JP2681776B2 - Method for maintaining high-density culture of autotrophic bacterial cells by filamentous microorganisms - Google Patents

Method for maintaining high-density culture of autotrophic bacterial cells by filamentous microorganisms

Info

Publication number
JP2681776B2
JP2681776B2 JP15713287A JP15713287A JP2681776B2 JP 2681776 B2 JP2681776 B2 JP 2681776B2 JP 15713287 A JP15713287 A JP 15713287A JP 15713287 A JP15713287 A JP 15713287A JP 2681776 B2 JP2681776 B2 JP 2681776B2
Authority
JP
Japan
Prior art keywords
filamentous microorganisms
bacterial cells
filamentous
culture
microorganisms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15713287A
Other languages
Japanese (ja)
Other versions
JPS642571A (en
JPH012571A (en
Inventor
昌二 江西
Original Assignee
同和工営株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同和工営株式会社 filed Critical 同和工営株式会社
Priority to JP15713287A priority Critical patent/JP2681776B2/en
Publication of JPS642571A publication Critical patent/JPS642571A/en
Publication of JPH012571A publication Critical patent/JPH012571A/en
Application granted granted Critical
Publication of JP2681776B2 publication Critical patent/JP2681776B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、糸状微生物を利用することによって、菌
体を高密度に増殖・保持し得るようにした菌体の培養方
法に関するものである。 〔従来の技術及びその問題点〕 一般に微生物の培養法には、回分培養や流加培養、或
いは連続培養等が知られているが、これらの培養法を工
業プロセスに利用する場合、その微生物は流体中に懸濁
した微生物菌体か、又は適当な担体の表面に付着させた
り、樹脂フィルム等に包埋、固定した粒状物のうち何れ
かの形態で培養されるものであった。 然し、前者は菌体が流出するため、連続培養で高密度
の増殖を得るには一定の限界が見られたものであり、又
後者は担体に付着しにくい細菌には適用できない上、そ
の固定化に高度の技術を要し、いきおいコストの上昇を
招くという問題点が見られたものであった。 〔課題を解決するための手段〕 そこで本発明者は、鋭意、実験・研究を重ねた結果、
菌体の吸着、高密度化手段として糸状微生物を利用した
場合に、生化学反応の効率を著しく増大させ得る事実を
究明したものである。 即ち本発明方法は、酸化槽内に一定の流速と方向性を
保って硫酸第1鉄溶液等の第1鉄イオン、イオウ、無機
イオウ化合物、無機窒素化合物のうち、1または2以上
を含む廃水を供給しつつ、上記酸化槽内に予め収容され
た適宜な担体に糸状微生物を着床させて、これに独立栄
養細菌を共生させることにより、上記糸状微生物及びそ
れに由来する粘質物に菌体を高密度に吸着、保持して増
殖を行うようにしたことを技術的特徴としたものであ
る。 〔作用〕 本発明は上記酸化槽内の流水が一定の条件に保たれる
ことで、担体に対する糸状微生物の着床が濃密となると
ともに、糸状微生物及び粘質物に菌体が吸着される結
果、槽外への菌体の流出を最小限に抑制するという格別
の作用を奏するものである。 〔実 施 例〕 以下、その構成を糸状微生物として黴の一種であるペ
ニシリウムを用いることにより、鉄酸化細菌の培養を行
った場合の実施例について、更に具体的に述べると、第
1図は本発明方法の実施に使用される培養装置の一例を
示したものであって、1は供給槽、2は上記供給槽内に
貯留された硫酸第1鉄溶液、又3は酸化槽であって、そ
の底板中央を挟んで上下に撹拌下4とマグネットスター
ラー5を設置する一方、その槽底より一定の高さに網板
6を張設して該網板上面の中央に内筒7を貫設したもの
である。 更に、上記内筒7の上端開口には供給槽1からの給水
パイプ8の末端を臨ましめると共に、上記内筒7の上端
開口より稍、低い位置に上記酸化槽の排水口9を開設し
たものであり、更に又10は上記酸化槽内の網板上に充填
され、例えばポリエチレンなどによって、表面積ができ
るだけ大きい形状に成型された担体である。 尚、図中11は上記供給槽1内に設けられた散気管、又
12はエアーポンプ、13は給水パイプ8の中間に介在され
た定量ポンプを示す。 而して本発明方法は、上記培養装置において供給槽1
から定量ポンプ13で硫酸第1鉄溶液2を酸化槽3の内筒
7内に一定の流速と流量を保つように供給して、その下
端開口から網板下面に流出する硫酸第1鉄溶液2に対し
散気管11で曝気を行うと同時に、上記硫酸第1鉄溶液2
を担体10の間隙を通過させて排水口9よりオーバーフロ
ーさせるものであり、又この間に撹拌子4及びマグネッ
トスターラー5によって反応液を均一に維持するもので
ある。 従って、上記酸化槽3においては、常に硫酸第1鉄溶
液2が一定方向へ一定の流速で通流しているため、かゝ
る条件下で担体10に糸状微生物を着床させることによっ
て、その糸状微生物を密に増殖させたうえ、目的とする
菌体を上記糸状微生物及びそれに由来する粘質物に保持
させて高密度の菌体の培養が可能となったものである。 次に本発明方法に基づく1〜2の試験例を述べること
ゝする。 (試験例1) 上記構成の培養装置を二組用意し、一方の装置を試験
装置〔A〕、又、他方を試験装置〔B〕として、第1表
に示した試験条件に従って試験を行ったものである。 即ち、硫酸第1鉄溶液2に糸状微生物の生育基質であ
るグルコースを装置〔A〕の酸化槽3に一定流量(50mg
/リットル)で添加し、11日間に亘ってペニシリウムS
−9株を同酸化槽内の担体10に増殖、着床させた(ペニ
シリウム株培養期)後、上記グルコースの添加を中止
し、この酸化槽内に鉄酸化細菌を接種した上、約7日間
硫酸第1鉄溶液2のみを連続送給するようにした(鉄酸
化細菌培養期)。他方、装置〔B〕には糸状微生物の増
殖、着床は行わず、上記装置〔A〕のペニシリウムS−
9株の培養(増殖)期が終了した時点で、硫酸第1鉄溶
液2のみを装置〔A〕と同量の鉄酸化細菌を接種した装
置〔B〕の酸化槽3に約7日間、連続送給したところ、
第2図に示すような結果が得られた。 上記第2図によれば、鉄酸化細菌培養期の初期には
〔A〕〔B〕両装置間に格差は認められなかったが、試
験開始後20日間頃からはペニシリウムS−9株を担体に
着床させた装置〔A〕の酸化量は、装置〔B〕の略3倍
となり、ペニシリウムS−9株が鉄酸化細菌の高密度の
吸着に極めて有効であることが明らかとなったものであ
る。 (試験例2) 上記と同じ構成の試験装置〔A〕〔B〕において、共
にグルコース等の糸状微生物の生育基質を添加すること
なく、鉄酸化細菌を培養して一定の鉄酸化成績を得た
後、装置〔A〕に供給される硫酸第1鉄溶液2に生育基
質としてグルコース50mg/リットルを添加し、また装置
〔B〕の硫酸第1鉄溶液にはグルコースを添加しないで
試験を継続した(試験条件及び経過については第2表参
照)。 この結果、第3図に見られる通り、グルコースの添加
期間中、即ちペニシリウムS−9株の増殖期中における
装置〔A〕の酸化成績は低下したが、装置〔B〕の酸化
成績は変わらなかった。しかし、グルコースの添加を停
止した後の装置〔A〕の酸化成績は急上昇し、試験開始
後30日目にはペニシリウムS−9株の着床した装置
〔A〕の酸化成績が装置〔B〕の略4倍となり、ペニシ
リウムS−9株が鉄酸化細菌の高密度化を著しく促進せ
しめたことが証明されたのである。 尚、上記各試験例においては、糸状微生物として黴を
用いた場合について述べたが、この他鞘細菌、放線菌、
藻類等の糸状微生物によっても、上述したと同様に菌体
を高密度に付着させ得るものである。 又、上記試験例は、グルコースを糸状微生物の基質と
したものを示したが、別途に行った培養試験の結果で
は、炭水化物の他、蛋白質やアルコール等も基質となり
得ることが明らかとなった。 要するに本発明は、グルコースを酸化装置内に添加し
て装置内の担体に糸状微生物を着床させ、糸状微生物及
びそれに由来する粘質物に独立栄養細菌を高密度に保持
させることを技術的要旨としたものであるが、その反
面、グルコースの添加条件下では独立栄養細菌の育成が
抑制される(第3図参照)から、独立栄養細菌が存在す
る系におけるグルコースの使用は、糸状微生物の育成の
ための一定期間以外は、その添加を中止する必要がある
のである。 〔発明の効果〕 以上述べた通り、本発明の方法によれば上記糸状微生
物のみならず、これに由来する粘質物でも菌体の高密度
化が可能となるものであるから、糸状微生物を着床させ
た担体を用いることによって、その担体に対する菌体の
付着能力に関係なく、容易に菌体を高密度に培養、保持
し得るものである。 従って本発明方法は従来の微生物菌体、又は固定粒状
物での培養方式に比較して、目的とする生化学的反応性
を著しく向上させて、継続的かつ高能率に菌体の高密度
化を計り得る他、上記糸状微生物の増殖には安価な有機
物が使用出来るため、コストの大幅な逓減がもたらせる
という顕著な利点を有するものである。
TECHNICAL FIELD The present invention relates to a method for culturing bacterial cells, which enables the bacterial cells to be grown and retained at a high density by utilizing filamentous microorganisms. [Prior Art and Its Problems] Generally, as a method for culturing a microorganism, batch culture, fed-batch culture, continuous culture, or the like is known, but when these culture methods are used in an industrial process, the microorganism is The microbial cells suspended in a fluid, or adhered to the surface of an appropriate carrier, embedded in a resin film or the like, and fixed in the form of a granular material were cultured. However, the former has a certain limit in obtaining high-density growth in continuous culture because the bacterial cells flow out, and the latter cannot be applied to bacteria that are difficult to adhere to the carrier, and its fixation However, there was a problem in that it required a high level of technology to bring the technology to fruition, resulting in a dramatic increase in costs. [Means for Solving the Problems] Therefore, as a result of earnestly repeating experiments and research, the present inventor
The present inventors have clarified the fact that the efficiency of biochemical reaction can be remarkably increased when a filamentous microorganism is used as a means for adsorbing and densifying cells. That is, the method of the present invention is a waste water containing one or more of ferrous ions such as ferrous sulfate solution, sulfur, inorganic sulfur compounds, and inorganic nitrogen compounds while maintaining a constant flow rate and directionality in the oxidation tank. While supplying the filamentous microorganisms to a suitable carrier previously stored in the oxidation tank, by symbiotic autotrophic bacteria to this, the filamentous microorganisms and the mucilage derived from the filamentous microorganisms The technical feature is that the cells are adsorbed and held at a high density to grow. [Action] The present invention, by keeping the running water in the oxidation tank under constant conditions, the implantation of the filamentous microorganisms on the carrier becomes dense, and the bacterial cells are adsorbed to the filamentous microorganisms and the mucilage, as a result, It has a special effect of suppressing the outflow of bacterial cells to the outside of the tank. [Examples] The following is a more specific description of an example in which iron-oxidizing bacteria are cultured by using penicillium, which is one of the molds, as a filamentous microorganism in the configuration thereof. 1 shows an example of a culture apparatus used for carrying out the method of the invention, wherein 1 is a supply tank, 2 is a ferrous sulfate solution stored in the supply tank, and 3 is an oxidation tank, While the stirring plate 4 and the magnetic stirrer 5 are installed vertically with the center of the bottom plate sandwiched between them, a net plate 6 is stretched at a certain height from the bottom of the tank and an inner cylinder 7 is provided at the center of the top face of the net plate. It was done. Further, the end of the water supply pipe 8 from the supply tank 1 is exposed to the upper end opening of the inner cylinder 7, and the drainage port 9 of the oxidation tank is opened at a position lower than the upper end opening of the inner cylinder 7. Further, 10 is a carrier filled on the mesh plate in the oxidation tank and molded into a shape having a surface area as large as possible by polyethylene or the like. In the figure, 11 is an air diffuser provided in the supply tank 1 or
Reference numeral 12 is an air pump, and 13 is a metering pump interposed in the middle of the water supply pipe 8. Thus, the method of the present invention is applied to the above-mentioned culture apparatus in the supply tank 1
The ferrous sulfate solution 2 is supplied to the inner cylinder 7 of the oxidation tank 3 with a constant amount pump 13 so as to maintain a constant flow rate and flow rate, and flows out from the lower end opening to the lower surface of the mesh plate. At the same time as performing aeration with the air diffuser 11 to the above ferrous sulfate solution 2
To pass through the gap of the carrier 10 and overflow from the drainage port 9, and during this period, the stirring bar 4 and the magnetic stirrer 5 keep the reaction solution uniform. Therefore, in the oxidation tank 3, the ferrous sulfate solution 2 is constantly flowing in a certain direction at a constant flow rate, so that the filamentous microorganisms can be deposited on the carrier 10 under such conditions. The microorganisms can be densely grown, and the target cells can be retained in the filamentous microorganisms and mucilages derived therefrom to enable high-density cell culture. Next, 1-2 test examples based on the method of the present invention will be described. (Test Example 1) Two sets of the culture apparatus having the above-mentioned constitution were prepared, and one apparatus was used as a test apparatus [A] and the other was used as a test apparatus [B], and a test was conducted according to the test conditions shown in Table 1. It is a thing. That is, glucose, which is a growth substrate for filamentous microorganisms, is added to ferrous sulfate solution 2 at a constant flow rate (50 mg
/ L) and added Penicillium S for 11 days
After -9 strains were grown on the carrier 10 in the same oxidizing tank and implanted (penicillium strain culture period), the addition of the glucose was stopped, and the oxidizing tank was inoculated with iron-oxidizing bacteria for about 7 days. Only the ferrous sulfate solution 2 was continuously fed (iron-oxidizing bacterial culture period). On the other hand, the device [B] was not subjected to the growth and implantation of filamentous microorganisms, and the penicillium S- of the device [A] was used.
At the end of the culture (growth) period of the 9 strains, the ferrous sulfate solution 2 alone was continuously fed into the oxidation tank 3 of the device [B] inoculated with the same amount of iron-oxidizing bacteria as the device [A] for about 7 days. I sent it,
The result as shown in FIG. 2 was obtained. According to FIG. 2 above, no difference was observed between the [A] and [B] devices in the early stage of the iron-oxidizing bacterium culture period, but from about 20 days after the start of the test, the Penicillium S-9 strain was used as a carrier. The amount of oxidation of the device [A] that was implanted in the plant was approximately three times that of the device [B], and it was revealed that the Penicillium S-9 strain is extremely effective for high-density adsorption of iron-oxidizing bacteria. Is. (Test Example 2) Iron-oxidizing bacteria were cultured in a test apparatus [A] [B] having the same configuration as above without adding a growth substrate for filamentous microorganisms such as glucose to obtain a certain iron-oxidizing result. Thereafter, 50 mg / liter of glucose as a growth substrate was added to ferrous sulfate solution 2 supplied to the apparatus [A], and the test was continued without adding glucose to the ferrous sulfate solution of the apparatus [B]. (See Table 2 for test conditions and progress). As a result, as shown in FIG. 3, the oxidation performance of the device [A] decreased during the glucose addition period, that is, during the growth phase of the Penicillium S-9 strain, but the oxidation performance of the device [B] did not change. . However, the oxidation performance of the device [A] increased sharply after stopping the addition of glucose, and on the 30th day after the start of the test, the oxidation performance of the device [A] on which Penicillium S-9 strain was implanted was measured by the device [B]. It was proved that the Penicillium S-9 strain remarkably promoted the densification of iron-oxidizing bacteria. In each of the above test examples, the case where mold was used as the filamentous microorganism was described, but other sheath bacteria, actinomycetes,
Even with filamentous microorganisms such as algae, the cells can be adhered at a high density in the same manner as described above. In addition, although the above-mentioned test example showed that glucose was used as the substrate for the filamentous microorganism, the results of a separate culture test revealed that in addition to carbohydrates, proteins, alcohols and the like could also be substrates. In summary, the present invention is to add glucose into the oxidation device to implant the filamentous microorganisms on the carrier in the device, and to retain the autotrophic bacteria at high density in the filamentous microorganisms and mucilage derived therefrom. On the other hand, on the other hand, since the growth of autotrophic bacteria is suppressed under the condition of glucose addition (see FIG. 3), the use of glucose in the system in which autotrophic bacteria are present is not suitable for the growth of filamentous microorganisms. It is necessary to stop the addition except for a certain period. [Effects of the Invention] As described above, according to the method of the present invention, not only the filamentous microorganisms described above, but also the mucilage derived from the filamentous microorganisms enable the densification of the bacterial cells, so that the filamentous microorganisms can be attached. By using the carrier that has been placed on the bed, the cells can be easily cultured and maintained at a high density regardless of the ability of the cells to adhere to the carrier. Therefore, the method of the present invention significantly improves the desired biochemical reactivity as compared with the conventional culturing method with microbial cells or fixed particulate matter, and continuously and highly efficiently densifies the cells. In addition to the above, it is possible to use inexpensive organic substances for the growth of the above-mentioned filamentous microorganisms, which has a remarkable advantage that the cost can be drastically reduced.

【図面の簡単な説明】 第1図は、本発明方法の実施に使用される培養装置の一
例を示す配置図、第2図は試験例1について、又第3図
は試験例2について、それぞれ装置〔A〕〔B〕におけ
る第1鉄イオンの酸化成績の経時変化を示すグラフであ
る。 尚、図中1……供給槽、2……硫酸第1鉄溶液、3……
酸化槽、4……撹拌子、5……マグネットスターラー、
6……網板、7……内筒、8……給水パイプ、9……排
水口、10……担体。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a layout drawing showing an example of a culture apparatus used for carrying out the method of the present invention, FIG. 2 is for Test Example 1, and FIG. 3 is for Test Example 2 respectively. It is a graph which shows the time-dependent change of the oxidation performance of the ferrous ion in a device [A] [B]. In the figure, 1 ... Supply tank, 2 ... Ferrous sulfate solution, 3 ...
Oxidation tank, 4 ... Stirrer, 5 ... Magnet stirrer,
6 ... mesh plate, 7 ... inner cylinder, 8 ... water supply pipe, 9 ... drainage port, 10 ... carrier.

Claims (1)

(57)【特許請求の範囲】 1.酸化槽内に第1鉄イオン、イオウ、無機イオウ化合
物、無機窒素化合物のうち、1又は2以上を含む廃水を
供給しつゝ上記酸化槽内に予め収容された担体に、糸状
微生物を着床させて独立栄養細菌菌体と共生させること
により、上記糸状微生物及びそれに由来する粘質物に細
菌菌体を高密度に保持させるようにした糸状微生物によ
る独立栄養細菌菌体の高密度培養保持法。
(57) [Claims] Waste water containing one or more of ferrous ions, sulfur, inorganic sulfur compounds, and inorganic nitrogen compounds is supplied to the oxidizing tank, and the filamentous microorganisms are implanted on the carrier previously stored in the oxidizing tank. A method for maintaining high-density culture of autotrophic bacterial cells by the filamentous microorganisms, wherein the bacterial cells are retained at a high density by the filamentous microorganisms and the mucilage derived therefrom, by coexisting with the autotrophic bacterial cells.
JP15713287A 1987-06-23 1987-06-23 Method for maintaining high-density culture of autotrophic bacterial cells by filamentous microorganisms Expired - Fee Related JP2681776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15713287A JP2681776B2 (en) 1987-06-23 1987-06-23 Method for maintaining high-density culture of autotrophic bacterial cells by filamentous microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15713287A JP2681776B2 (en) 1987-06-23 1987-06-23 Method for maintaining high-density culture of autotrophic bacterial cells by filamentous microorganisms

Publications (3)

Publication Number Publication Date
JPS642571A JPS642571A (en) 1989-01-06
JPH012571A JPH012571A (en) 1989-01-06
JP2681776B2 true JP2681776B2 (en) 1997-11-26

Family

ID=15642901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15713287A Expired - Fee Related JP2681776B2 (en) 1987-06-23 1987-06-23 Method for maintaining high-density culture of autotrophic bacterial cells by filamentous microorganisms

Country Status (1)

Country Link
JP (1) JP2681776B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5846871B2 (en) * 2011-11-18 2016-01-20 Dowaテクノロジー株式会社 Iron oxidation method and iron oxidation apparatus
CN107399829A (en) * 2016-05-19 2017-11-28 江苏东材新材料有限责任公司 A kind of method and system device that nitrate in water removal is removed based on S-Fe collaboration autotrophic denitrifications

Also Published As

Publication number Publication date
JPS642571A (en) 1989-01-06

Similar Documents

Publication Publication Date Title
Schwarzenbeck et al. Aerobic granular sludge in an SBR-system treating wastewater rich in particulate matter
JP3839136B2 (en) Microorganism-immobilized magnetic carrier, production method thereof and wastewater treatment method
Jin et al. Kinetics of nitrogen removal in high rate anammox upflow filter
CN106542655B (en) Rapid biofilm formation method for efficient denitrification microbial agent
CN105776570B (en) A kind of high-density biology enrichment reactor and its processing method for high ammonia nitrogen organic chemical waste water with high salt
CN101913710B (en) Suspended packing microbial quick film forming method
CN104150586A (en) Moving bed biofilm reactor and its sewage treatment method
JPH0558797B2 (en)
JPH10327850A (en) Microelement/inorganic nutrient salt diffusion-type carrier for microbial cell culture
JP2681776B2 (en) Method for maintaining high-density culture of autotrophic bacterial cells by filamentous microorganisms
CN102531154B (en) Method and device for culturing aerobic biofilm capable of treating low-concentration ammonia nitrogen in water body
Timmermans et al. Influence of the type of organisms on the biomass hold-up in a fluidized-bed reactor
Cox et al. Distribution of bacteria in a continuous-flow nitrification column
CN112358029A (en) Novel biological composite filler and preparation method and application thereof
Rothemund et al. Biofilms growing on gas permeable membranes
CN208454620U (en) A kind of AOAO-MBBR two-stage water sewage-treatment plant
JPH012571A (en) High-density culture maintenance method for autotrophic bacterial cells using filamentous microorganisms
Cao et al. Aerobic biodegradation and microbial population of a synthetic wastewater in a channel with suspended and attached biomass
JP3470392B2 (en) Organic wastewater treatment method and treatment apparatus
JPS62279888A (en) Treatment of sewage
JPH0623390A (en) Biological dephosphorizing and denitrifying treatment of organic sewage
CN109020045A (en) A kind of integration distributing rural domestic sewage treating device
JP2003000237A (en) Inclusively immobilized microbe carrier and method for manufacturing the same
CN1276883C (en) Method for treating dispersant low-temperature domestic sewage by floating stuffing segregating technique
JPH03195432A (en) Control of infectious disease of aquatic animal in culture bond and control of pollution of water in pond

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees