JP2684144B2 - High frequency self-oscillation device - Google Patents

High frequency self-oscillation device

Info

Publication number
JP2684144B2
JP2684144B2 JP4633893A JP4633893A JP2684144B2 JP 2684144 B2 JP2684144 B2 JP 2684144B2 JP 4633893 A JP4633893 A JP 4633893A JP 4633893 A JP4633893 A JP 4633893A JP 2684144 B2 JP2684144 B2 JP 2684144B2
Authority
JP
Japan
Prior art keywords
conductor
circuit
high frequency
grid
vacuum tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4633893A
Other languages
Japanese (ja)
Other versions
JPH06260838A (en
Inventor
高志 藤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denki Kogyo Co Ltd
Original Assignee
Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kogyo Co Ltd filed Critical Denki Kogyo Co Ltd
Priority to JP4633893A priority Critical patent/JP2684144B2/en
Publication of JPH06260838A publication Critical patent/JPH06260838A/en
Application granted granted Critical
Publication of JP2684144B2 publication Critical patent/JP2684144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、三極真空管又は四極真
空管を使用した高周波自励発振装置に関し、特に、VH
F及びUHF帯の高周波粒子加速器、高周波プラズマ発
生装置、高周波誘導又は誘電加熱装置、気体レーザーの
励起等に使用される高周波自励発振装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high frequency self-oscillation device using a triode vacuum tube or a quadrupole vacuum tube, and more particularly to a VH
The present invention relates to a high-frequency particle accelerator in the F and UHF bands, a high-frequency plasma generator, a high-frequency induction or dielectric heating device, and a high-frequency self-oscillation device used for exciting a gas laser.

【0002】[0002]

【従来の技術】従来から、この種の高周波自励発振装置
の主要発振回路は、高周波加熱等に使用されるLFやM
F帯の高周波源として、図8に示すような回路があり、
図8(a)のハートレー回路、図8(b)のコルピッツ
回路、図8(c)の陽極同調回路等がよく知られてい
る。ここでは、Vは3極真空管、Rは等価負荷抵抗を示
し、L,Lp,Lgは陽極タンク回路を構成する各イン
ダクタンス、C,Cp,Cgは静電容量、Mは相互イン
ダクタンスを示す。
2. Description of the Related Art Conventionally, a main oscillation circuit of a high frequency self-excited oscillator of this type is an LF or M used for high frequency heating or the like.
As a high frequency source in the F band, there is a circuit as shown in FIG.
The Hartley circuit of FIG. 8A, the Colpitts circuit of FIG. 8B, the anode tuning circuit of FIG. 8C, etc. are well known. Here, V is a triode vacuum tube, R is an equivalent load resistance, L, Lp, and Lg are respective inductances forming the anode tank circuit, C, Cp, and Cg are electrostatic capacitances, and M is a mutual inductance.

【0003】これらの回路の動作原理は、すべて陽極に
発生した高周波電圧を、発振条件を満たすように格子、
陰極間に帰還する方法であり、違いは帰還方法にある。
ハートレー回路ではLg/(Lg+Lp)が、コルピッ
ツ回路ではCp/(Cp+Cg)が帰還の比率であり、
陽極同調回路においては相互インダクタンスMにより帰
還の比率が決まる。
The operating principle of these circuits is that all high-frequency voltages generated at the anode are latticed so as to satisfy the oscillation condition.
It is a method of returning between the cathodes, and the difference lies in the returning method.
In the Hartley circuit, Lg / (Lg + Lp) is the feedback ratio, and in the Colpitts circuit, Cp / (Cp + Cg) is the feedback ratio,
In the anode tuning circuit, the mutual inductance M determines the feedback ratio.

【0004】また、粒子加速器やプラズマ加熱等に使用
されるHFやVHF帯の高周波源としては、陽極同調回
路を持つ他励振型増幅器が使用されている。(参考文
献:藤沢、荻原、小原、及川、横山、長瀬、千葉“理研
リングサイクロトロンのラジオ周波システム(Radi
ofrequency System of theR
IKEN Ring Cyclotron)”,ニュー
クリア・インスツルメント・アンド・メソド(Nucl
ear Instruments and Hetho
d),A291,1(1990).)
A separately excited amplifier having an anode tuning circuit is used as a high frequency source in the HF and VHF bands used for particle accelerators and plasma heating. (Reference: Fujisawa, Ogiwara, Ohara, Oikawa, Yokoyama, Nagase, Chiba "Radio Frequency System of RIKEN Ring Cyclotron (Radi
offrequency System of theR
IKEN Ring Cyclotron ”, Nuclear Instrument and Method (Nucl)
ear Instruments and Hetho
d), A291, 1 (1990). )

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記従
来の高周波自励発振装置は、超高周波大電力のVHF帯
の高周波源に適用できないという問題点があった。すな
わち、VHF帯では、常にリード線のインダクタンス
や、コイル間の静電容量が無視できなくなり、純粋なイ
ンダクタンスや静電容量を製作することができない。更
に、素子間の漂遊容量や相互インダクタンスが無視でき
ないため、それらの配置が難しくなる。実際問題とし
て、回路素子や真空管の寸法が波長の1/10を超える
ような場合、これ等の素子を組み合わせ前記回路及び装
置を構成するのは殆ど不可能なのが実状である。
However, the conventional high-frequency self-excited oscillating device has a problem that it cannot be applied to a VHF band high-frequency source of ultra-high frequency and high power. That is, in the VHF band, the inductance of the lead wire and the capacitance between the coils cannot always be ignored, and pure inductance and capacitance cannot be manufactured. Furthermore, stray capacitances between elements and mutual inductance cannot be ignored, and thus their arrangement becomes difficult. As a practical matter, when the size of the circuit element or vacuum tube exceeds 1/10 of the wavelength, it is almost impossible to combine these elements to form the circuit and device.

【0006】一方、他励振型の大電力高周波増幅器は、
現在、100MHzで1MW以上の装置が実用化されて
いるが、次のような問題点があった。すなわち、一段の
増幅器の電力利得は実用上13dBくらいが適当であ
り、20dBもとることはかなり難しい。従って、電力
が大きくなるに従い増幅器の段数が増えることになる。
その結果、各段の間のインピーダンス整合及び同調が必
要となり、非常に回路が複雑となる。また製作費も高く
なる。例えば、300kWの増幅器の場合、利得60d
Bで出力1kWの半導体増幅器を使用しても、そのあと
に2段の増幅器が必要となる。
On the other hand, the separately excited high-power high-frequency amplifier is
At present, a device of 1 MW or more at 100 MHz is put into practical use, but there are the following problems. That is, the power gain of the single-stage amplifier is practically about 13 dB, and it is quite difficult to obtain 20 dB. Therefore, as the power increases, the number of amplifier stages increases.
As a result, impedance matching and tuning between each stage is required, which greatly complicates the circuit. Also, the production cost will be high. For example, for a 300 kW amplifier, a gain of 60 d
Even if a semiconductor amplifier with an output of 1 kW is used in B, a two-stage amplifier is required after that.

【0007】更に、負荷が粒子加速器の加速空胴のよう
にQ−値が数千から数万もある場合、増幅器と空胴の周
波数を合わせるため自動周波数同調回路が必要となり、
増幅器と空胴のインピーダンス整合をとるため、自動整
合回路が必要になる(参考文献:前記と同じ)。
Furthermore, when the load has a Q-value of several thousands to tens of thousands such as the acceleration cavity of a particle accelerator, an automatic frequency tuning circuit is required to match the frequencies of the amplifier and the cavity.
An automatic matching circuit is required to achieve impedance matching between the amplifier and the cavity (reference: same as above).

【0008】本発明はかかる点に鑑みなされたもので、
その目的は前記問題点を解消し、VHF及びUHF帯の
周波数を安定して発振し、かつその出力電力を大きくで
きる(超高周波大電力を得ることができる)高周波自励
発振装置を提供することにある。
[0008] The present invention has been made in view of such a point,
An object of the present invention is to provide a high frequency self-excited oscillating device which solves the above problems, stably oscillates frequencies in the VHF and UHF bands, and can increase its output power (can obtain super high frequency and high power). It is in.

【0009】[0009]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明では、陽極,コントロール格子及び陰極を
有する三極真空管を使用した自励発振装置において、一
端が前記三極真空管のコントロール格子に格子側路コン
デンサを介して接続された外部導体と、一端が前記コン
トロール格子に接続された中間導体と、一端が前記三極
真空管の陰極に接続された内部導体とをほぼ同軸状に配
置するとともに、前記外部導体と内部導体の他端を互い
に接続して前記外部導体と内部導体との間に前記中間導
体をほぼ同軸に配置して成る二重同軸管を帰還電力回路
として配設し、前記三極真空管の陽極回路に発生した高
周波電力を前記格子側路コンデンサを通じて前記二重同
軸管の外部導体と中間導体との間の通路を介して前記二
重同軸管の中間導体と内部導体との間の通路に回り込ま
せて伝搬させることにより、前記陰極とコントロール格
子との間に高周波励振電圧を発生させるように構成して
いる。
In order to achieve the above object, according to the present invention, in a self-excited oscillation device using a triode vacuum tube having an anode, a control grid and a cathode, one end of the triode vacuum tube is controlled. An outer conductor connected to the grid via a grid bypass capacitor, an intermediate conductor having one end connected to the control grid, and an inner conductor having one end connected to the cathode of the triode vacuum tube are arranged substantially coaxially. In addition, a double coaxial tube, in which the other ends of the outer conductor and the inner conductor are connected to each other and the intermediate conductor is arranged substantially coaxially between the outer conductor and the inner conductor, is arranged as a feedback power circuit. A high-frequency power generated in the anode circuit of the triode vacuum tube is passed through the grid bypass capacitor and an intermediate conductor of the double coaxial tube through a passage between an outer conductor and an intermediate conductor of the double coaxial tube. And by propagating by go around the passage between the inner conductor, and configured to generate a high-frequency excitation voltage between the cathode and the control grid.

【0010】また、本発明では、陽極,スクリーン格
子,コントロール格子及び陰極を有する四極真空管を使
用した自励発振装置において、一端が前記四極真空管の
スクリーン格子に格子側路コンデンサを介して接続され
た外部導体と、一端が前記コントロール格子に接続され
た中間導体と、一端が前記四極真空管の陰極に接続され
た内部導体とをほぼ同軸状に配置するとともに、前記外
部導体と内部導体の他端を互いに接続して前記外部導体
と内部導体との間に前記中間導体をほぼ同軸に配置して
成る二重同軸管を帰還電力回路として配設し、前記四極
真空管の陽極回路に発生した高周波電力を前記格子側路
コンデンサを通じて前記二重同軸管の外部導体と中間導
体との間の通路を介して前記二重同軸管の中間導体と内
部導体との間の通路に回り込ませて伝搬させることによ
り、前記陰極とコントロール格子との間に高周波励振電
圧を発生させるように構成している。
Further, according to the present invention, in a self-excited oscillating device using a quadrupole vacuum tube having an anode, a screen grid, a control grid and a cathode, one end is connected to the screen grid of the quadrupole vacuum tube via a grid bypass capacitor. An outer conductor, an intermediate conductor whose one end is connected to the control grid, and an inner conductor whose one end is connected to the cathode of the quadrupole vacuum tube are arranged substantially coaxially, and the other ends of the outer conductor and the inner conductor are arranged. A double coaxial tube, which is connected to each other and in which the intermediate conductor is arranged substantially coaxially between the outer conductor and the inner conductor, is arranged as a feedback power circuit, and the high frequency power generated in the anode circuit of the quadrupole vacuum tube is supplied. A passage between the intermediate conductor and the inner conductor of the double coaxial waveguide through a passage between the outer conductor and the intermediate conductor of the double coaxial waveguide through the lattice bypass capacitor. By propagating by wrap, and configured to generate a high-frequency excitation voltage between the cathode and the control grid.

【0011】また、本発明では、前記二重同軸管の中間
導体に、該中間導体に接触しながら、該中間導体の軸長
を変化させる回路長可変部材を設けるとともに、前記二
重同軸管の外部導体に、該外部導体に接触しながら、前
記中間導体の対向位置を変化させるインピーダンス調整
部材を設けるようにしている。
Further, in the present invention, a circuit length varying member for changing the axial length of the intermediate conductor while being in contact with the intermediate conductor is provided on the intermediate conductor of the double coaxial tube, and The outer conductor is provided with an impedance adjusting member that changes the facing position of the intermediate conductor while being in contact with the outer conductor.

【0012】[0012]

【作 用】本発明は前記のように構成されているので、
陽極回路はどのような回路でもよいが、同調及びインピ
ーダンス整合がとれている必要がある。このとき、該陽
極回路に発生した高周波電圧は格子側路コンデンサ(容
量)を通じて、帰還電力回路の同軸構造(二重同軸管)
の外部導体と中間導体との間の通路を伝搬し、次いでそ
の中間導体と内部導体との間の通路に回り込み、陰極と
コントロール格子間に高周波励振電圧を発生する。この
とき、同軸構造に構成された前記帰還回路導体の長さ及
び特性インピーダンスが、所定どおりであれば、発振装
置は安定して自励発振する。
[Operation] Since the present invention is configured as described above,
The anode circuit can be any circuit, but must be tuned and impedance matched. At this time, the high-frequency voltage generated in the anode circuit is passed through the grid bypass capacitor (capacity) to the coaxial structure of the feedback power circuit (double coaxial tube).
Propagates in the path between the outer conductor and the intermediate conductor, and then wraps around the path between the intermediate conductor and the inner conductor to generate a high frequency excitation voltage between the cathode and the control grid. At this time, if the length and the characteristic impedance of the feedback circuit conductor formed in the coaxial structure are as specified, the oscillator stably oscillates by self-excitation.

【0013】また、同軸構造(二重同軸管)の前記帰還
回路導体の軸長を前記回路長可変部材で、また、その特
性インピーダンスを前記インピーダンス調整部材で、そ
れぞれ調整することにより、帰還の比率及び位相を調整
し安定して自励発振を行なわせることができる。なお、
前記同軸構造(二重同軸管)の共通軸は、必ずしも直線
である必要はなく、折れ曲がっていてもよい。
Further, by adjusting the axial length of the feedback circuit conductor having the coaxial structure (double coaxial tube) by the circuit length variable member and the characteristic impedance thereof by the impedance adjusting member, respectively, the feedback ratio can be improved. Also, the phase can be adjusted to stably perform self-excited oscillation. In addition,
The common axis of the coaxial structure (double coaxial tube) does not necessarily have to be a straight line and may be bent.

【0014】[0014]

【実施例】以下、図1〜図7を参照して本発明の好適な
実施例を詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A preferred embodiment of the present invention will be described in detail below with reference to FIGS.

【0015】(第1実施例) 図1及び図2は、本発明に係る高周波自励発振装置の第
1実施例を示すものであり、本例の高周波自励発振装置
1は三極真空管2を使用した場合の自励発振回路を構成
している。なお、図1は高周波自励発振装置1の構成を
概念的に示す概念図であり、図2はその構成を具体的に
示す構成断面図である。
(First Embodiment) FIGS. 1 and 2 show a first embodiment of a high-frequency self-oscillation device according to the present invention, in which the high-frequency self-oscillation device 1 is a triode vacuum tube 2. It constitutes a self-excited oscillation circuit when is used. 1 is a conceptual diagram conceptually showing the configuration of the high-frequency self-excited oscillating device 1, and FIG. 2 is a structural sectional view specifically showing the configuration.

【0016】図1及び図2において、前記三極真空管2
の陽極3の陽極回路部4、コントロール格子5、及び陰
極6に、それぞれ接続される帰還電力回路導体7,8,
9が、ほぼ共通の軸を有するように同軸状に配設されて
いる。すなわち、前記陽極回路部4に接続され、かつ前
記コントロール格子5へ帰還するための帰還回路導体
は、同軸構造の外部導体7を、前記コントロール格子5
に接続される帰還回路導体はその中間導体8を、及び前
記陰極6に接続される帰還回路導体は同軸構造の内部導
体9をそれぞれ形成するとともに、該外部導体7と内部
導体9は、その端部で互いに接続されている。
In FIGS. 1 and 2, the triode vacuum tube 2 is shown.
Feedback power circuit conductors 7, 8, which are respectively connected to the anode circuit portion 4 of the anode 3, the control grid 5, and the cathode 6.
9 are coaxially arranged so as to have a substantially common axis. That is, the feedback circuit conductor for connecting to the anode circuit portion 4 and for returning to the control grid 5 includes the outer conductor 7 having a coaxial structure and the control grid 5.
And the feedback circuit conductor connected to the cathode 6 forms an inner conductor 9 having a coaxial structure, and the outer conductor 7 and the inner conductor 9 have ends thereof. Parts are connected to each other.

【0017】さらに具体的に述べると、筒形状の外部導
体7の一端が三極真空管2のコントロール格子5に格子
側路コンデンサ(容量C)を介して接続され、筒形状
の中間導体8の一端がコントロール格子5に接続され、
筒形状の内部導体9の一端が三極真空管2の陰極6に接
続され、これらの導体7,8,9が互いに同軸構造とな
されている。そして、外部導体7と内部導体9の他端が
環状の端板10にて互いに接続されてこれらの導体7,
9間に中間導体8がほぼ同軸に配置されている。かくし
て、外部導体7,中間導体8,内部導体9及び端板10
にて同軸構造の二重同軸管Pが構成されており、この二
重同軸管Pが帰還電力回路として三極真空管2に付設さ
れている(図2参照)。なお、図2に示すように、前記
陽極3、コントロール格子5及び陰極6は、前記三極真
空管2の内部にある。
More specifically, one end of a cylindrical outer conductor 7 is connected to the control grid 5 of the triode vacuum tube 2 via a grid bypass capacitor (capacitance C 1 ), and a cylindrical intermediate conductor 8 is formed. One end is connected to the control grid 5,
One end of a cylindrical inner conductor 9 is connected to the cathode 6 of the triode vacuum tube 2, and these conductors 7, 8 and 9 have a coaxial structure with each other. The other ends of the outer conductor 7 and the inner conductor 9 are connected to each other by an annular end plate 10,
The intermediate conductor 8 is arranged between 9 and substantially coaxially. Thus, the outer conductor 7, the intermediate conductor 8, the inner conductor 9 and the end plate 10
In the above, a double coaxial tube P having a coaxial structure is constructed, and this double coaxial tube P is attached to the triode vacuum tube 2 as a feedback power circuit (see FIG. 2). As shown in FIG. 2, the anode 3, the control grid 5, and the cathode 6 are inside the triode vacuum tube 2.

【0018】このような構成の本例の高周波自励発振装
置1の陽極回路部4は、図2に示す如く、例えば高周波
電子加速器の高周波加速空胴30に結合されるようにな
っている。なお、図2において、40は出力用同軸管、
41は陽極共振回路外導体、42は陽極共振回路内導
体、43はコントロール格子端子、44は陰極端子、4
5はフィラメント端子、46はセラミック製の絶縁体で
ある。
As shown in FIG. 2, the anode circuit section 4 of the high frequency self-oscillation device 1 of the present embodiment having such a configuration is coupled to, for example, the high frequency acceleration cavity 30 of the high frequency electron accelerator. In FIG. 2, 40 is an output coaxial tube,
41 is an outer conductor of the anode resonance circuit, 42 is an inner conductor of the anode resonance circuit, 43 is a control grid terminal, 44 is a cathode terminal, 4
5 is a filament terminal, and 46 is a ceramic insulator.

【0019】図3は、上述の高周波自励発振装置1の等
価回路を示している。なお、同図において、Cは格子
側路コンデンサの容量、Cpgは陽極−格子間の漂遊容
量、Cgkは格子一陰極間の漂遊容量である。
FIG. 3 shows an equivalent circuit of the above high frequency self-oscillation device 1. In the figure, C 1 is the capacitance of the grid-side path capacitor, Cpg anode - stray capacitance between the grid, CGK is stray capacitance between the grid one cathode.

【0020】図3において、“5”の部分が2箇所ある
のは、一方(図面右側)がコントロール格子5の陽極3
に面した側を、他方(図面左側)が陰極6に面した側を
意味する。この等価回路図において、陰極6とコントロ
ール格子5間に発生する高周波電圧は、コントロール格
子5と陽極回路部4側のアース間電圧とは異なるためで
ある。
In FIG. 3, there are two "5" portions, one side (right side of the drawing) of the anode 3 of the control grid 5.
Means the side facing the cathode 6, and the other side (left side in the drawing) means the side facing the cathode 6. This is because the high-frequency voltage generated between the cathode 6 and the control grid 5 in this equivalent circuit diagram is different from the voltage between the control grid 5 and the ground on the side of the anode circuit unit 4.

【0021】前記陽極回路部4はどのような回路でも良
いが、同調及びインピーダンス整合がとれているとする
と、図2において矢印αで示すように、該陽極回路部4
に発生した高周波電圧は格子側路コンデンサCを通し
て、帰還電力回路を構成する二重同軸管Pの外部導体7
と中間導体8との間の通路を伝搬し、さらに端板10付
近の通路においてUターンして内部導体9と中間導体8
との間の通路に回り込んで伝搬し、前記コントロール格
子5と前記陰極6間に高周波励振電圧を発生する。かく
して、三極真空管2は自身の高周波出力の一部によって
励振され、発生した高周波大電力は、出力用同軸管40
から粒子加速器の加速空胴30に供給される。
The anode circuit section 4 may be any circuit, but if tuning and impedance matching are achieved, the anode circuit section 4 is indicated by an arrow α in FIG.
The high-frequency voltage generated at the external conductor 7 of the double coaxial tube P that constitutes the feedback power circuit passes through the grid bypass capacitor C 1.
Propagates through the passage between the inner conductor 9 and the intermediate conductor 8 and makes a U-turn in the passage near the end plate 10.
And propagates around the path between the control grid 5 and the cathode 6 to generate a high frequency excitation voltage. Thus, the triode vacuum tube 2 is excited by a part of its high-frequency output, and the high-frequency large power generated is generated by the output coaxial tube 40.
Is supplied to the acceleration cavity 30 of the particle accelerator.

【0022】このとき、同軸構造の二重同軸管Pにおい
て中間導体8の軸長及び特性インピーダンスが、所定ど
おりであれば、所定周波数にて安定に自励発振させるこ
とができる。すなわち、前記コントロール格子5と陰極
6との間に発生した高周波と陽極電圧の位相がコントロ
ール格子5よりみて同位相ならば発振の位相条件(周波
数条件)を満たすことになる。この位相は陰極−コント
ロール格子間が無負荷であれば常に同位相か反位相であ
るが、負荷のある場合は帰還電力回路の長さに依存す
る。また、電力帰還用の二重同軸管P上の電圧分布は、
この二重同軸管Pの軸方向に対する特性インピーダンス
の分布に依存する。その結果、帰還比(陰極−コントロ
ール格子間電圧と陽極電圧との比)も前記特性インピー
ダンスの分布に依存する。従って、発振条件を満たすた
めには、前記電力帰還用の二重同軸管Pの軸方向の長さ
及び特性インピーダンスの分布を所定の値に製作する必
要がある。図2に示す本発明の第1実施例の場合には、
これらの条件を満足するように二重同軸管Pを予め定め
られた寸法形状に製作するようにしており、従って本例
の場合には二重同軸管Pの軸方向の長さ及び特性インピ
ーダンスの分布の調整機構を必要としない。なお、これ
らの調整を必要とする場合については、後述の本発明の
第2実施例(図6)で説明する。
At this time, in the double coaxial tube P having the coaxial structure, if the axial length and the characteristic impedance of the intermediate conductor 8 are as specified, stable self-oscillation can be performed at a specified frequency. That is, if the phase of the high frequency generated between the control grid 5 and the cathode 6 and the phase of the anode voltage are the same when viewed from the control grid 5, the phase condition (frequency condition) of oscillation is satisfied. This phase is always the same phase or antiphase when there is no load between the cathode and the control grid, but when there is a load, it depends on the length of the feedback power circuit. Further, the voltage distribution on the double coaxial tube P for power return is
It depends on the distribution of the characteristic impedance in the axial direction of the double coaxial waveguide P. As a result, the feedback ratio (the ratio between the cathode-control grid voltage and the anode voltage) also depends on the characteristic impedance distribution. Therefore, in order to satisfy the oscillation condition, it is necessary to manufacture the axial length and the characteristic impedance distribution of the dual coaxial tube P for power feedback to predetermined values. In the case of the first embodiment of the invention shown in FIG.
The dual coaxial waveguide P is manufactured to have a predetermined size and shape so as to satisfy these conditions. Therefore, in the case of this example, the axial length of the dual coaxial waveguide P and the characteristic impedance are determined. No distribution adjustment mechanism is required. The case where these adjustments are necessary will be described in the second embodiment (FIG. 6) of the present invention described later.

【0023】発振条件を満たした状態における二重同軸
管P上の電圧分布を概念的に示すと図4のようになる。
また、本例の高周波自励発振装置1を集中定数及び分布
定数回路で表すと、図7(a)に示す如き回路構造とな
る。
FIG. 4 conceptually shows the voltage distribution on the double coaxial waveguide P when the oscillation condition is satisfied.
Further, when the high frequency self-excited oscillator 1 of this example is represented by a lumped constant and distributed constant circuit, a circuit structure as shown in FIG. 7A is obtained.

【0024】本例のように高周波自励発振装置1を構成
すると、陽極回路部4に発生した微少な高周波振動電力
の一部が格子側路コンデンサCにより取り出され、帰
還用の二重同軸管Pを通じてコントロール格子・陰極間
に適正な振幅及び位相で正帰還されることとなる。その
結果、三極真空管2が励振され、前記高周波振幅はさら
に増大される。そして、陽極回路の励振が増大されて、
ついには陽極直流電圧、格子電圧等の真空管の状態によ
って定められた振幅まで増大する。このようにして発生
された大電力は、出力用同軸管40を通じて粒子加速器
の加速空胴等に供給される。なお、本構成においては、
全てが真空管2と同軸構造となっているため、帰還電力
回路及び陽極回路を、真空管2と同程度の大きさに製作
でき、高周波電流が通過する面積を広くとることができ
る。その結果、大電力の発振を行っても前記各回路の高
周波によるオーミック損失は極めて少ないこととなる。
さらに、帰還電力回路への有害な高周波の混入がなく、
また外部空間への電波の放出が抑制されることとなるた
め、特別な高周波の遮断構造を設けることなく大電力の
発振が可能となる。
When the high frequency self-oscillation device 1 is constructed as in this example, a part of the minute high frequency vibration power generated in the anode circuit portion 4 is taken out by the grid bypass capacitor C 1 and is fed back to the double coaxial. Through the tube P, positive feedback is performed between the control grid and the cathode with proper amplitude and phase. As a result, the triode vacuum tube 2 is excited and the high frequency amplitude is further increased. And the excitation of the anode circuit is increased,
Finally, the amplitude is increased to the amplitude determined by the vacuum tube condition such as the anode DC voltage and the grid voltage. The large electric power thus generated is supplied to the acceleration cavity of the particle accelerator through the output coaxial tube 40. In this configuration,
Since the vacuum tube 2 and the vacuum tube 2 all have the same coaxial structure, the feedback power circuit and the anode circuit can be manufactured in the same size as the vacuum tube 2, and the area through which the high-frequency current passes can be increased. As a result, even if high power oscillation is performed, ohmic loss due to high frequency in each circuit is extremely small.
Furthermore, there is no harmful high frequency mixture in the feedback power circuit,
Further, since the emission of radio waves to the external space is suppressed, it is possible to oscillate a large electric power without providing a special high-frequency cutoff structure.

【0025】(第2実施例) 図5及び図6は、本発明に係る高周波自励発振装置の第
2実施例を示すものであり、本例の高周波自励発振装置
11は四極真空管12を使用した場合の高周波自励発振
回路を構成している。なお、図5は高周波自励発振装置
11の構成を概念的に示す概念図であり、図6はその構
成を具体的に示す構成断面図である。
(Second Embodiment) FIGS. 5 and 6 show a second embodiment of the high frequency self-oscillation device according to the present invention. The high frequency self-oscillation device 11 of the present embodiment includes a quadrupole vacuum tube 12. It constitutes a high-frequency self-excited oscillation circuit when used. 5 is a conceptual diagram conceptually showing the configuration of the high-frequency self-excited oscillating device 11, and FIG. 6 is a configuration sectional view specifically showing the configuration.

【0026】図5及び図6において、前記四極真空管1
2の陽極13の陽極回路部14、コントロール格子1
5、及び陰極16に、接続される帰還回路導体17,1
8,19が、それぞれほぼ共通軸上に配設された同軸構
造に構成されている。すなわち、前記陽極回路部14に
接続され、かつ前記コントロール格子15へ帰還するた
めの帰還回路導体は、同軸構造の外部導体17を、前記
コントロール格子15に接続される帰還回路導体はその
中間導体18を、及び前記陰極16に接続される帰還回
路導体は同軸構造の内部導体19をそれぞれ形成してい
る。
5 and 6, the quadrupole vacuum tube 1 is shown.
Anode circuit portion 14 of the second anode 13 and the control grid 1
5, and feedback circuit conductors 17, 1 connected to the cathode 16
8 and 19 are formed in a coaxial structure, each of which is arranged on a substantially common axis. That is, the feedback circuit conductor connected to the anode circuit portion 14 and for returning to the control grid 15 is the outer conductor 17 having a coaxial structure, and the feedback circuit conductor connected to the control grid 15 is the intermediate conductor 18 thereof. And the feedback circuit conductors connected to the cathode 16 respectively form an inner conductor 19 having a coaxial structure.

【0027】さらに具体的に述べると、筒形状の外部導
体17の一端が四極真空管12のスクリーン格子(第二
格子)20に格子側路コンデンサ(容量C)を介して
接続され、筒形状の中間導体18の一端がコントロール
格子(第一格子)15に接続され、筒形状の内部導体1
9の一端が四極真空管12の陰極6に接続され、これら
の導体17,18,19が互いに同軸構造となされてい
る。そして、既述の実施例1の場合と同様に、外部導体
17と内部導体19の他端が環状の端板50にて互いに
接続されてこれらの導体17,19間に中間導体18が
ほぼ同軸に配置されている。かくして、外部導体17,
中間導体18,内部導体19及び端板50にて同軸構造
の二重同軸管Qが構成されており、この二重同軸管Qが
帰還電力回路として四極真空管12に付設されている
(図6参照)。なお、図6に示すように、前記陽極1
3,スクリーン格子20,コントロール格子15及び陰
極6は、前記四極真空管12の内部にある。
More specifically, one end of the cylindrical outer conductor 17 is connected to the screen grid (second grid) 20 of the quadrupole vacuum tube 12 via a grid bypass capacitor (capacitance C 2 ) to form a cylindrical shape. One end of the intermediate conductor 18 is connected to the control grid (first grid) 15, and the tubular inner conductor 1
One end of 9 is connected to the cathode 6 of the quadrupole vacuum tube 12, and these conductors 17, 18 and 19 are coaxial with each other. Then, as in the case of the above-described first embodiment, the other ends of the outer conductor 17 and the inner conductor 19 are connected to each other by the annular end plate 50, and the intermediate conductor 18 is substantially coaxial between the conductors 17 and 19. It is located in. Thus, the outer conductor 17,
The intermediate conductor 18, the inner conductor 19 and the end plate 50 constitute a double coaxial tube Q having a coaxial structure, and the double coaxial tube Q is attached to the quadrupole vacuum tube 12 as a feedback power circuit (see FIG. 6). ). In addition, as shown in FIG.
3, the screen grid 20, the control grid 15, and the cathode 6 are inside the quadrupole vacuum tube 12.

【0028】また、該外部導体17は、前記四極真空管
12のスクリーン格子20に、格子側路コンデンサC
を介して、接続されるとともに、前記内部導体19とそ
の端部で互いに接続されている。なお、この格子側路コ
ンデンサCを用いているのは、高周波電力(交流電
力)の安定化のためである(既述の格子側路コンデンサ
の場合も同様)。また、図5及び図6において、3
4は出力用同軸管である。
The outer conductor 17 is connected to the screen grid 20 of the quadrupole vacuum tube 12 by a grid bypass capacitor C 2
And the internal conductor 19 and its end portion are connected to each other. The use of the grid bypass capacitor C 2 is for stabilizing high frequency power (AC power) (the same applies to the grid bypass capacitor C 1 described above). Moreover, in FIG. 5 and FIG.
Reference numeral 4 is an output coaxial tube.

【0029】前記二重同軸管Qの中間導体18には、高
周波自励発振装置11の発振周波数を同調させるため、
該中間導体18に接触させながら、該中間導体18の軸
長を変化させる環状の回路長可変部材21が設けられて
いる。また、前記二重同軸管Qの外部導体17には、高
周波自励発振装置11の特性インピーダンスを調整させ
るため、該外部導体17に接触させながら、前記中間導
体18との対向位置を変化させる環状のインピーダンス
調整部材22が設けられている。なお、図6において、
50は端板、51は陽極共振回路外導体、52は陽極共
振回路内導体、53はスクリーン格子端子、54はコン
トロール格子端子、55は陰極端子、56はフィラメン
ト端子、57はセラミック製の絶縁体である。
In order to tune the oscillation frequency of the high frequency self-excited oscillation device 11 to the intermediate conductor 18 of the double coaxial waveguide Q,
An annular circuit length variable member 21 that changes the axial length of the intermediate conductor 18 while being in contact with the intermediate conductor 18 is provided. In addition, the outer conductor 17 of the double coaxial waveguide Q has an annular shape for changing the position facing the intermediate conductor 18 while being in contact with the outer conductor 17 in order to adjust the characteristic impedance of the high frequency self-excited oscillation device 11. The impedance adjusting member 22 is provided. In addition, in FIG.
50 is an end plate, 51 is an anode resonance circuit outer conductor, 52 is an anode resonance circuit inner conductor, 53 is a screen grid terminal, 54 is a control grid terminal, 55 is a cathode terminal, 56 is a filament terminal, and 57 is a ceramic insulator Is.

【0030】このような構成の本例の高周波自励発振装
置1の陽極回路部4は、既述の実施例1の場合と同様
に、図5及び図6に示す如く、例えば高周波電子加速器
の高周波加速空胴30に結合されるようになっている。
また、本例の高周波自励発振装置1を集中定数及び分布
定数回路で表すと、図7(b)に示す如き回路構造とな
る。
The anode circuit section 4 of the high frequency self-excited oscillating device 1 of the present example having such a configuration is, for example, as shown in FIG. 5 and FIG. It is adapted to be coupled to the high frequency acceleration cavity 30.
Further, when the high frequency self-oscillation device 1 of this example is represented by a lumped constant and distributed constant circuit, a circuit structure as shown in FIG. 7B is obtained.

【0031】次に、本例の高周波自励発振装置11の動
作を説明する。先ず、陽極回路部14に発生した高周波
電圧は、スクリーン格子20の格子側路コンデンサC
を通して、スクリーン格子20とコントロール格子15
との間に発生した電圧に重畳される。すなわち、出力は
スクリーン格子20とコントロール格子15との間及び
格子側路コンデンサCから二重同軸管Qに供給され
る。この出力電圧(帰還電力)は、図6において矢印β
で示すように、二重同軸管Qの外部導体17と中間導体
18との間の通路を伝搬し、さらに端板50付近の通路
においてUターンして内部導体19と中間導体18との
間の通路に回り込んで伝搬し、前記コントロール格子1
5と前記陰極16間に高周波励振電圧を発生する。かく
して、四極真空管12は自身の高周波出力の一部によっ
て励振され、発生した高周波大電力は、出力用同軸管3
4から粒子加速器の加速空胴30に供給される。
Next, the operation of the high frequency self-oscillation device 11 of this example will be described. First, the high frequency voltage generated in the anode circuit unit 14 is applied to the grid bypass capacitor C 2 of the screen grid 20.
Through the screen grid 20 and the control grid 15
It is superimposed on the voltage generated between and. That is, the output is provided to the dual coaxial tube Q between the screen grid 20 and the control grid 15 and from the grid bypass capacitor C 2 . This output voltage (feedback power) is indicated by an arrow β in FIG.
As shown in FIG. 5, the double coaxial waveguide Q propagates through the passage between the outer conductor 17 and the intermediate conductor 18, and further makes a U-turn in the passage near the end plate 50, so that the space between the inner conductor 19 and the intermediate conductor 18 is increased. The control grid 1 propagates around the passage and propagates.
A high frequency excitation voltage is generated between 5 and the cathode 16. Thus, the quadrupole vacuum tube 12 is excited by a part of its high-frequency output, and the high-frequency large power generated is output to the output coaxial tube 3.
4 to the acceleration cavity 30 of the particle accelerator.

【0032】このとき、回路長可変部材21の位置を調
整して、中間導体18の軸長を変化させ、共振周波数を
合わせる。また、インピーダンス調整部材22の位置を
変化させて、特性インピーダンスを調整し、帰還の比率
を調整して自励発振を行なわせる。
At this time, the position of the circuit length varying member 21 is adjusted to change the axial length of the intermediate conductor 18 to match the resonance frequency. Further, the position of the impedance adjusting member 22 is changed to adjust the characteristic impedance and the feedback ratio to adjust the self-oscillation.

【0033】試験例:本実施例における試験とその結果
は下記の通りである。
Test Example: The test and the result thereof in this example are as follows.

【0034】製作された加速空胴は、内径50cm、長
さ63cmの円筒内に、外径7cmの内部導体がギャッ
プ5cmで向い合った、リエントラント型加速空胴であ
る。この空胴に容量結合で、前記高周波自励発振装置の
陽極回路部より電力を供給する。帰還回路導体は長さ約
50cm、外部導体の外径は約15cmである。
The produced acceleration cavity is a reentrant type acceleration cavity in which a cylinder having an inner diameter of 50 cm and a length of 63 cm faces an inner conductor having an outer diameter of 7 cm with a gap of 5 cm. Electric power is supplied to the cavity from the anode circuit section of the high frequency self-oscillation device by capacitive coupling. The feedback circuit conductor has a length of about 50 cm, and the outer conductor has an outer diameter of about 15 cm.

【0035】使用した真空管はアイマック社の4CW2
5000であり、加速空胴の共振周波数は約182MH
z、Q−値は約15000であった。これほど高いQ−
値であるにもかかわらず、共振周波数調整回路及びイン
ピーダンス整合回路を必要とせず、安定に発振が起こ
り、加速空胴に高周波電圧が発生した。この装置を使用
し電子線を加速したところ、安定した電子ビームを加速
することに成功し、このシステムが加速器として、働く
ことが確認できた。
The vacuum tube used is 4CW2 from IMAC.
5000 and the resonance frequency of the acceleration cavity is about 182 MH
The z, Q-value was about 15,000. High Q-
Despite the value, a resonance frequency adjusting circuit and an impedance matching circuit were not required, stable oscillation occurred, and a high frequency voltage was generated in the acceleration cavity. When an electron beam was accelerated using this device, we succeeded in accelerating a stable electron beam, and confirmed that this system works as an accelerator.

【0036】この結果、従来の他励振型加速器に比べ、
非常にコンパクトであり、共振周波数調整回路(及び駆
動機構)やインピーダンス整合回路(及び駆動機構)を
必要としない簡素な構成の経済的な加速器が製作でき
た。
As a result, as compared with the conventional other excitation type accelerator,
A very compact and economical accelerator having a simple structure that does not require a resonance frequency adjusting circuit (and a driving mechanism) or an impedance matching circuit (and a driving mechanism) can be manufactured.

【0037】なお、本発明の技術は前記実施例における
技術に限定されるものではなく、同様な機能を果す他の
態様の手段によってもよく、また本発明の技術は前記構
成の範囲内において種々の変更、付加が可能である。
Note that the technique of the present invention is not limited to the technique in the above-described embodiment, and may be implemented by means of another aspect having the same function, and the technique of the present invention can be variously modified within the scope of the above configuration. Can be changed or added.

【0038】[0038]

【発明の効果】以上の説明から明らかなように本発明の
高周波自励発振装置によれば、三極真空管又は四極真空
管の陽極回路、コントロール格子又はスクリーン格子、
及び陰極にそれぞれ接続される外部導体,中間導体及び
内部導体を同軸構造にして二重同軸管からなる帰還電力
回路を配設し、陽極回路に発生した高周波電力を前記格
子側路コンデンサを通じて前記二重同軸管の外部導体と
中間導体との間の通路を介して前記二重同軸管の中間導
体と内部導体との間の通路に回り込ませて伝搬させるこ
とにより、前記陰極とコントロール格子との間に高周波
励振電圧を発生させるように構成したので、VHF及び
UHF帯の周波数で安定して自励発振するとともにその
出力電力も大きくできる。
As is apparent from the above description, according to the high frequency self-oscillation device of the present invention, the anode circuit of the triode vacuum tube or the quadrupole vacuum tube, the control grid or the screen grid,
An outer conductor, an intermediate conductor, and an inner conductor, which are respectively connected to the cathode and the cathode, have a coaxial structure to provide a feedback power circuit composed of a double coaxial tube, and the high-frequency power generated in the anode circuit is passed through the grid bypass capacitor to the two sides. Between the cathode and the control grid by wrapping around and propagating through the passage between the outer conductor and the intermediate conductor of the heavy coaxial waveguide to the passage between the intermediate conductor and the inner conductor of the double coaxial waveguide. Since it is configured to generate a high frequency excitation voltage, stable self-excited oscillation at frequencies in the VHF and UHF bands and its output power can be increased.

【0039】また、前記帰還回路導体に、回路長可変部
材及びインピーダンス調整部材をそれぞれ設け、該各部
材の位置を調整して共振周波数及び特性インピーダンス
を調整し、容易に自励発振させることができる。
Further, the feedback circuit conductor is provided with a variable circuit length member and an impedance adjusting member respectively, and the positions of the respective members are adjusted to adjust the resonance frequency and the characteristic impedance, so that self-oscillation can be easily performed. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高周波自励発振装置の第1実施例を示
すものであって、三極真空管を用いた高周波自励発振装
置の構成を概念的に説明するための構成図である。
FIG. 1 shows a first embodiment of a high-frequency self-oscillation device of the present invention, and is a configuration diagram for conceptually explaining the structure of a high-frequency self-oscillation device using a triode vacuum tube.

【図2】図1の高周波自励発振回路の具体的な構成を示
す断面図である。
FIG. 2 is a sectional view showing a specific configuration of the high frequency self-oscillation circuit of FIG.

【図3】図1の高周波自励発振回路の帰還電力回路の等
価回路図である。
FIG. 3 is an equivalent circuit diagram of a feedback power circuit of the high frequency self-oscillation circuit of FIG.

【図4】図1の高周波自励発振回路の帰還電力回路の電
圧分布図である。
4 is a voltage distribution diagram of a feedback power circuit of the high frequency self-oscillation circuit of FIG.

【図5】本発明の高周波自励発振装置の第2実施例を示
すものであって、四極真空管を用いた高周波自励発振装
置の構成を概念的に説明するための構成図である。
FIG. 5 shows a second embodiment of the high frequency self-excited oscillating device of the present invention, and is a configuration diagram for conceptually explaining the configuration of the high frequency self-excited oscillating device using a quadrupole vacuum tube.

【図6】図5の高周波自励発振回路の具体的な構成を示
す断面図である。
FIG. 6 is a cross-sectional view showing a specific configuration of the high frequency self-oscillation circuit of FIG.

【図7】本発明の高周波自励発振装置を用いた高周波自
励発振回路を集中定数及び分布定数で表した回路図を示
すものであって、図7(a)は図1及び図2の装置を用
いた場合の自励発振回路、図7(b)は図5及び図6の
装置を用いた場合の自励発振回路である。
7 is a circuit diagram showing a high-frequency self-oscillation circuit using the high-frequency self-excited oscillating device of the present invention in terms of lumped constants and distributed constants, and FIG. FIG. 7B shows a self-excited oscillation circuit using the device, and FIG. 7B shows a self-excited oscillation circuit using the device shown in FIGS.

【図8】従来の高周波自励発振装置の発振回路図を示す
ものであって、図8(a)はハートレー回路図、図8
(b)はコルピッツ回路図、図8(c)は陽極同調回路
図である。
FIG. 8 is a diagram showing an oscillation circuit of a conventional high-frequency self-excited oscillating device, wherein FIG. 8 (a) is a Hartley circuit diagram;
8B is a Colpitts circuit diagram, and FIG. 8C is an anode tuning circuit diagram.

【符号の説明】[Explanation of symbols]

1,11 高周波自励発振装置 2 三極真空管 3,13 陽極 4,14 陽極回路部 5,15 コントロール格子 6,16 陰極 7,17 外部導体(帰還回路導体) 8,18 中間導体(帰還回路導体) 9,19 内部導体(帰還回路導体) 10,50 端板 12 四極真空管 20 スクリーン格子 21 回路長可変部材 22 インピーダンス調整部材 C,C 格子側路コンデンサ P,Q 二重同軸管1,11 High frequency self-oscillation device 2 Triode vacuum tube 3,13 Anode 4,14 Anode circuit part 5,15 Control grid 6,16 Cathode 7,17 External conductor (feedback circuit conductor) 8,18 Intermediate conductor (feedback circuit conductor) ) 9,19 inner conductor (feedback circuit conductors) 10, 50 end plate 12 tetrode vacuum tube 20 screen grid 21 circuit length adjustment member 22 impedance adjusting member C 1, C 2 grid side path condenser P, Q double coaxial tube

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 陽極,コントロール格子及び陰極を有す
る三極真空管を使用した自励発振装置において、一端が
前記三極真空管のコントロール格子に格子側路コンデン
サを介して接続された外部導体と、一端が前記コントロ
ール格子に接続された中間導体と、一端が前記三極真空
管の陰極に接続された内部導体とをほぼ同軸状に配置す
るとともに、前記外部導体と内部導体の他端を互いに接
続して前記外部導体と内部導体との間に前記中間導体を
ほぼ同軸に配置して成る二重同軸管を帰還電力回路とし
て配設し、前記三極真空管の陽極回路に発生した高周波
電力を前記格子側路コンデンサを通じて前記二重同軸管
の外部導体と中間導体との間の通路を介して前記二重同
軸管の中間導体と内部導体との間の通路に回り込ませて
伝搬させることにより、前記陰極とコントロール格子と
の間に高周波励振電圧を発生させるように構成したこと
を特徴とする高周波自励発振装置。
1. A self-excited oscillating device using a triode vacuum tube having an anode, a control grid and a cathode, and an outer conductor having one end connected to the control grid of the triode vacuum tube via a grid bypass capacitor and one end. Arranging an intermediate conductor connected to the control grid and an inner conductor having one end connected to the cathode of the triode vacuum tube substantially coaxially, and connecting the other end of the outer conductor and the inner conductor to each other. A double coaxial tube formed by arranging the intermediate conductor substantially coaxially between the outer conductor and the inner conductor is arranged as a feedback power circuit, and the high frequency power generated in the anode circuit of the triode vacuum tube is supplied to the grid side. By passing through the passage capacitor between the outer conductor and the intermediate conductor of the double coaxial waveguide to the passage between the intermediate conductor and the inner conductor of the double coaxial waveguide. And a high frequency self-oscillation device configured to generate a high frequency excitation voltage between the cathode and the control grid.
【請求項2】 陽極,スクリーン格子,コントロール格
子及び陰極を有する四極真空管を使用した自励発振装置
において、一端が前記四極真空管のスクリーン格子に格
子側路コンデンサを介して接続された外部導体と、一端
が前記コントロール格子に接続された中間導体と、一端
が前記四極真空管の陰極に接続された内部導体とをほぼ
同軸状に配置するとともに、前記外部導体と内部導体の
他端を互いに接続して前記外部導体と内部導体との間に
前記中間導体をほぼ同軸に配置して成る二重同軸管を帰
還電力回路として配設し、前記四極真空管の陽極回路に
発生した高周波電力を前記格子側路コンデンサを通じて
前記二重同軸管の外部導体と中間導体との間の通路を介
して前記二重同軸管の中間導体と内部導体との間の通路
に回り込ませて伝搬させることにより、前記陰極とコン
トロール格子との間に高周波励振電圧を発生させるよう
に構成したことを特徴とする高周波自励発振装置。
2. A self-excited oscillating device using a quadrupole vacuum tube having an anode, a screen grid, a control grid, and a cathode, and an external conductor having one end connected to the screen grid of the quadrupole vacuum tube via a grid bypass capacitor. An intermediate conductor having one end connected to the control grid and an inner conductor having one end connected to the cathode of the quadrupole vacuum tube are arranged substantially coaxially, and the outer conductor and the other end of the inner conductor are connected to each other. A double coaxial tube in which the intermediate conductor is arranged substantially coaxially between the outer conductor and the inner conductor is arranged as a feedback power circuit, and the high frequency power generated in the anode circuit of the quadrupole vacuum tube is used as the grid bypass. Propagation by passing through a passage between an outer conductor and an intermediate conductor of the double coaxial waveguide into a passage between an intermediate conductor and an inner conductor of the double coaxial waveguide through a capacitor. By so doing, a high frequency self-oscillation device is configured to generate a high frequency excitation voltage between the cathode and the control grid.
【請求項3】 前記二重同軸管の中間導体に、該中間導
体に接触しながら、該中間導体の軸長を変化させる回路
長可変部材を設けるとともに、前記二重同軸管の外部導
体に、該外部導体に接触しながら、前記中間導体の対向
位置を変化させるインピーダンス調整部材を設けたこと
を特徴とする請求項1又は2に記載の高周波自励発振装
置。
3. An intermediate conductor of the double coaxial waveguide is provided with a circuit length variable member that changes an axial length of the intermediate conductor while being in contact with the intermediate conductor, and an outer conductor of the dual coaxial waveguide, The high frequency self-oscillation device according to claim 1 or 2, further comprising an impedance adjusting member that changes a facing position of the intermediate conductor while being in contact with the outer conductor.
JP4633893A 1993-03-08 1993-03-08 High frequency self-oscillation device Expired - Fee Related JP2684144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4633893A JP2684144B2 (en) 1993-03-08 1993-03-08 High frequency self-oscillation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4633893A JP2684144B2 (en) 1993-03-08 1993-03-08 High frequency self-oscillation device

Publications (2)

Publication Number Publication Date
JPH06260838A JPH06260838A (en) 1994-09-16
JP2684144B2 true JP2684144B2 (en) 1997-12-03

Family

ID=12744355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4633893A Expired - Fee Related JP2684144B2 (en) 1993-03-08 1993-03-08 High frequency self-oscillation device

Country Status (1)

Country Link
JP (1) JP2684144B2 (en)

Also Published As

Publication number Publication date
JPH06260838A (en) 1994-09-16

Similar Documents

Publication Publication Date Title
US2190511A (en) Ultra short wave system
US4527091A (en) Density modulated electron beam tube with enhanced gain
US3689847A (en) Oscillator for a cyclotron having two dees
US2217745A (en) Ultra high frequency oscillation circuits
US3622834A (en) High-efficiency velocity modulation tube employing harmonic prebunching
JP2684144B2 (en) High frequency self-oscillation device
US2350907A (en) Ultra short wave apparatus
US3448331A (en) Composite coaxial coupling device and coaxial window
US3281648A (en) Electric wave frequency multiplier
US2523286A (en) High-frequency electrical apparatus
US3792302A (en) Vhf slow wave structure
US2403025A (en) Electron beam device
US4019089A (en) Wideband multi-cavity velocity modulation tube
US6191651B1 (en) Inductive output amplifier output cavity structure
US3594605A (en) Mode suppression means for a clover-leaf slow wave circuit
US5604402A (en) Harmonic gyro traveling wave tube having a multipole field exciting circuit
EP0709871B1 (en) Multiplecavity klystron
US4140942A (en) Radio-frequency electron accelerator
US3248594A (en) Multiple-beam radio frequency apparatus
US3278795A (en) Multiple-beam klystron apparatus with waveguide periodically loaded with resonant elements
GB2266006A (en) Electron gun to provide electrons grouped in short pulses
RU2749453C1 (en) Broadband klystron
US3974417A (en) Four-cavity velocity modulation tube
US2464230A (en) High-frequency apparatus
US11935735B2 (en) Coupled-amplifier multi-frequency circuit topologies applicable to mass spectrometer radio-frequency drive systems

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20070815

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080815

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090815

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees