JP2682351B2 - Method for manufacturing bake hardened cold rolled steel sheet with excellent resistance to normal temperature aging - Google Patents

Method for manufacturing bake hardened cold rolled steel sheet with excellent resistance to normal temperature aging

Info

Publication number
JP2682351B2
JP2682351B2 JP26231892A JP26231892A JP2682351B2 JP 2682351 B2 JP2682351 B2 JP 2682351B2 JP 26231892 A JP26231892 A JP 26231892A JP 26231892 A JP26231892 A JP 26231892A JP 2682351 B2 JP2682351 B2 JP 2682351B2
Authority
JP
Japan
Prior art keywords
temperature
aging
amount
steel sheet
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26231892A
Other languages
Japanese (ja)
Other versions
JPH06108153A (en
Inventor
克己 谷川
健英 小池
佳弘 細谷
智良 大北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP26231892A priority Critical patent/JP2682351B2/en
Publication of JPH06108153A publication Critical patent/JPH06108153A/en
Application granted granted Critical
Publication of JP2682351B2 publication Critical patent/JP2682351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、耐常温時効性の優れた
焼付硬化型冷延鋼板の製造方法に関するもので、例え
ば、自動車用冷延鋼板等への使用に適した鋼板、とくに
低温かつ短時間の塗装焼付処理の可能な鋼板の製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a bake hardenable cold rolled steel sheet having excellent resistance to normal temperature aging, for example, a steel sheet suitable for use in cold rolled steel sheets for automobiles, especially at low temperatures. The present invention relates to a method for manufacturing a steel sheet that can be coated and baked for a short time.

【0002】[0002]

【従来の技術】自動車用冷延鋼板とくに外板に使用され
る冷延鋼板に対しては、常温非時効性で、かつ、プレス
成形時には良好な成形性、形状凍結性を有し、プレス成
形後の焼付塗装処理により降伏強度が上昇し、良好な耐
デント性を示すこと、すなわち焼付硬化性に優れること
が要求されている。焼付硬化性を有する冷延鋼板の製造
方法に関しては、従来より種々の提案がされており、と
くに近年の真空脱ガス技術あるいは連続焼鈍技術の進歩
により、C含有量を0.01%以下に下げた極低C鋼を
ベースに炭化物成形元素であるNbを添加した鋼板を連
続焼鈍することにより製造する技術が例えば特公昭60
−17004号公報、特公昭61−9365号公報等に
開示されている。
2. Description of the Related Art Cold-rolled steel sheets for automobiles, especially cold-rolled steel sheets used for outer panels, are non-aging at room temperature and have good formability and shape-freezing property during press forming. It is required that the yield strength be increased by the subsequent baking coating treatment and that the dent resistance be excellent, that is, the bake hardenability be excellent. Various proposals have hitherto been made regarding a method for producing a cold-rolled steel sheet having bake hardenability, and in particular, due to recent progress in vacuum degassing technology or continuous annealing technology, the C content has been reduced to 0.01% or less. For example, a technique for producing a steel sheet to which Nb, which is a carbide forming element, is continuously annealed on the basis of an ultra-low C steel is disclosed in, for example, Japanese Patent Publication No.
No. 17004, Japanese Patent Publication No. 61-9365, and the like.

【0003】ここで焼付硬化量(BH量)とは、厳密に
は2%の引張り予歪み付与後170℃で20分の焼付相
当熱処理による流動応力の上昇分(焼付相当熱処理後の
強度と2%引張予歪み付与後の強度の差)であり、2%
予歪みによる加工硬化量は含まない。従来、加工硬化量
と焼付硬化量との和をもってBH量としているが、本発
明では上記定義に従い、純粋な焼付硬化量のみでBH量
を評価する。なお、170℃で20分の熱処理条件は、
自動車製造工程におけるプレス加工後の塗装焼付け工程
を模したものである。
Strictly speaking, the bake hardening amount (BH amount) means the amount of increase in the flow stress due to the heat treatment equivalent to 2% of the tensile prestrain for 20 minutes at 170 ° C. (the strength after the heat treatment equivalent to bake and 2). % Difference in strength after applying tensile prestrain), and 2%
The amount of work hardening due to pre-strain is not included. Conventionally, the BH amount is defined as the sum of the work hardening amount and the bake hardening amount, but in the present invention, the BH amount is evaluated only by the pure bake hardening amount according to the above definition. The heat treatment condition at 170 ° C. for 20 minutes is as follows:
This model imitates the paint baking process after pressing in the automobile manufacturing process.

【0004】近年、自動車業界においては、エネルギー
コストを低減し、更に樹脂やプラスチックと鋼板の共存
する部品の一体塗装焼付けをする等の目的から、従来の
塗装焼付条件の低温化及び短時間化に関する要望が強ま
っている。
In recent years, in the automobile industry, for the purpose of reducing the energy cost and integrally baking the parts where resin or plastic and steel plate coexist, it is necessary to reduce the temperature and time of the conventional baking conditions. Demand is growing.

【0005】しかし、従来技術では、170℃で20分
の焼付相当処理においてはある程度のBH量は得られる
ものの、更に焼付条件を低温化し短時間化した場合には
十分なBH量を得ることができない。あえて、焼付条件
を低温化し短時間化した場合にも十分なBH量を得よう
とすれば、常温時効性が著しく劣化し、実用上使用し得
ないものとなってしまうという問題を有している。
However, in the prior art, although a certain amount of BH can be obtained in the baking equivalent treatment at 170 ° C. for 20 minutes, a sufficient amount of BH can be obtained when the baking conditions are further lowered and the time is shortened. Can not. On the other hand, if a sufficient amount of BH is to be obtained even when the baking conditions are lowered and the time is shortened, there is a problem that the aging property at room temperature is remarkably deteriorated and it cannot be practically used. There is.

【0006】このような問題に対して、特開昭62−1
12731号公報に低温焼付処理の可能な焼付硬化性冷
延鋼板の製造技術が開示されているが、該技術を用いて
も常温時効に関しては必ずしも十分な特性は得られてい
ない。
To solve this problem, Japanese Patent Laid-Open No. 62-1
Japanese Patent No. 12731 discloses a technique for producing a bake hardenable cold-rolled steel sheet that can be subjected to a low temperature bake treatment. However, even if this technique is used, sufficient characteristics cannot be obtained with respect to normal temperature aging.

【0007】従来、常温時効性に関しては、時効指数
(AI)、100℃で10時間の促進時効処理による時
効劣化量、あるいは、38℃で1カ月間又は30℃で2
カ月間程度の時効処理後の時効劣化量を用いて評価され
ていた。しかし、このような評価方法では非時効性と判
断される場合であっても、実際の使用環境においては時
効劣化が問題となる場合があり、常温時効に関しては必
ずしも十分に評価できていない。
Conventionally, regarding room temperature aging, the aging index (AI), the amount of aging deterioration by accelerated aging treatment at 100 ° C. for 10 hours, or at 38 ° C. for one month or at 30 ° C.
It was evaluated using the amount of aging deterioration after aging treatment for about a month. However, even if it is judged that such an evaluation method is non-aging, deterioration in aging may be a problem in an actual use environment, and the aging at room temperature is not always sufficiently evaluated.

【0008】[0008]

【発明が解決しようとする課題】このように従来技術を
用いても、低温かつ短時間の塗装焼付け処理により十分
な焼付硬化性を有し、なおかつ完全な常温非時効性を有
する鋼板を製造することは困難であった。このような従
来技術の問題点に鑑み、本発明は、低温かつ短時間の塗
装焼付処理の可能な耐常温時効性の優れた焼付硬化型冷
延鋼板の製造方法を目的とするものである。
As described above, even when the conventional technique is used, a steel plate having a sufficient bake hardenability and a complete room temperature non-aging property can be produced by a coating baking treatment at a low temperature for a short time. It was difficult. In view of such problems of the prior art, an object of the present invention is to provide a method for producing a bake-hardening cold-rolled steel sheet which is excellent in normal temperature aging resistance and which can be subjected to coating baking treatment at low temperature for a short time.

【0009】[0009]

【課題を解決するための手段】本発明者は上記課題を解
決すべく鋭意研究を重ねた結果、微量のCと適量のMn
が鋼中に共存した場合には、焼付条件を低温かつ短時間
化しても十分な焼付硬化性を有し、なおかつ常温時効を
顕著に抑制する効果が有り、さらにこの常温時効の抑制
効果は調質圧延を適正化することにより、さらに顕著に
なることを見出した。すなわち、極低炭素鋼にC量に対
応する微量のNbを添加し、Mn添加量を最適化すると
ともに、成分および焼鈍条件の調製によりフェライト組
織を制御し、さらに最適な調圧条件で調質圧延を実施す
ることにより、低温かつ短時間の塗装焼付け処理におい
ても十分な焼付硬化能を有し、なおかつ完全な常温非時
効を有する鋼板を製造することができることを見出すに
至った。
As a result of intensive studies to solve the above problems, the present inventor has found that a trace amount of C and an appropriate amount of Mn.
When it coexists in steel, it has a sufficient bake hardenability even if the baking conditions are kept at a low temperature for a short time, and it has a remarkable effect of suppressing the normal temperature aging. It has been found that it becomes more remarkable by optimizing the quality rolling. That is, a very small amount of Nb corresponding to the amount of C is added to the ultra-low carbon steel, the amount of Mn added is optimized, the ferrite structure is controlled by adjusting the composition and annealing conditions, and the tempering is further performed under optimum pressure adjusting conditions. By carrying out rolling, it has been found that it is possible to produce a steel sheet which has a sufficient bake hardening ability even at a low temperature and a short time of coating baking treatment, and which has a complete non-aging at room temperature.

【0010】本発明は上記知見に基づくものであり、そ
の構成は以下のとおりである。下記の工程からなる耐常
温時効性の優れた焼付硬化型冷延鋼板の製造方法(組成
はwt%である)。 (a)C:0.0015〜0.0040% 、Si:0.02 〜0.5%、 Mn:
0.55 〜1.6%、 P:0.01〜0.06% 、 S:0.01% 以下、 sol.Al:0.0
2 〜0.07% 、 N:0.0030% 以下、 Nb:0.005〜0.02 % を含有し、 前記組成間に、(93/12)(C-0.003)≦Nb≦(93/12)Cなる関
係があり、残部がFeおよび不可避的不純物からなる組成
のスラブを用意し、 (b)前記スラブをそのAr 3 変態点以上の仕上温度で熱
間圧延して熱延鋼板となし、前記熱延鋼板を600 ℃以上
の温度で巻取り、 (c)前記巻取った熱延鋼板を酸洗後70% 以上の冷圧率
で冷間圧延して、冷間圧延鋼板を得て、 (d)前記冷間圧延板を、板温800 〜880 ℃で、かつ(9
10+110 ×Si−40×Mn+200 ×P)℃以下の温度で連続
的に焼鈍し、その均熱温度から少なくとも600 ℃までを
7℃/s以上の平均冷却速度で冷却し、 (e)前記連続的に焼鈍した冷延鋼板をさらにドライ圧
延により伸長率が1.0 〜1.8%となるような調質圧延を行
なう。
The present invention is based on the above findings, and its constitution is as follows. Manufacturing method of bake hardening cold rolled steel sheet with excellent room temperature aging resistance consisting of the following steps (composition
Is wt%). (A) C: 0.0015 to 0.0040%, Si: 0.02 to 0.5%, Mn:
0.55 to 1.6%, P: 0.01 to 0.06%, S: 0.01% or less, sol.Al:0.0
2 ~ 0.07%, N: 0.0030% or less, contains Nb: 0.005 ~ 0.02%, between the composition, there is a relationship of (93/12) (C-0.003) ≤ Nb ≤ (93/12) C, Prepare a slab having a composition with the balance being Fe and inevitable impurities, and (b) hot-rolling the slab at a finishing temperature equal to or higher than its Ar 3 transformation point to form a hot-rolled steel sheet. Winding at the above temperature, (c) After pickling, the rolled hot rolled steel sheet is cold rolled at a cold pressure ratio of 70% or more to obtain a cold rolled steel sheet, and (d) the cold rolling. Plate the plate at a temperature of 800 to 880 ° C and (9
10 + 110 × Si-40 × Mn + 200 × P) ° C. or lower, continuously annealed, and cooling from the soaking temperature to at least 600 ° C. at an average cooling rate of 7 ° C./s or higher, (e) the continuous The annealed cold-rolled steel sheet is further dry-rolled and temper-rolled so that the elongation is 1.0 to 1.8%.

【0011】[0011]

【作用】上記した本発明における鋼成分(成分はwt%
である)の限定理由について先ず説明する。 C:0.0015〜0.0040%に限定する。焼付硬
化性は固溶Cによる転位の固着現象を利用したものであ
るため、本発明においてCは必須の元素である。Cが
0.0015%未満の場合、安定して良好な焼付硬化性
を得ることが困難となる。とくに、通常の170℃で2
0分の焼付条件よりも低温化あるいは短時間化した場合
に、十分なBH量が得られなくなる。そのためC量は
0.0015%以上とする。
The steel components in the present invention described above (the components are wt%
First, the reason for limitation will be explained. C: It is limited to 0.0015 to 0.0040%. Since bake hardenability utilizes the phenomenon of dislocation sticking due to solid solution C, C is an essential element in the present invention. When C is less than 0.0015%, it becomes difficult to stably obtain good bake hardenability. Especially at normal 170 ℃ 2
If the temperature is lowered or the time is shortened compared to the baking condition of 0 minutes, a sufficient BH amount cannot be obtained. Therefore, the C content is 0.0015% or more.

【0012】一方、C含有量が0.0040%を超える
と焼付硬化性は向上するが、常温時効による特性劣化が
大きくなり、後述するNb添加量、Mn添加量、焼鈍条
件、調圧条件等を適正化しても完全な常温非時効性とす
ることが困難である。以上の理由により、C量を上記の
通り限定する。
On the other hand, when the C content exceeds 0.0040%, the bake hardenability is improved, but the characteristic deterioration due to room temperature aging becomes large, and the Nb addition amount, Mn addition amount, annealing condition, pressure adjusting condition, etc., which will be described later, etc. It is difficult to achieve perfect non-aging at room temperature even if the above is optimized. For the above reason, the amount of C is limited as described above.

【0013】Mn:0.55〜1.6%に限定する。M
nは本発明において最も重要な元素であり、後述する図
1、図2、図3及び図4からも明らかな通り、低温かつ
短時間の塗装焼付処理においても十分な焼付硬化性を示
し、なおかつ完全な常温非時効性とするために、Nbと
ともに添加する必須の元素である。
Mn: limited to 0.55 to 1.6%. M
n is the most important element in the present invention, and as is clear from FIG. 1, FIG. 2, FIG. 3 and FIG. 4 which will be described later, it shows sufficient bake hardenability even at low temperature and short time bake treatment, and It is an essential element to be added together with Nb in order to achieve complete non-aging at room temperature.

【0014】Mnは従来、熱間脆性の原因となるSをM
nSとして析出固定し無害化させるために添加されてい
たが、その場合の添加量は0.2%以下が普通であり、
また、鋼板の高強度化のために添加する場合でも0.5
%以下であった。しかし、本発明におけるMnの主要な
効果は、このような従来技術にみられるMnの効果とは
異なり、適量のCとともに鋼中に適量の固溶Mnが共存
することにより、焼付硬化性を低下せずに常温時効を顕
著に抑制することにある。
Conventionally, M is M which is the cause of hot brittleness.
It was added as nS to precipitate and fix it to make it harmless, but in that case, the addition amount is usually 0.2% or less,
Further, even if added to increase the strength of the steel sheet, it is 0.5
% Or less. However, the main effect of Mn in the present invention is different from the effect of Mn seen in such a conventional technique, and the coexistence of an appropriate amount of solid solution Mn in steel together with an appropriate amount of C reduces the bake hardenability. It is to remarkably suppress the aging at room temperature.

【0015】また、Mnは固溶Mnとして鋼中に存在す
ることによりフェライト組織を微細化する作用があり、
高温焼鈍による著しい粗粒化を抑制する。即ち、降伏点
の著しい上昇を伴わずに、常温時効を抑制するという調
圧の効果を最大限に発揮させる上で、より好ましい結晶
粒径に制御することが容易になるという効果も有してい
る。
Further, Mn has a function of refining the ferrite structure by existing in the steel as a solid solution Mn,
Suppresses remarkable coarsening due to high temperature annealing. That is, in order to maximize the effect of the pressure control of suppressing the normal temperature aging without significantly increasing the yield point, it is also possible to easily control to a more preferable crystal grain size. There is.

【0016】このようなMnによる常温時効抑制効果を
十分に発揮させるためには、後述する図3及び図4から
明らかな通り,0.55%以上の添加が必要であり、一
方、Mn添加量が1.6%を超えると、SiやPを複合
添加してもAc3 変態点が著しく低下し、連続焼鈍時に
α/γ変態を起こしやすく、転位密度の高い硬質第2相
が生成し、均一なフェライト単相組織が得られなくな
る。
In order to fully exert such a room temperature aging suppression effect by Mn, it is necessary to add 0.55% or more, as will be apparent from FIGS. Is more than 1.6%, the Ac 3 transformation point is remarkably lowered even if Si and P are added in combination, the α / γ transformation is likely to occur during continuous annealing, and a hard second phase having a high dislocation density is generated, A uniform ferrite single phase structure cannot be obtained.

【0017】その結果、Mnによる常温時効抑制効果が
十分に発揮されなくなるとともに、降伏強度が著しく上
昇する。さらに調圧の効果も十分に発揮されなくなる。
以上の理由により、Mn添加量は0.55〜1.6%に
限定する。
As a result, the effect of Mn at room temperature aging suppression is not fully exerted, and the yield strength is remarkably increased. Furthermore, the effect of pressure regulation is not fully exerted.
For the above reasons, the Mn addition amount is limited to 0.55 to 1.6%.

【0018】なお、上述したようなMn添加量により常
温時効が抑制される理由については、現在のところ明ら
かではないが、鋼中に固溶Cとともに適量の固溶Mnが
共存する場合には、CとMnとのあいだに吸引相互作用
が働き、C−Mn複合体を形成するためと考えられる。
The reason why the room temperature aging is suppressed by the amount of Mn added as described above is not clear at present, but when solid solution C and a suitable amount of solid solution Mn coexist in the steel, It is considered that a suction interaction works between C and Mn to form a C-Mn complex.

【0019】すなわち、C原子は、単原子では常温でも
鋼中を拡散しやすく時効劣化をひきおこすが、C−Mn
複合体が形成されると、C単原子に比べ著しく動きにく
くなり、常温時効が起こりにくくなるものと考えられ
る。しかし、引張予歪み付与後にある程度の高温に保持
すると、C−Mn複合体も可動転位を固着し、高いBH
性を示すようになるものと考えられる。
That is, a C atom, which is a single atom, easily diffuses in the steel even at room temperature and causes aging deterioration.
It is considered that when the complex is formed, it becomes much harder to move than the C single atom and the normal temperature aging is hard to occur. However, when a high temperature is maintained to some extent after the tensile pre-strain is applied, the C-Mn composite also fixes the mobile dislocations, resulting in a high BH.
It is thought that it will show sex.

【0020】Si:0.02〜0.5%に限定する。S
iはMnの多量添加に伴うAc3 変態点の低下を抑制
し、均一なフェライト単相組織が得られる連続焼鈍時の
最適温度範囲を広げる効果がある。また、結晶粒を微細
化する作用を通じて、Mnと同様に、降伏点の著しい上
昇を伴うことなく調圧による常温時効抑制効果を強める
作用をも有する。
Si: Limited to 0.02 to 0.5%. S
i has the effect of suppressing the decrease in the Ac 3 transformation point due to the addition of a large amount of Mn, and widening the optimum temperature range during continuous annealing in which a uniform ferrite single phase structure is obtained. Further, through the action of refining the crystal grains, like Mn, it also has the action of strengthening the room temperature aging suppression effect by pressure adjustment without causing a significant increase in the yield point.

【0021】これらの作用を発揮させるためには、Si
は0.02%以上の添加が必要である。一方、Siは多
量に添加すると、熱延時のスケール剥離性を劣化させ表
面性状を損ない、さらに溶融亜鉛メッキを施す場合には
亜鉛メッキの密着性を劣化するという欠点があるので、
0.5%以下とする。
In order to exert these effects, Si
Requires addition of 0.02% or more. On the other hand, if Si is added in a large amount, there is a drawback that the scale peeling property during hot rolling is deteriorated and the surface quality is impaired, and further when the hot dip galvanizing is performed, the adhesiveness of the galvanizing is deteriorated.
0.5% or less.

【0022】P:0.01〜0.06%に限定する。P
はある面では、Siと同様に、均一なフェライト炭素組
織が得られるような連続焼鈍時の最適温度範囲を広げる
効果がある。この様な効果を発揮させるためには、0.
01%以上の添加が必要である。しかし、0.06%を
超えて添加すると耐二次加工脆性を著しく劣化させ、さ
らにはC−Mn複合体の形成を抑制することにより、M
n添加による常温時効抑制効果を弱めるという欠点があ
る。これらの理由により上記範囲に限定する。
P: It is limited to 0.01 to 0.06%. P
In a certain aspect, like Si, it has the effect of expanding the optimum temperature range during continuous annealing so that a uniform ferrite carbon structure can be obtained. In order to exert such an effect,
It is necessary to add at least 01%. However, if added in excess of 0.06%, the secondary work embrittlement resistance is significantly deteriorated, and further, the formation of C-Mn composite is suppressed, so that M
There is a drawback that the effect of suppressing the aging at room temperature by adding n is weakened. For these reasons, it is limited to the above range.

【0023】S:0.01%以下に限定する。Sは熱間
脆性を引き起こす有害な元素であり、また延性と絞り性
をも劣化させるため、その含有量は低いほど望ましい。
Sが多くなると、MnSとして析出する量が増え、鋼中
に固溶Mnとして存在するMn量が減少し、時効抑制効
果が十分発揮されなくなる。そのため上記範囲とする。
S: limited to 0.01% or less. S is a harmful element that causes hot embrittlement and also deteriorates ductility and drawability, so the lower the content, the better.
When the amount of S increases, the amount of MnS precipitated increases, the amount of Mn existing as solid solution Mn in steel decreases, and the effect of suppressing aging cannot be sufficiently exerted. Therefore, the above range is set.

【0024】N:0.0030%以下に限定する。Nは
Cに比べ常温時効性を劣化させる程度が大きいため、極
力低い方が望ましい。本発明においては焼付硬化性は固
溶Cのみにより付与し、常温時効に対し有害な固溶Nは
AlによりAlNとして析出固定し、時効性に対して無
害化する。Nbは窒化物形成元素でもあるが、炭化物形
成傾向のほうが強いため、炭化物形成後さらに過剰のN
bがある場合のみ窒化物を形成する。
N: Limited to 0.0030% or less. Since N has a greater degree of deterioration in normal temperature aging than C, it is desirable that N is as low as possible. In the present invention, the bake hardenability is imparted only by the solid solution C, and the solid solution N, which is harmful to the aging at room temperature, is precipitated and fixed as AlN by Al to render the aging harmless. Nb is also a nitride-forming element, but since it has a stronger tendency to form carbides, Nb is further excessive after the formation of carbides.
A nitride is formed only when b is present.

【0025】本発明のNb添加量はCの全量を完全に析
出固定する量よりも少ないため、NbではNを固定でき
ない。Nが0.0030%を超えると、熱延段階で高温
巻取を行ったとしても、Alにより完全にAlNとして
析出固定させることが困難となり、固溶Nが残りやすく
なり常温時効性が劣化する。そのため、Nの上限を0.
0030%に限定する。より望ましくは、0.0025
%以下が望ましい。
Since the amount of Nb added according to the present invention is smaller than the amount which completely precipitates and fixes the total amount of C, N cannot be fixed by Nb. If N exceeds 0.0030%, it becomes difficult to completely precipitate and fix Al as AlN even if high-temperature winding is carried out in the hot rolling stage, and solid solution N tends to remain and the room temperature aging deteriorates. . Therefore, the upper limit of N is 0.
Limited to 0030%. More preferably 0.0025
% Is desirable.

【0026】sol.Al:0.02〜0.07%に限
定する。NをAlNとして析出固定するためには0.0
2%以上のAlの添加が必要である。一方、0.07%
を超えて過剰の添加を行なうと、酸化物が増えることに
より深絞り性や延性が劣化する。そのため上記範囲とす
る。
Sol. Al: limited to 0.02 to 0.07%. 0.0 in order to precipitate and fix N as AlN
It is necessary to add 2% or more of Al. On the other hand, 0.07%
If it is added excessively, the deep drawability and ductility deteriorate due to the increase in oxide. Therefore, the above range is set.

【0027】Nb:0.005%〜0.02%であり、
かつ(93/12)(C−0.003)≦Nb≦(93
/12)Cに限定する。Nbは本発明にとって重要な元
素であり、低温かつ短時間の塗装焼付処理においても十
分な焼付硬化性を有し、なおかつ完全な常温非時効性と
するための重要な元素である。
Nb: 0.005% to 0.02%,
And (93/12) (C-0.003) ≦ Nb ≦ (93
/ 12) C. Nb is an important element for the present invention, and is an important element that has a sufficient bake hardenability even at a low temperature and a short time of coating baking treatment, and has a complete non-aging at room temperature.

【0028】NbはCの一部を析出固定すると同時にフ
ェライト結晶粒径を制御するために添加するもので、そ
の添加量は絶対量とともにC量との関係において限定さ
れる。Nb<0.005%あるいはNb<(93/1
2)(C−0.003)の場合には、固溶C量が増え、
焼付硬化性は向上するが、後述するようにMn添加量、焼
鈍条件及び調圧条件を適正化したとしても、常温時効を
十分に抑制することができなくなる。
Nb is added in order to precipitate and fix a part of C and at the same time to control the ferrite crystal grain size. The addition amount is limited in relation to the C amount as well as the absolute amount. Nb <0.005% or Nb <(93/1
2) In the case of (C-0.003), the amount of solid solution C increases,
Although the bake hardenability is improved, even if the Mn addition amount, the annealing condition and the pressure adjusting condition are optimized as described later, the normal temperature aging cannot be sufficiently suppressed.

【0029】一方、Nb>0.02%あるいはNb>
(93/12)Cの場合には、後述する図4から明らか
なように、NbCの絶対量が増え、そのサイズも大きく
なるため、連続焼鈍時のNbCの再固溶量が減少し、焼
付条件を低温で短時間化した場合に十分なBH量を得る
ことができなくなる。そのため、Nbを上記の範囲に限
定する。
On the other hand, Nb> 0.02% or Nb>
In the case of (93/12) C, as is clear from FIG. 4 which will be described later, the absolute amount of NbC increases and its size also increases, so the amount of re-dissolved NbC during continuous annealing decreases, and If the conditions are shortened at a low temperature, a sufficient amount of BH cannot be obtained. Therefore, Nb is limited to the above range.

【0030】次に本発明の製造条件の限定理由について
説明する。上記組成に調整された鋼片又は鋳片からなる
スラブを、通常の加熱温度1000〜1300℃に加熱
し、そのスラブをAr3 変態点以上の温度で仕上げ圧延
し、続いて600℃以上の高温で巻取る。仕上温度がA
3 変態点よりも低いと、巻取温度を600℃以上とし
た場合には熱延板のフェライト粒が粗大化し、冷圧後の
再結晶が緩慢となり、再結晶完了温度が上昇する。
Next, the reasons for limiting the manufacturing conditions of the present invention will be described. A slab consisting of a steel slab or a cast slab adjusted to the above composition is heated to a normal heating temperature of 1000 to 1300 ° C., the slab is finish-rolled at a temperature of Ar 3 transformation point or higher, and subsequently a high temperature of 600 ° C. or higher. To wind up. Finishing temperature is A
When the temperature is lower than the r 3 transformation point, when the coiling temperature is set to 600 ° C. or higher, the ferrite grains of the hot rolled sheet become coarse, the recrystallization after cold pressure becomes slow, and the recrystallization completion temperature rises.

【0031】巻取温度については、熱延巻取段階でNを
AlNとして完全に析出固定し、Nによる常温時効を完
全に防止するため600℃以上とする。しかし、巻取温
度が異常に高くなり過ぎると熱延板組織が粗粒化し、ま
た酸洗性が著しく劣るため、750℃以下とすることが
望ましい。熱延後に酸洗し冷間圧延を行うが、その冷圧
率は、その後の連続焼鈍時の再結晶を促進し、均一な再
結晶フェライト組織とするため70%以上とする。
The coiling temperature is 600 ° C. or higher in order to completely prevent precipitation of N as AlN in the hot rolling coiling step and to completely prevent aging at room temperature due to N. However, if the coiling temperature becomes excessively high, the structure of the hot-rolled sheet becomes coarse, and the pickling property is significantly deteriorated. After hot rolling, pickling and cold rolling are performed, and the cold pressing rate is 70% or more in order to promote recrystallization during the subsequent continuous annealing and form a uniform recrystallized ferrite structure.

【0032】次に、焼鈍は連続焼鈍とする。バッチ焼鈍
では徐加熱と徐冷の熱サイクルとなるため、NbCの再
固溶や再析出を制御することが困難であり、焼付硬化性
の変動や低下を招く。このため、急速加熱し、急速冷却
が可能な連続焼鈍ライン、または、亜鉛メッキやAlメ
ッキ等の連続溶融メッキラインで連続焼鈍を行う。焼鈍
温度は800〜880℃で、かつ(910+110 ×Si−40×
Mn+200 ×P)℃以下とする。焼鈍温度が800℃未満で
はNbCの再固溶が不十分なため、本発明の範囲内にC
やNb量を制御しても十分な焼付硬化性が得られない。
Next, the annealing is continuous annealing. Since batch annealing involves a thermal cycle of gradual heating and gradual cooling, it is difficult to control the re-dissolution or re-precipitation of NbC, which causes fluctuation or deterioration of the bake hardenability. Therefore, continuous annealing is performed in a continuous annealing line capable of rapid heating and rapid cooling, or a continuous hot dip galvanizing line such as zinc plating or Al plating. Annealing temperature is 800-880 ℃, and (910 + 110 × Si-40 ×
Mn + 200 x P) ℃ or less. If the annealing temperature is less than 800 ° C., the re-dissolution of NbC is insufficient, so that C is within the range of the present invention.
Even if the amount of Nb or Nb is controlled, sufficient bake hardenability cannot be obtained.

【0033】また、粒成長が不十分で均一なフェライト
組織とすることが困難であり、塗装焼付処理前の降伏強
度が高くなり、延性や深絞り性も低下する。焼鈍温度が
(910+110 ×Si−40×Mn+200 ×P)℃を超えると、α/
γ変態に起因した転位密度の高い硬質第2相が生成し、
均一なフェライト単相組織が得られなくなり、降伏強度
が上昇するため(910+110 ×Si−40×Mn+200 ×P)℃以
下に限定する。
Further, the grain growth is insufficient and it is difficult to obtain a uniform ferrite structure, the yield strength before the coating baking treatment becomes high, and the ductility and deep drawability also deteriorate. The annealing temperature is
(910 + 110 x Si-40 x Mn + 200 x P) When the temperature exceeds ° C, α /
A hard second phase with a high dislocation density due to the γ transformation is generated,
Since a uniform ferrite single-phase structure cannot be obtained and the yield strength increases, the temperature is limited to (910 + 110 x Si-40 x Mn + 200 x P) ° C or lower.

【0034】また、(910+110 ×Si−40×Mn+200 ×P)
℃以下で転位密度の高い硬質第2相の生成がなく、均一
なフェライト単相組織であっても、焼鈍温度が880℃
を超えると、結晶粒が大きくなり過ぎ、後述する調圧の
効果が十分に発揮されず、降伏強度の著しい上昇を伴わ
ずに完全な常温非時効とすることが困難となる。そのた
め、焼鈍温度は880℃以下に限定する。均熱時間につ
いては、NbCの再固溶量とフェライト粒径を制御し、
かつ生産性を低下させないようにするためには、10秒
以上、3分以下とすることが好ましい。
In addition, (910 + 110 x Si-40 x Mn + 200 x P)
Even if the ferrite single-phase structure is uniform without the formation of a hard second phase with a high dislocation density below ℃, the annealing temperature is 880 ℃.
If it exceeds, crystal grains become too large, the effect of pressure regulation described below is not sufficiently exerted, and it becomes difficult to achieve complete normal temperature non-aging without a significant increase in yield strength. Therefore, the annealing temperature is limited to 880 ° C or lower. Regarding the soaking time, the re-dissolved amount of NbC and the ferrite grain size are controlled,
In addition, in order not to reduce the productivity, it is preferably 10 seconds or more and 3 minutes or less.

【0035】さらに、均熱温度から少なくとも600℃
までの平均冷却速度を7℃/sec以上とする。7℃/
sec未満の平均冷却速度の場合には、600℃以上の
高温領域において固溶Cの一部が再析出しやすくなり、
焼付硬化性の低下をもたらす。室温まで冷却する途中の
600℃未満の温度領域においても冷却速度は速いほう
が好ましいが、とくに限定するものではない。なお、フ
ェライトの平均結晶粒径は5〜30μm程度とすること
が望ましい。
Furthermore, from the soaking temperature to at least 600 ° C.
The average cooling rate up to 7 ° C./sec. 7 ℃ /
When the average cooling rate is less than sec, part of the solid solution C is likely to reprecipitate in a high temperature region of 600 ° C. or higher,
It causes a decrease in bake hardenability. It is preferable that the cooling rate is high even in the temperature range of less than 600 ° C. during cooling to room temperature, but it is not particularly limited. The average crystal grain size of ferrite is preferably about 5 to 30 μm.

【0036】さらにその後、調質圧延を行う。この調質
圧延条件を適正化することが本発明においては極めて重
要な条件であり、後述する図5から明らかな通り、ドラ
イ圧延により伸長率1.0〜1.8%となるような調質
圧延を実施する。圧延油等を用いたウェット圧延では、
鋼板表面とロールとの摩擦力が低下し、調圧により導入
される不均一歪みによる時効抑制効果が弱まる。
After that, temper rolling is performed. It is a very important condition in the present invention to optimize the temper rolling conditions, and as is clear from FIG. 5 described later, the tempering is such that the elongation rate becomes 1.0 to 1.8% by dry rolling. Carry out rolling. In wet rolling using rolling oil etc.,
The frictional force between the surface of the steel plate and the roll is reduced, and the effect of suppressing aging due to the nonuniform strain introduced by pressure regulation is weakened.

【0037】その結果、低温で短時間の焼付処理でも十
分なBH量を確保しつつ、完全な常温非時効性とするた
めには、Mn添加量と結晶粒径を最適化し、そのうえ調
圧の伸長率を1.8%を超える高伸長率としなければな
らない。しかし、このような高伸長率の調圧を施すと、
降伏強度が著しく上昇するとともに、伸びが大きく低下
し、焼付塗装前の形状凍結性や成形性が劣化してしま
う。
As a result, in order to secure a sufficient amount of BH even at a low temperature for a short period of time and achieve a complete room temperature non-aging property, the amount of Mn added and the crystal grain size are optimized, and the pressure adjustment The elongation rate must be high, exceeding 1.8%. However, when pressure regulation with such a high expansion rate is applied,
Yield strength remarkably increases and elongation greatly decreases, resulting in deterioration of shape fixability and formability before baking coating.

【0038】そのため、本発明においてはドライ圧延に
限定する。ドライ圧延時の伸長率は、1.0%未満では
Mnの常温時効抑制効果と複合しても、完全な常温非時
効性とすることが困難であり、一方1.8%を超えると
前述のように降伏強度の上昇や伸びの低下が大きくな
る。そのため、伸長率は1.0〜1.8%に限定する。
さらに好ましくは1.2 〜1.6%とするのが望まし
い。
Therefore, the present invention is limited to dry rolling. If the elongation percentage during dry rolling is less than 1.0%, it is difficult to achieve complete room temperature non-aging even if combined with the room temperature aging suppressing effect of Mn. Thus, the yield strength increases and the elongation decreases. Therefore, the extension rate is limited to 1.0 to 1.8%.
More preferably, it is desired to be 1.2 to 1.6%.

【0039】このようにして製造された本発明鋼板は、
均一なフェライト単相組織となっており、完全な非常温
時効性があり、かつ低温で短時間の焼付処理でも高い焼
付硬化性を示す。
The steel sheet of the present invention thus produced is
It has a uniform ferrite single-phase structure, complete aging at extremely high temperatures, and high bake hardenability even at low temperature for a short time.

【0040】なお、本発明が対象とする冷延鋼板は、連
続焼鈍を含む溶融亜鉛鍍金、合金化溶融亜鉛鍍金及び溶
融アルミニウム鍍金、更には、電気亜鉛メッキ等の各種
の表面処理鋼板の素材となる鋼板をも含むものである。
また、各種の表面処理後、プレス加工等の後に塗装焼付
を行なう冷延鋼板も対象となる。
The cold-rolled steel sheet to which the present invention is applied is a material for hot-dip galvanizing including continuous annealing, alloyed hot-dip galvanizing, hot-dip aluminum plating, and various surface-treated steel sheets such as electrogalvanizing. It also includes a steel sheet.
Further, cold-rolled steel sheets subjected to paint baking after various surface treatments, such as press working, are also targeted.

【0041】[0041]

【実施例】以下に、本発明の実施例を詳細に説明する。 (実施例1)まず、主に本発明におけるMn量の影響を
説明する。表1に示す4種類の鋼成分のスラブを加熱温
度1200℃、仕上温度890℃、巻取温度680℃の
条件で3.6mmの板厚に熱間圧延し、酸洗後0.8m
m(冷圧率77.8%)の板厚に冷間圧延した。これら
の冷延鋼板を850℃の均熱温度で連続焼鈍(均熱温度
から600 ℃までの平均冷却速度は10℃/sec)
し、伸長率1.3%のドライ調圧を行った後、種々の焼
付相当処理条件で2%BHを測定した。
Embodiments of the present invention will be described below in detail. (Example 1) First, the influence of the amount of Mn in the present invention will be mainly described. The slabs of the four steel components shown in Table 1 were hot-rolled to a plate thickness of 3.6 mm under the conditions of a heating temperature of 1200 ° C., a finishing temperature of 890 ° C., and a winding temperature of 680 ° C., and 0.8 m after pickling.
It was cold-rolled to a plate thickness of m (cold pressure ratio 77.8%). Continuous annealing of these cold-rolled steel sheets at a soaking temperature of 850 ° C (average cooling rate from soaking temperature to 600 ° C is 10 ° C / sec)
Then, after performing dry pressure adjustment at an elongation rate of 1.3%, 2% BH was measured under various baking-corresponding treatment conditions.

【0042】また、25℃で最長6カ月の時効処理を施
した後、引張試験を行い機械特性を測定し、常温時効性
を調査した。これらの鋼板の平均結晶粒径は8〜18μ
mであった。なお、2%BHとは、2%引張り予歪み付
与後に種々の条件で熱処理を行い、再度引張試験を行な
ったときの熱処理前後での流動応力の上昇量である。
Further, after aging treatment at 25 ° C. for a maximum of 6 months, a tensile test was conducted to measure mechanical properties, and room temperature aging was investigated. The average crystal grain size of these steel sheets is 8 to 18 μ.
m. The 2% BH is the amount of increase in flow stress before and after the heat treatment when the heat treatment is performed under various conditions after the 2% tensile prestrain is applied and the tensile test is performed again.

【0043】[0043]

【表1】 [Table 1]

【0044】図1に焼付相当処理温度と2%BH量との
関係を示す。Mn添加量の多い本発明鋼である鋼AとC
は、焼付温度を80℃まで低下させても2%BH量の低
下はごく僅かである。これに対して、他の成分はほぼ同
等であるがMn添加量だけが低い鋼BとDは、焼付温度
の低下に伴い2%BH量は大きく低下している。
FIG. 1 shows the relationship between the processing temperature equivalent to printing and the 2% BH content. Steels A and C of the present invention containing a large amount of Mn
Shows a slight decrease in the 2% BH amount even if the baking temperature is lowered to 80 ° C. On the other hand, in Steels B and D, which have almost the same other components but only a small amount of Mn added, the 2% BH amount is greatly reduced as the baking temperature is lowered.

【0045】図2は、焼付相当処理温度を170℃と1
00℃の2水準とし、焼付相当処理時間を変化させたと
きの2%BH量の変化を示している。鋼AとCは170
℃と100℃のいずれの場合も、焼付相当処理温時間を
5分まで短縮してもほとんどBH量は低下していないの
に対し、鋼BとDは短時間化に伴いBH量が大きく低下
している。また図3は25℃での時効処理時間に対する
時効後の降伏点伸び(YPel)の変化を示している。
鋼BとDは1カ月後または2カ月後にYPelが回復
し、その後急激に時効劣化が進むのに対し、鋼AとCは
25℃で6カ月後においてもYPelは0.1%未満で
あり、完全な常温非時効性を示している。
In FIG. 2, the processing temperature equivalent to baking is 170 ° C. and 1
The graph shows changes in the 2% BH amount when the baking equivalent treatment time is changed to two levels of 00 ° C. Steel A and C are 170
In both cases of 100 ° C and 100 ° C, the BH amount hardly decreased even if the baking treatment temperature time was shortened to 5 minutes, whereas the BH amounts of Steels B and D decreased significantly as the time was shortened. doing. Further, FIG. 3 shows changes in the yield point elongation (YPel) after aging with respect to the aging treatment time at 25 ° C.
Steels B and D recovered YPel after 1 or 2 months, and then rapidly deteriorated by aging, whereas steels A and C had YPel of less than 0.1% even after 6 months at 25 ° C. , Shows complete non-aging at room temperature.

【0046】(実施例2)この実施例では主にMn量と
Nb量の影響を示す。表2に示すように、主としてC,
Mn,Nb含有量を種々変化させた3シリーズのスラブ
を加熱温度1150℃、仕上温度900℃、巻取温度6
40℃の条件で熱間圧延し、酸洗後0.7mm(冷圧率
78.1%)に冷間圧延した。その後、Mn量に応じて
820〜860℃までの温度で連続焼鈍(均熱温度から
600℃までの平均冷却速度は20℃/sec)し、ド
ライ圧延で伸長率1.4〜1.5%の調質圧延を施し、
2%BH量を測定した。
(Example 2) In this example, the influences of the amount of Mn and the amount of Nb are mainly shown. As shown in Table 2, mainly C,
3 series slabs with various Mn and Nb contents were heated at a temperature of 1150 ° C, finishing temperature of 900 ° C, winding temperature of 6
It was hot-rolled under the condition of 40 ° C., pickled, and then cold-rolled to 0.7 mm (cold pressure ratio 78.1%). Then, continuous annealing (average cooling rate from soaking temperature to 600 ° C. is 20 ° C./sec) at a temperature of 820 to 860 ° C. according to the amount of Mn, and an elongation rate of 1.4 to 1.5% by dry rolling. Subjected to temper rolling,
The amount of 2% BH was measured.

【0047】このときの焼付相当処理条件は100℃で
5分とした。さらに、これらの鋼板を25℃で6カ月間
の時効処理を施した後、引張試験を行い機械特性を測定
し、常温時効性を調査した。これらの測定結果を図4に
示した。BH量の異なる鋼XとYシリーズのいずれもM
n添加量が0.55%未満の場合には、100℃、5分
の焼付相当処理後の2%BH量は大きく低下し、常温時
効性も劣化している。また、Mn添加量が1.6%を超
えた場合には、やはり常温時効性が劣化している。一
方、鋼ZシリーズのようにNb添加量が多く、固溶C量
が少ない場合には、Mnの効果は全く認められない。
At this time, the processing conditions equivalent to baking were 100 ° C. for 5 minutes. Furthermore, after subjecting these steel sheets to aging treatment at 25 ° C. for 6 months, a tensile test was conducted to measure mechanical properties, and room temperature aging was investigated. The results of these measurements are shown in FIG. Both steel X and Y series with different BH amount are M
When the amount of addition of n is less than 0.55%, the amount of 2% BH after baking treatment at 100 ° C. for 5 minutes is significantly reduced and the room temperature aging is also deteriorated. Further, when the amount of Mn added exceeds 1.6%, the room temperature aging also deteriorates. On the other hand, when the amount of Nb added is large and the amount of solute C is small like the steel Z series, the effect of Mn is not recognized at all.

【0048】[0048]

【表2】 [Table 2]

【0049】(実施例3)ここでは主に焼鈍温度、ドラ
イ圧延またはウエット圧延等の影響を示す。表1の鋼C
を実施例1と同様な条件で冷延鋼板とした後、焼鈍温度
を変えることでフェライトの平均結晶粒径を変化させ
た。これらの鋼板をドライまたはウェット圧延で種々の
伸長率で調圧し、時効処理前後で機械的特性を調査し
た。時効条件は25℃で6カ月とした。結果を図5に示
す。ウェット圧延では、伸長率を2.3%以上にしない
と常温時効を十分に抑制できず、この場合には、時効前
の降伏点YPが著しく上昇してしまうことがわかる。こ
れに対し、1.0〜1.8%のドライ調圧をした場合に
は、常温時効劣化と時効前のYPの上昇の双方を抑制す
ることができる。
(Embodiment 3) Here, the influence of annealing temperature, dry rolling, wet rolling, etc. is mainly shown. Steel C in Table 1
After forming a cold-rolled steel sheet under the same conditions as in Example 1, the average crystal grain size of ferrite was changed by changing the annealing temperature. These steel sheets were subjected to dry or wet rolling at various elongation rates to examine their mechanical properties before and after aging treatment. The aging condition was 25 ° C. for 6 months. Results are shown in FIG. In wet rolling, normal temperature aging cannot be sufficiently suppressed unless the elongation is 2.3% or more, and in this case, the yield point YP before aging remarkably rises. On the other hand, when the dry pressure adjustment of 1.0 to 1.8% is performed, it is possible to suppress both the deterioration at room temperature aging and the increase in YP before aging.

【0050】(実施例4)表3に示す鋼組成のスラブを
第4表(1),(2)に示す条件で製造し、板厚0.7
mmの鋼板とした。これらの鋼板の2%BH量、時効処
理前後の機械的特性を調査した。2%BH量は、170
℃で20分、100℃で5分、80℃で20分の3条件
で測定した。また、時効処理条件は38℃で1カ月およ
び25℃で6カ月とした。結果を第5表(1),(2)
に示す。本発明の鋼板は比較鋼に比べ、時効前のYPは
低く、低温で短時間の焼付処理により高い焼付硬化性を
有し、更に、耐常温時効性にも優れていることがわか
る。
(Example 4) A slab having a steel composition shown in Table 3 was manufactured under the conditions shown in Table 4 (1) and (2), and the plate thickness was 0.7.
mm steel plate. The 2% BH content of these steel sheets and the mechanical properties before and after the aging treatment were investigated. The 2% BH amount is 170
The measurement was performed under 3 conditions of 20 ° C. for 20 minutes, 100 ° C. for 5 minutes, and 80 ° C. for 20 minutes. The aging treatment conditions were 38 ° C. for 1 month and 25 ° C. for 6 months. The results are shown in Table 5 (1), (2)
Shown in It can be seen that the steel sheet of the present invention has a lower YP before aging than the comparative steel, has a high bake hardenability by a short-time bake treatment at low temperature, and is also excellent in normal temperature aging resistance.

【0051】[0051]

【表3】 [Table 3]

【0052】[0052]

【表4】 [Table 4]

【0053】[0053]

【表5】 [Table 5]

【0054】[0054]

【表6】 [Table 6]

【0055】[0055]

【表7】 [Table 7]

【0056】[0056]

【発明の効果】以上説明した様に、本発明の方法によ
り、低温で短時間の焼付処理でも高い焼付硬化性を有
し、また、耐常温時効性に優れた冷延鋼板を製造出来
る。
As described above, according to the method of the present invention, it is possible to manufacture a cold-rolled steel sheet which has a high bake hardenability even at a low temperature and a short time bake treatment and is excellent in normal temperature aging resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】焼付相当処理温度と2%BH量の関係を示した
図である。
FIG. 1 is a diagram showing a relationship between a baking-corresponding processing temperature and a 2% BH amount.

【図2】焼付相当処理時間と2%BH量の関係量を示し
た図である。
FIG. 2 is a diagram showing a relation amount between a baking equivalent processing time and a 2% BH amount.

【図3】25℃での時効処理時間に対する時効後のYP
elの変化を示した図である。
FIG. 3 YP after aging with respect to aging treatment time at 25 ° C.
It is the figure which showed the change of el.

【図4】Mn添加量と100℃で5分の条件での2%B
H量、25℃で6カ月の時効処理後のYPelとの関係
を示す図である。
FIG. 4 2% B under the condition of Mn addition amount and 100 ° C. for 5 minutes
It is a figure which shows the relationship between the amount of H, and YPel after an aging process of 6 months at 25 degreeC.

【図5】調圧条件と25℃での6カ月間の時効処理後の
YPel、時効処理前のYPとの関係を示した図であ
る。
FIG. 5 is a diagram showing a relationship between pressure adjusting conditions, YPel after aging treatment for 6 months at 25 ° C., and YP before aging treatment.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 下記の工程からなる耐常温時効性の優れ
た焼付硬化型冷延鋼板の製造方法(以下において組成は
wt%である)。 (a)C:0.0015〜0.0040% 、Si:0.02 〜0.5%、 Mn:
0.55 〜1.6%、 P:0.01〜0.06% 、 S:0.01% 以下、 sol.Al:0.0
2 〜0.07% 、 N:0.0030% 以下、 Nb:0.005〜0.02 % を含有し、 前記組成間に、(93/12)(C-0.003)≦Nb≦(93/12) ×C な
る関係があり、 残部がFeおよび不可避的不純物からなる組成のスラブを
用意し、(b)前記スラブをそのAr3 変態点以上の仕上
温度で熱間圧延して熱延鋼板となし、前記熱延鋼板を60
0 ℃以上の温度で巻取り、(c)前記巻取った熱延鋼板
を酸洗後70% 以上の冷圧率で冷間圧延して、冷間圧延鋼
板を得て、(d)前記冷間圧延板を、板温が800 〜880
℃で、かつ、(910+110 ×Si−40×Mn+200 ×P)℃以
下の温度で連続的に焼鈍し、その均熱温度から少なくと
も600 ℃までを7℃/s以上の平均冷却速度で冷却し、
(e)前記連続的に焼鈍した冷延鋼板をドライ圧延によ
り伸長率が1.0 〜1.8%となるような調質圧延を行なう。
1. A method for producing a bake-hardening cold-rolled steel sheet excellent in normal temperature aging resistance, which comprises the following steps (the composition is wt% in the following). (A) C: 0.0015 to 0.0040%, Si: 0.02 to 0.5%, Mn:
0.55 to 1.6%, P: 0.01 to 0.06%, S: 0.01% or less, sol.Al:0.0
2 to 0.07%, N: 0.0030% or less, Nb: 0.005 to 0.02%, and there is a relationship of (93/12) (C-0.003) ≦ Nb ≦ (93/12) × C between the above compositions. A slab having a composition in which the balance is Fe and unavoidable impurities is prepared, and (b) the slab is hot-rolled at a finishing temperature equal to or higher than its Ar 3 transformation point to form a hot-rolled steel sheet.
Winding at a temperature of 0 ° C. or higher, (c) pickling the rolled hot-rolled steel sheet, and then cold rolling at a cold pressure ratio of 70% or more to obtain a cold rolled steel sheet, and (d) the cold rolling steel sheet. Hot-rolled sheet with a sheet temperature of 800-880
At a temperature of (910 + 110 × Si-40 × Mn + 200 × P) ° C. or lower, and cooling from the soaking temperature to at least 600 ° C. at an average cooling rate of 7 ° C./s or more,
(E) The continuously annealed cold rolled steel sheet is subjected to temper rolling by dry rolling so that the elongation rate becomes 1.0 to 1.8%.
JP26231892A 1992-09-30 1992-09-30 Method for manufacturing bake hardened cold rolled steel sheet with excellent resistance to normal temperature aging Expired - Fee Related JP2682351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26231892A JP2682351B2 (en) 1992-09-30 1992-09-30 Method for manufacturing bake hardened cold rolled steel sheet with excellent resistance to normal temperature aging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26231892A JP2682351B2 (en) 1992-09-30 1992-09-30 Method for manufacturing bake hardened cold rolled steel sheet with excellent resistance to normal temperature aging

Publications (2)

Publication Number Publication Date
JPH06108153A JPH06108153A (en) 1994-04-19
JP2682351B2 true JP2682351B2 (en) 1997-11-26

Family

ID=17374108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26231892A Expired - Fee Related JP2682351B2 (en) 1992-09-30 1992-09-30 Method for manufacturing bake hardened cold rolled steel sheet with excellent resistance to normal temperature aging

Country Status (1)

Country Link
JP (1) JP2682351B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4177478B2 (en) * 1998-04-27 2008-11-05 Jfeスチール株式会社 Cold-rolled steel sheet, hot-dip galvanized steel sheet excellent in formability, panel shape, and dent resistance, and methods for producing them
JPH11305987A (en) 1998-04-27 1999-11-05 Matsushita Electric Ind Co Ltd Text voice converting device
KR100415661B1 (en) * 1998-12-24 2004-06-04 주식회사 포스코 A method of manufacturing cold rolled steel sheet having superior formability and baking hardness
KR100470640B1 (en) * 2000-11-24 2005-03-07 주식회사 포스코 A high strength bake-hardenable cold rolled steel sheet, and a method for manufacturing it
KR100544618B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 High Strength Cold Rolled Steel Sheet with Excellent Strain Aging Resistance at Room Temperature and Bake Hardenability, and Method for Manufacturing the Steel Sheet
KR100946064B1 (en) * 2002-12-18 2010-03-10 주식회사 포스코 Method for manufacturing high strength cold rolled steel sheets with baking hardening property having excellent strain aging resistance at room temperature
KR100564885B1 (en) * 2003-12-30 2006-03-30 주식회사 포스코 Bake Hardenable Cold Rolled Steel Sheet With Improved Aging Property And Bake Hardenability, And Manufacturing Method Thereof
MX2007009551A (en) 2005-02-10 2007-09-21 Nippon Steel Corp Steel sheet having aluminum-based plating formed thereon and explosion-preventing band using the same.
JP5310919B2 (en) * 2011-12-08 2013-10-09 Jfeスチール株式会社 Method for producing high-strength cold-rolled steel sheets with excellent aging resistance and seizure curability
CN105568132A (en) * 2016-01-05 2016-05-11 河北钢铁股份有限公司邯郸分公司 180 MPa-grade cold-rolled ultralow carbon baking hardened steel and production method thereof

Also Published As

Publication number Publication date
JPH06108153A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
EP0608430B1 (en) Cold-rolled steel plate having excellent baking hardenability, non-cold-ageing characteristics and moldability, and molten zinc-plated cold-rolled steel plate and method of manufacturing the same
EP0816524B1 (en) Steel sheet for excellent panel appearance and dent resistance after forming
JP2003221623A (en) Method for manufacturing high-strength cold-rolled steel sheet and hot-dip galvanized high-strength steel sheet
JP2682351B2 (en) Method for manufacturing bake hardened cold rolled steel sheet with excellent resistance to normal temperature aging
JP3263143B2 (en) Bake hardening type high strength alloyed hot-dip galvanized steel sheet excellent in workability and method for producing the same
JPH07300623A (en) Production of sheet steel for working excellent in baking hardenability and aging resistance
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JP3449003B2 (en) Steel plate for cans and manufacturing method thereof
JPS6235463B2 (en)
JP3596398B2 (en) Manufacturing method of cold rolled steel sheet with excellent bake hardenability and normal temperature aging resistance
JP3882263B2 (en) Steel plate with excellent panel appearance and dent resistance after panel processing
JP2745922B2 (en) Non-aging cold-rolled steel sheet for deep drawing with excellent bake hardenability and method for producing the same
JPH05195060A (en) Production of baking hardening type cold rolled steel sheet excellent in ageing resistance and press formability
JP3562410B2 (en) Bake-hardened galvannealed steel sheet with excellent workability and surface properties with small fluctuation in coil material and manufacturing method thereof
JP3204101B2 (en) Deep drawing steel sheet and method for producing the same
JPH03211228A (en) Production of steel sheet with baking hardenability
JP3446001B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability
JP2560168B2 (en) Method for producing cold-rolled steel sheet excellent in paint bake hardenability at low temperature
JP3390084B2 (en) Bake hardenable thin steel sheet excellent in formability and method for producing the same
JP3932737B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent deep drawability
JPH05230543A (en) Production of high strength cold rolled steel sheet excellent in baking hardenability and deep drawability
JP3508491B2 (en) Soft cold rolled steel sheet excellent in microstructure stability and method for producing the same
JP3293190B2 (en) Manufacturing method of thin steel sheet with excellent bake hardenability
JPH0776410B2 (en) High-strength cold-rolled steel sheet for non-aging deep drawing excellent in bake hardenability and method for producing the same
JPH0681045A (en) Production of cold rolled steel sheet excellent in workability and baking hardenability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070808

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080808

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080808

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090808

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090808

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100808

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20110808

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20120808

LAPS Cancellation because of no payment of annual fees