用し
た。この板バネ22を各ピストン毎に同じ枚数だけ使用
した場合の圧縮部5を図8に示す。この板バネ22によ
り、往復運動している圧縮ピストン1,7、圧縮ピスト
ン2,13が中心軸から半径方向の加振力が働いた場合
でも、板バネ22の剛性により、シリンダ12と圧縮ピ
ストン1,7およびシリンダ12と圧縮ピストン2,1
3は接触しない。しかし、板バネ22が大きく変化した
ときにねじれ方向の力が発生し、圧縮部5をねじり振動
させ、振動が連通管17を伝達し、コールドヘッド2へ
振動が伝わり、赤外線察像素子1の熱雑音の原因となる
という問題があった。
Further, in order to solve the above problems, a spiral spring is used as shown in FIG. 7, which is a spiral spring having a high rigidity in the radial direction and a large axial displacement. 1, 20 and string springs 2 and 21 were used instead. FIG. 8 shows the compression unit 5 when the same number of leaf springs 22 is used for each piston. Even if the compression pistons 1 and 7 and the compression pistons 2 and 13 that are reciprocating by the leaf spring 22 act in a radial direction from the central axis, the rigidity of the leaf spring 22 causes the cylinder 12 and the compression piston to move. 1, 7 and cylinder 12 and compression pistons 2, 1
3 does not touch. However, when the leaf spring 22 largely changes, a force in the twisting direction is generated, causing the compression portion 5 to torsionally vibrate, the vibration is transmitted to the communication pipe 17, and the vibration is transmitted to the cold head 2. There was a problem of causing thermal noise.

【0007】この発明は上記のような問題点を解消する
ためになされたもので、バネの固定方法により、ねじれ
方向の振動を打ち消し振動の少ないスターリングサイク
ルにより冷却を行う冷凍機の圧縮機部の駆動機構を得る
ことを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and a compressor part of a refrigerator for cooling by a Stirling cycle with less vibration by canceling vibration in a twisting direction by a spring fixing method. The purpose is to obtain a drive mechanism.

【0008】[0008]

【課題を解決するための手段】この発明に係るスターリ
ング・サイクル冷凍機の駆動機構は、圧縮ピストン1,
7と、圧縮ピストン2,13に取り付ける板バネ22の
渦巻状の溝の方向をそれぞれのピストンで変えてボディ
10に固定したものである。
A drive mechanism for a Stirling cycle refrigerator according to the present invention comprises a compression piston 1,
7, and the direction of the spiral groove of the leaf spring 22 attached to the compression pistons 2 and 13 is changed by each piston and fixed to the body 10.

【0009】[0009]

【作用】この発明におけるスターリング・サイクル冷凍
機の駆動機構は、圧縮ピストン1,7と、圧縮ピストン
2,13に取り付ける板バネ22の渦巻状の溝の方向を
それぞれのピストンで変えてボディ10に固定したた
め、それぞれのピストンで板バネ22により発生するね
じれ力の方向が逆方向になるため、ねじれ方向の振動を
打ち消し、振動を低減させる。
In the drive mechanism of the Stirling cycle refrigerator according to the present invention, the directions of the spiral grooves of the compression pistons 1 and 7 and the leaf spring 22 attached to the compression pistons 2 and 13 are changed by the respective pistons to form the body 10. Since they are fixed, the directions of the torsional forces generated by the leaf springs 22 in the respective pistons are opposite to each other, so that the vibrations in the torsional directions are canceled and the vibrations are reduced.

【0010】[0010]

【実施例】実施例1.以下この発明の一実施例を図につ
いて説明する。図1において、23は圧縮ピストン1,
7を支え、圧縮ピストン1,7が上昇時に時計回り方向
のねじれ力が発生する板バネ1であり、ナット1,25
により圧縮ピストンロッド1,8が固定されており、板
バネ1,23周辺がボディ10に固定され、板バネ1,
23中心部が圧縮ピストンロッド1,8端に固定されて
いる。24は圧縮ピストン2,13を支え、圧縮ピスト
ン2,13が上昇時に反時計回り方向のねじれ力が発生
する板バネ2であり、ナット2,26により圧縮ピスト
ンロッド2,14が固定されており、板バネ2,24周
辺がボディ10に固定され、板バネ2,24中心部が圧
縮ピストンロッド2,14端に固定されている。1〜1
9までの部品は従来の実施例と同様である。
[Embodiment 1] An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, 23 is a compression piston 1,
7 is a leaf spring 1 that generates a torsional force in a clockwise direction when the compression pistons 1 and 7 rise, and the nuts 1 and 25.
The compression piston rods 1 and 8 are fixed by the above, the periphery of the leaf springs 1 and 23 is fixed to the body 10, and the leaf springs 1 and 8 are fixed.
The center of 23 is fixed to the ends of the compression piston rods 1 and 8. Reference numeral 24 is a leaf spring 2 that supports the compression pistons 2 and 13 and generates a counterclockwise twisting force when the compression pistons 2 and 13 rise. The compression piston rods 2 and 14 are fixed by nuts 2 and 26. The periphery of the leaf springs 2 and 24 is fixed to the body 10, and the center of the leaf springs 2 and 24 is fixed to the ends of the compression piston rods 2 and 14. 1 to 1
Parts up to 9 are the same as in the conventional embodiment.

【0011】次にこの発明によるスターリング・サイク
ル冷凍機の駆動機構が振動を低減させる原理について説
明する。圧縮ピストン1,7と圧縮ピストン2,13が
同位相でそれぞれのリニヤモータにより駆動され、両ピ
ストン間の距離が近付くと圧縮ピストン1,7側には板
バネ1,23により時計方向のねじれ力が発生するが、
圧縮ピストン1,7はシリンダ12とは接触しておら
ず、時計方向のねじり振動が残る。一方、圧縮ピストン
2,13側には板バネ2,24により反時計方向のねじ
れ力が発生するが、圧縮ピストン2,13はシリンダ1
2とは接触しておらず、反時計方向のねじり振動が残
る。
Next, the principle by which the drive mechanism of the Stirling cycle refrigerator according to the present invention reduces vibrations will be described. The compression pistons 1 and 7 and the compression pistons 2 and 13 are driven by the linear motors in the same phase, and when the distances between the pistons approach each other, a clockwise torsional force is generated on the compression pistons 1 and 7 side by the leaf springs 1 and 23. Occurs,
The compression pistons 1 and 7 are not in contact with the cylinder 12, and the torsional vibration in the clockwise direction remains. On the other hand, on the compression pistons 2 and 13 side, a counterclockwise twisting force is generated by the leaf springs 2 and 24, but the compression pistons 2 and 13 are
It is not in contact with 2, and the counterclockwise torsional vibration remains.

【0012】それぞれのピストンには同じ枚数の板バネ
1,23、板バネ2,24が装着されているので、方向
が反対で同じ力のねじり振動が発生し、振動が打ち消さ
れ、圧縮部5の振動を低減させる。両ピストン間の距離
が遠くなる時も前述と同様な反対の動作が行われ、圧縮
部5の振動は低減する。また、上記のように半径方向に
剛性が高く、軸方向の変位が大きく取れる板バネ1,2
3、2,24の特性により、往復運動している圧縮ピス
トン1,7、圧縮ピストン2,13に中心軸から半径方
向の加振力が働いた動いた場合でも、板バネ1,23、
板バネ2,24の剛性によりシリンダ12と圧縮ピスト
ン1,7およびシリンダ12と圧縮ピストン2,13は
接触しない。
Since the same number of leaf springs 1 and 23 and leaf springs 2 and 24 are mounted on each piston, torsional vibrations having the same force in opposite directions are generated, the vibrations are canceled, and the compression portion 5 is compressed. Reduce the vibration of. Even when the distance between the two pistons becomes long, the opposite operation as described above is performed, and the vibration of the compression portion 5 is reduced. Further, as described above, the leaf springs 1 and 2 having high rigidity in the radial direction and large axial displacement can be obtained.
Due to the characteristics of 3, 2, and 24, even when the reciprocating compression pistons 1 and 7 and the compression pistons 2 and 13 are acted by the exciting force in the radial direction from the central axis, the leaf springs 1 and 23,
Due to the rigidity of the leaf springs 2 and 24, the cylinder 12 does not contact the compression pistons 1 and 7 and the cylinder 12 does not contact the compression pistons 2 and 13.

【0013】機関の冷却動作は従来例と同様であるので
ここでの説明は省略する。なお、上記実施例では複数枚
の板バネ1,23周辺がボディ10に固定され、中心部
が圧縮ピストンロッド1,8端に固定されており、一
方、複数枚の板バネ2,24周辺がボディ10に固定さ
れ、中心部が圧縮ピストンロッド2,14端に固定され
ている場合について説明したが、図2に示すようにリニ
ヤモータのコイル1,9上部の圧縮ピストンロッド1,
8部に板バネ1,23を取り付け、そしてリニヤモータ
のコイル2,15上部の圧縮ピストンロッド1,14部
に板バネ2,24に取り付ければ、より半径方向の剛性
が上がり、いっそうシリンダ12と圧縮ピストン1,7
およびシリンダ12と圧縮ピストン2,13との接触を
防止できる。
Since the cooling operation of the engine is similar to that of the conventional example, the description thereof is omitted here. In the above embodiment, the periphery of the plurality of leaf springs 1 and 23 is fixed to the body 10 and the central portion is fixed to the ends of the compression piston rods 1 and 8, while the periphery of the plurality of leaf springs 2 and 24 is fixed. The case of being fixed to the body 10 and the center portion being fixed to the ends of the compression piston rods 2 and 14 has been described, but as shown in FIG.
If the leaf springs 1 and 23 are attached to the 8th portion, and the compression piston rods 1 and 14 above the coils 2 and 15 of the linear motor are attached to the leaf springs 2 and 24, the rigidity in the radial direction is increased and the compression with the cylinder 12 is further increased. Piston 1,7
Also, the contact between the cylinder 12 and the compression pistons 2 and 13 can be prevented.

【0014】また、従来例では板バネ1,23、板バネ
2,24に余分な応力がかからないようにピストンごと
にねじり振動の方向を揃えていたが、板バネの強度に余
裕があるならば、図3に示すようにリニヤモータのコイ
ル1,9上部の圧縮ピストンロッド1,8部に板バネ
2,24を固定し、コイル1,9下部の圧縮ピストンロ
ッド1,8部に板バネ1,23を取り付け、リニヤモー
タのコイル2,15上部の圧縮ピストンロッド1,14
部に板バネ1,23を、下部に板バネ2,24を取り付
ければ、ピストン毎に振動が打ち消され、圧縮部5の振
動を低減させることができる。同様に図4に示すように
複数枚の板バネを、圧縮ピストン1,7が上昇時に時計
回りの方向のねじれ力が発生する板バネ1,23と、反
時計回り方向のねじれ力が発生する板バネ2,24交互
に重ね合わせることによっても、ピストン毎に振動が打
ち消され、圧縮部5の振動を低減させることができる。
Further, in the conventional example, the directions of the torsional vibrations are aligned for each piston so that the leaf springs 1 and 23 and the leaf springs 2 and 24 are not stressed excessively. As shown in FIG. 3, the leaf springs 2 and 24 are fixed to the compression piston rods 1 and 8 above the coils 1 and 9 of the linear motor, and the leaf springs 1 and 8 are attached to the compression piston rods 1 and 8 below the coils 1 and 9, respectively. 23 is mounted, and the compression piston rods 1 and 14 above the coils 2 and 15 of the linear motor
If the leaf springs 1 and 23 are attached to the portions and the leaf springs 2 and 24 are attached to the lower portions, the vibration is canceled for each piston, and the vibration of the compression portion 5 can be reduced. Similarly, as shown in FIG. 4, a plurality of leaf springs are generated, and leaf springs 1 and 23 that generate a twisting force in a clockwise direction when the compression pistons 1 and 7 rise and a twisting force in a counterclockwise direction. By alternately superposing the leaf springs 2 and 24, the vibration is canceled for each piston, and the vibration of the compression portion 5 can be reduced.

【0015】[0015]

【発明の効果】以上説明したようにこの発明のスターリ
ング・サイクル冷凍機の駆動機構は、圧縮ピストン1,
7と、圧縮ピストン2,13に取り付ける板バネ1,2
3、板バネ2,24の渦巻状の溝方向をそれぞれのピス
トンで変えてボディ10に固定したため、それぞれのピ
ストンで板バネにより発生するねじれ力の方向が逆方向
になり、ねじれ方向の振動を打ち消し、振動を低減させ
る効果がある。
As described above, the drive mechanism of the Stirling cycle refrigerator of the present invention includes the compression piston 1,
7 and leaf springs 1 and 2 attached to the compression pistons 2 and 13
3. Since the spiral groove directions of the leaf springs 2 and 24 are changed by the respective pistons and fixed to the body 10, the directions of the torsional forces generated by the leaf springs in the respective pistons are opposite to each other, and vibrations in the torsional direction are generated. It has the effect of canceling and reducing vibration.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例によるスターリング・サイ
クル冷凍機の駆動機構を示す断面側面図(a)で、
(b)は板バネ1の正面拡大図、(c)は板バネ2の正
面拡大図である。
FIG. 1 is a sectional side view (a) showing a drive mechanism of a Stirling cycle refrigerator according to an embodiment of the present invention,
(B) is an enlarged front view of the leaf spring 1, and (c) is an enlarged front view of the leaf spring 2.

【図2】この発明の他の実施例を示すスターリング・サ
イクル冷凍機の駆動機構を示す断面側面図である。
FIG. 2 is a sectional side view showing a driving mechanism of a Stirling cycle refrigerator showing another embodiment of the present invention.

【図3】この発明の他の実施例を示すスターリング・サ
イクル冷凍機の駆動機構を示す断面側面図である。
FIG. 3 is a sectional side view showing a drive mechanism of a Stirling cycle refrigerator showing another embodiment of the present invention.

【図4】この発明の他の実施例を示すスターリング・サ
イクル冷凍機の駆動機構を示す断面側面図である。
FIG. 4 is a sectional side view showing a driving mechanism of a Stirling cycle refrigerator showing another embodiment of the present invention.

【図5】従来の実施例を示す断面側面図である。FIG. 5 is a sectional side view showing a conventional example.

【図6】従来の実施例を示す断面側面図である。FIG. 6 is a sectional side view showing a conventional example.

【図7】従来の板バネの形状を示す正面図である。FIG. 7 is a front view showing the shape of a conventional leaf spring.

【図8】このバネを駆動機構に採用したときの断面側面
図である。
FIG. 8 is a sectional side view when this spring is used in a drive mechanism.

【符号の説明】[Explanation of symbols]

1 赤外線察像素子 2 コールド・ヘッド 3 再生器 4 ティスプレーサ・ピストン 5 圧縮機部 6 膨張室 7 圧縮ピストン1 8 圧縮ピストンロッド1 9 コイル1 10 ボディ 11 マグネット 12 シリンダ 13 圧縮ピストン2 14 圧縮ピストンロッド2 15 コイル2 16 マグネット2 17 連通管 18 圧縮室 19 バネ 20 弦巻バネ1 21 弦巻バネ2 22 板バネ 23 板バネ1 24 板バネ2 25 ナット1 26 ナット2 1 Infrared Imaging Element 2 Cold Head 3 Regenerator 4 Tip Placer Piston 5 Compressor Section 6 Expansion Chamber 7 Compression Piston 1 8 Compression Piston Rod 1 9 Coil 1 10 Body 11 Magnet 12 Cylinder 13 Compression Piston 2 14 Compression Piston Rod 2 15 Coil 2 16 Magnet 2 17 Communication pipe 18 Compression chamber 19 Spring 20 String winding spring 1 21 String winding spring 2 22 Leaf spring 23 Leaf spring 1 24 Leaf spring 2 25 Nut 1 26 Nut 2

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 スターリングサイクルにより冷却を行う
冷凍機の圧力変動を作り出す圧縮機部のうち、2つの圧
縮ピストンをリニヤモータによって対向に駆動させ、圧
縮ピストンと圧縮機部の本体であるボディと一体になっ
たシリンダの間はシールされ、上記2つの圧縮ピストン
とシリンダに囲まれた圧縮空間の圧力が変化してディス
プレーサ部に圧力変動を伝える形式の駆動機構におい
て、半径方向に剛性が高く、軸方向の変位が大きく取れ
る渦巻状の溝が切られた板バネで、ピストンが上昇した
時に上記板バネに発生するねじれ力の方向を、それぞれ
の圧縮ピストンで違う方向になるように、かつ同数の複
数枚の板バネを、それぞれの圧縮ピストンロッドとボデ
ィに固定したことを特徴とするスターリング・サイクル
冷凍機の駆動機構。
1. A compressor unit that creates pressure fluctuations in a refrigerator that cools by means of a Stirling cycle, two compression pistons are driven oppositely by a linear motor, and the compression piston and the body that is the main body of the compressor unit are integrated. In the drive mechanism of the type in which the gap between the cylinders is sealed and the pressure in the compression space surrounded by the two compression pistons and the cylinder changes to transmit the pressure fluctuation to the displacer, the rigidity is high in the radial direction and the axial direction is high. Is a leaf spring with a spiral groove cut so that the direction of the torsional force generated in the leaf spring when the piston rises is different for each compression piston, and the same number of A drive mechanism for a Stirling cycle refrigerator characterized in that a leaf spring is fixed to each compression piston rod and body.
JP3006824A 1991-01-24 1991-01-24 Stirling cycle refrigerator drive mechanism Expired - Lifetime JP2684851B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3006824A JP2684851B2 (en) 1991-01-24 1991-01-24 Stirling cycle refrigerator drive mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3006824A JP2684851B2 (en) 1991-01-24 1991-01-24 Stirling cycle refrigerator drive mechanism

Publications (2)

Publication Number Publication Date
JPH04263751A JPH04263751A (en) 1992-09-18
JP2684851B2 true JP2684851B2 (en) 1997-12-03

Family

ID=11648971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3006824A Expired - Lifetime JP2684851B2 (en) 1991-01-24 1991-01-24 Stirling cycle refrigerator drive mechanism

Country Status (1)

Country Link
JP (1) JP2684851B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11117861A (en) * 1997-10-20 1999-04-27 Matsushita Electric Ind Co Ltd Linear compressor
JP4529328B2 (en) * 2001-07-31 2010-08-25 ダイキン工業株式会社 Compressor
JP5754642B2 (en) 2011-09-16 2015-07-29 いすゞ自動車株式会社 Free piston type Stirling engine
CN110274406B (en) * 2019-06-28 2021-05-11 上海理工大学 Cold head structure and split type free piston Stirling refrigerating machine
CN110274407A (en) * 2019-06-28 2019-09-24 上海理工大学 A kind of split type sterlin refrigerator with novel cold head structure

Also Published As

Publication number Publication date
JPH04263751A (en) 1992-09-18

Similar Documents

Publication Publication Date Title
US7168248B2 (en) Stirling engine
US3991585A (en) Cold-gas refrigerator
US20050060996A1 (en) Machine spring displacer for stirling cycle machines
US7685818B2 (en) Connection of a free-piston stirling machine and a load or prime mover permitting differing amplitudes of reciprocation
US4819439A (en) Linear drive motor with improved dynamic absorber
EP0843088A1 (en) Stirling cycle engine
US10544964B2 (en) Stirling cooler with flexible regenerator drive
US4822390A (en) Closed cycle gas refrigerator
JP2684851B2 (en) Stirling cycle refrigerator drive mechanism
US4969807A (en) Gas compressor with buffer spaces
JP2008190727A (en) Linear motor compressor and stirling refrigerator
JPH04347460A (en) Linear motor compressor
US20040134733A1 (en) Vibration absorber
JP3265816B2 (en) Compressor
JP2005002919A (en) Stirling engine
JP2559839B2 (en) Free piston type Stirling refrigerator
JP2950308B2 (en) Stirling refrigerator
CN220750437U (en) Pneumatic Stirling refrigerator
JP2004205088A (en) Regenerative refrigerator
JPH0749328Y2 (en) Reciprocating compressor for Stirling refrigerator
GB2367335A (en) Spring support systems for a displacer piston of a Stirling Engine
JP3831543B2 (en) Gas compression expander
JP2550657B2 (en) Chiller
JPH07845Y2 (en) refrigerator
SU364807A1 (en) REFRIGERATING GAS MACHINE

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070815

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100815

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110815

Year of fee payment: 14