JP2678736B2 - Organozinc compound - Google Patents

Organozinc compound

Info

Publication number
JP2678736B2
JP2678736B2 JP24310894A JP24310894A JP2678736B2 JP 2678736 B2 JP2678736 B2 JP 2678736B2 JP 24310894 A JP24310894 A JP 24310894A JP 24310894 A JP24310894 A JP 24310894A JP 2678736 B2 JP2678736 B2 JP 2678736B2
Authority
JP
Japan
Prior art keywords
adduct
r2zn
reaction
r2se
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24310894A
Other languages
Japanese (ja)
Other versions
JPH08143574A (en
Inventor
則久 岡本
直行 伊藤
隆 下林
照之 水本
正男 藤沢
昭宏 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP24310894A priority Critical patent/JP2678736B2/en
Publication of JPH08143574A publication Critical patent/JPH08143574A/en
Application granted granted Critical
Publication of JP2678736B2 publication Critical patent/JP2678736B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分明】本発明は、ジアルキル亜鉛(以下
R2Znと略す)と、ジアルキルセレン(以下R2Se
と略す)の付加体からなる有機亜鉛化合物に関する。 【0002】さらに詳しくは、半導体薄膜並びに半導体
装置の製造技術であるMO−CVD法の原料として有効
なR2ZnとR2Seの付加体からなる有機亜鉛化合
関する。 【0003】〔発明の概要〕 本発明は、青色発光ダイオード、及び薄膜EL素子用材
料であるセレン化亜鉛(ZnSe)及びその混晶薄膜の
製造に有効なMO−CVD法の原料である有機亜鉛化合
物に於て、R2ZnとR2Seとを混合し、反応及び熱
成によってR2ZnとR2Seの付加体を高純度に、又
再現性よく形成させる事により、従来のR2Znに比較
してH2Se又はH2S等の水素化物に対する反応性が
低く、従来MO−CVD法に於て問題となっていた原料
の混合により、基板の上流で生じる不要な前反応が生じ
難く、良質のZnSe及びその混晶薄膜、ひいては、高
性能半導体装置の実現を可能とする原料を提供するもの
である。 【0004】 【従来の技術】従来、ZnSe及びその混晶薄膜のMO
−CVD法による製造に於て、原料として、亜鉛ソース
にジメチル亜鉛:Zn(CH3)2ジエチル亜鉛:Z
n(C2H5)2等の有機亜鉛化合物を用い、硫化水
素:H2S及びセレン化水素:H2Seと反応させるの
が通例であった。これらの原料を用いた場合の化学反応
は次式で表わされる。 【0005】 (CH3)2Zn+H2Se→ZnSe十2CH4…(1) (C2H5)2Zn+H2Se→ZnSe+2C2H6…(2) しかしこれらの反応は、R2Znが活性であるためMO
−CVD反応装置内に原料ガスを導入すると該水素化物
との混合と同時に室温近傍でも気相中で反応が進行し、
基板表面に原料が到達する以前にZnSe微粒子を生成
し、このZnSe微粒子が薄膜成長用基板表面での成長
過程に悪影響を及ぼしており、得られる結晶の質はあま
り高くなかった。 【0006】従来、これらの問題を解決する手段として
(1)基板直前でR2ZnとH2Seを混合する(例え
ば、J.Cryst Growth 59、P1.(1
982)記載)、(2)減圧にして、ガス流速を高める
(例えぱ、Jpn.J.Appl.Phys.23、L
360(1984)記載)等の装置系の対策、並びに、
(3)セレン原料として、H2Seの代りに、R2Se
を用いる。(第45回応用物理学会学術講演会P629
(1984)、講演番号12a−S−3記載)(4)R
2ZnとR2Seを混合し、気相でR2Zn−SeR2
なる付加体を形成後、H2Seと混合して反応管に供給
する。(J.Cryst.Growth.66(198
4)P231記載)等の原料による対策が公知であっ
た。 【0007】 【発明が解決しようとする課題】上述の従来技術に基づ
くMO−CVD法に於ては、製法上及びデバイスへの応
用上次の如き問題点を有し、解決が望まれていた。 【0008】従来技術(1)及び(2)に対して 1.基板直前で混合するために、薄膜の膜厚、組成、ド
ーパント分布等の均一性が得にくい。 【0009】2.大面積、多数枚基板の処理が困難で量
産性に乏しい。 【0010】3.結晶の質が悪く、発光特性、電導特性
が制御できない。 【0011】例えば、従来の製造法に於ては、R2Zn
とH2Seとを、基板から2cmの距離で混合吹き付け
をしており、これにより処理できる基板の大きさは高々
直径20mm1枚であった。ヌ、得られた結晶は多くの
欠陥を有し、そのフォトルミネッセンス特性は、高品質
な結晶に見られる、青色発光の他に深い準位からの赤い
発光も観測され、青色発光ダイオードには使用できなか
った。 【0012】従来技術(3)に対して、 1.混合に伴う室温でのZnSe微粒子の堆積は抑制で
きるが、逆にR2Seが分解しにくいため、十分な成長
速度を得るため450℃程度の高温が必要であり、得ら
れた結晶は多くの欠陥を有する。 【0013】2.膜の成長は500℃以下では反応律速
であり、成長基板上の温度分布等によりバラ付きが大き
い。 【0014】従来技術(4)に対して、 1.気相中での混合ではR2ZnとR2Seの反応は不
完全であり、又その度合は、ガス流速、配管の長さ、温
度等にも影響を受け、完全に不要な前反応を抑制する事
はできず、又、データのバラツキも大きかった。特に、
赤外線吸収スペクトルにより反応管内のガスを分析した
所、R2Zn−SeR2という付加体は形成されていな
いという報告(J.Cryst.Growth.68
(1984)P656記載)が為されている。 【0015】上記R2Zn−SeR2付加体をZn原料
に使う方法は、両者をはじめから等モル量混合して得ら
れる付加体を用いる事により、より向上するが、この場
合にも次の如き問題点を有する。 【0016】1.R2ZnとR2Seとの反応性はあま
り高く無く、単に両者を等モル量混合しただけでは、次
式の R2Zn+R2Se→R2Zn−SeR2…(3) 反応を完結できず、得られたものの蒸気圧等の物性も、
混合条件、反応に用いる迄の履歴等により異り、バラ付
きが大きかった。 【0017】2.又その結果として、該等モル量混合に
よる付加体を原料として、MO−CVD法によりH2S
eと反応させて、ZnSeエピタキシャル成長を行う
と、エピタキシャル薄膜の成長速度並びにその物性の再
現性が悪かった。 【0018】本発明の目的は、かかる問題点を解決すべ
、Zn原料として、H2Se又はH2Sとの反応性が
R2Znに比べて低く、室温での基板の上流で生じる不
要な前反応をより完全に抑制でき、且つ200℃以上の
比較的低温に於ても十分反応し、MO−CVD法にZn
原料として用いる事で、良質の結晶薄膜を大面積上に、
多数枚上に成長可能であり、深い欠陥準位からの発光の
無いデバイスレベルの品質を有するZnSe結晶及びそ
の混晶薄膜を再現性よく実現する高純度な有機亜鉛化合
物を提供する点にある。 【0019】 【課題を解決するための手段】本発明の有機亜鉛化合物
は,ジアルキル亜鉛とジアルキルセレンとが混合されて
なり,それらの過剰成分が存在しない一般式R2Zn−
SeR2(式中,Rはアルキル基を示す)で示される付
加体であることを特徴とする。具体的には,高純度で再
現性のある付加体物性を確保するため,両者のうち低沸
点成分をおおむね過剰に混合し,反応及び熟成後,不要
成分を除去して得られるR2Zn−SeR2の付加体であ
る。 【0020】又、高純度で、再現性のあるその製造法と
して、両者のうち、低沸点成分を概ね過剰に混合し、反
応条件は、個々のアルキル基の組み合せにより異なる
が、0℃〜40℃で10分〜3時間反応し、その後、徐
々に昇温し、30℃〜80℃で10分〜2時間熟成後、
過剰成分を溜出除去する工程よりなるものである。 【0021】本発明に適用可能なR2Zn及びR2Se
を表1にまとめて示すが、この限りではない事は明らか
である。 【0022】 【表1】 【0023】R2ZnとR2Seの付加体は、電子受容
体としてのR2Znと、電子供与体としてのR2Seと
の、1対1の酸−塩基反応の結果得られるもので、
(4)式 R2Zn−SeR2 …(4) の構造からなる。該付加体の製造法としては、各成分の
等モル量の混合によっても原理的には可能であるが、反
応を完結し、高純度で再現性のある物性を有する付加体
を製造するには以下の工程が必要である。 【0024】R2ZnとR2Seとを、両者のうち低沸
点成分を概ね過剰に、好ましくは、低沸点成分対高沸点
成分の比率を1.05〜1.2当量比として混合し、両
者を低沸点成分の沸点以下で、概そ0℃〜40℃で10
分〜3時間、好ましくは10〜35℃で30分〜1時
間、充分に反応させる。 【0025】その後反応を完結するために、徐々に昇温
し、30〜80℃で10分〜2時間、好ましくは10〜
15℃/時間の割で昇温し、30〜70℃で30分〜1
時間熟成させる。 【0026】最後に過剰成分を蒸留により除去する。 【0027】付加体の生成は以下の事実により確認でき
る。 【0028】(1)両者の混合により発熱する。 【0029】(2)生成した付加体の蒸気圧−温度曲線
は、出発原料のR2Zn及びR2Seのいずれとも異な
る。 【0030】(3)原料の仕込み量、生成物及び溜出過
剰成分の量から、反応がR2ZnとR2Seの1:1で
生じている。 【0031】(4)NMRによる解析 以下実施例に従い、本発明に基づく有機亜鉛化合物、並
びにその製造法を説明する。 【0032】 【実施例】 (CH3)2Zn−Se(CH3)2 300ml丸底フラスコに(CH3)2Seを63.5
g(0.583モル)仕込み、撹はんしながら(CH
3)2Zn58.5g(0.613モル)を滴下ロート
により滴下して反応させた。反応は発熱反応で、発熱量
は大であった。 【0033】反応温度を8〜15℃に制御し、40分間
反応を行った。その後15℃/時間の割で徐々に昇温
し、45℃で1時間熟成した。その後蒸留により不要な
過剰分を溜出除去した。生成物は118gであった。 【0034】図1は得られた付加体の蒸気圧−温度特性
を示す。横軸1が温度、縦軸2が蒸気圧である。実線3
が付加体の、又、破線4、5が各々、原料であるSe
(CH3)2及び(CH3)2Znの蒸気圧特性を示
す。 【0035】又、表(2)に代表的温度に於ける蒸気圧
の値を示す。 【0036】 【表2】 【0037】図2にNMRによる生成物の(CH3)2
Znのメチル基のプロトンによるシグナルを示す。 【0038】生成物のケミカルシフトは、δ=−0.6
3ppmであり、(CH3)2Znの単一成分ではδ=
−0.67ppmである事から(CH3)2Zn−Se
(CH3)2付加体の生成を認めた。 【0039】又同様の工程を経る事により、表3に示す
付加体が得られた。 【0040】 【表3】【0041】又、得られた付加体の蒸気圧特性等物性値
の異なるロット間のバラ付きは検出以下であり、又、N
MRの結果からも原料の(CH3)2Znの単独成分の
存在は認められずきわめて高純度であった。 【0042】次に上記実施例により得られた付加体を用
いて、常圧の横型MO−CVD装置によりZnSe結晶
薄膜をGaAs単結晶基板上で形成したところ、いずれ
の付加体においても良質の単結晶薄膜が得られた。 【0043】(1)従来問題となっていた混合と同時に
生じる気相中でのR2ZnとH2Seとの前反応に伴う
白濁粒子の流れ、薄膜成長基板の上流での粒子の堆積は
認められず、本発明に基づく付加体及びH2SeをH2
ガスをキャリアーガスとして、反応管の直前で混合し、
導入口から200mm離れたGaAs単結晶基板上に表
面状態が滑らかな鏡面のZnSe単結晶薄膜が得られ
た。 【0044】(2)膜厚の分布は、ガスの流れ方向に並
べて置いた3枚の2インチGaAs基板上で±5%以内
であった。 【0045】(3)得られた単結晶薄膜の(400)
線ロッキングカーブの半値巾は約0.1度と極めて良い
結晶の配向性を有し、又高圧Hgランプの365nmの
光を照射する事により、室温で4610Å(オングスト
ローム)の鋭いバンド端近傍の発光が得られ、赤色領域
の発光は認められなかった。 【0046】(4)Zn原料であるR2Zn−SeR2
付加体の供給に対し、H2Seリッチな条件で、膜厚の
成長速度は、該付加体の供給律速であり、その温度依存
性は極めて小さかった。 【0047】(5)成長速度及び発光特性等結晶品質の
再現性は、MO−CVDのバッチ間、並びに付加体のバ
ッチ間に対して、非常に安定していた。 【0048】等の事実により、本発明に基づくR2Zn
−SeR2の付加体からなる有機亜鉛化合物が、MO−
CVD法に於いて有効な事が明きらかである。 【0049】 【発明の効果】以上述べた様に、本発明によれば、高
度で、蒸気圧等物性定数の再現性を有するR2ZnとR
2Seの付加体からなる有機亜鉛化合物を提供すること
ができる。 【0050】これにより、青色に限らず可視発光ダイオ
ード、半導体レーザ及び薄膜EL素子等の製造に対し本
発明の果す役割が絶大なものである事を確信する。
Description: BACKGROUND OF THE INVENTION The present invention relates to dialkylzinc (hereinafter abbreviated as R2Zn) and dialkylselenium (hereinafter R2Se).
It relates adduct or Ranaru organozinc compound with abbreviated). More specifically, an organozinc compound consisting of an adduct of R2Zn and R2Se, which is effective as a raw material for MO-CVD, which is a manufacturing technique for semiconductor thin films and semiconductor devices .
About the. SUMMARY OF THE INVENTION The present invention relates to a blue light emitting diode, zinc selenide (ZnSe) which is a material for a thin film EL element, and organozinc which is a raw material of an MO-CVD method effective for producing a mixed crystal thin film thereof. In the compound, by mixing R2Zn and R2Se and forming an adduct of R2Zn and R2Se with high purity and reproducibility by reaction and thermal formation, H2Se or H2S, etc., can be formed as compared with conventional R2Zn. ZnSe and its mixed crystal thin film of good quality, which have low reactivity to hydrides, are less likely to cause unnecessary pre-reactions occurring upstream of the substrate due to the mixing of the raw materials, which has been a problem in the conventional MO-CVD method, there is provided a raw material that allows the realization of high-performance semiconductor device. [0004] Conventionally, MO of ZnSe and its mixed crystal thin film
In the production by the CVD method, as a raw material, dimethylzinc: Zn (CH3) 2 and diethylzinc: Z are used as a zinc source.
It has been customary to use organozinc compounds such as n (C2H5) 2 and react with hydrogen sulfide: H2S and hydrogen selenide: H2Se. The chemical reaction when these raw materials are used is represented by the following formula. (CH3) 2Zn + H2Se → ZnSe-12CH4 ... (1) (C2H5) 2Zn + H2Se → ZnSe + 2C2H6 ... (2) However, these reactions are MO because R2Zn is active.
-When a raw material gas is introduced into the CVD reactor, the reaction proceeds in the gas phase even near room temperature at the same time as mixing with the hydride.
ZnSe fine particles were generated before the raw material reached the substrate surface, and the ZnSe fine particles adversely affected the growth process on the substrate surface for thin film growth, and the quality of the obtained crystals was not very high. Conventionally, as means for solving these problems, (1) R2Zn and H2Se are mixed immediately before the substrate (for example, J. Cryst Growth 59, P1.
982)), (2) increase the gas flow rate by reducing the pressure (eg, Jpn. J. Appl. Phys. 23, L
360 (1984)) and other equipment system measures, and
(3) As a selenium raw material, instead of H2Se, R2Se
Is used. (The 45th Annual Meeting of the Applied Physics Society of Japan P629
(1984), Lecture No. 12a-S-3) (4) R
2Zn and R2Se are mixed, and R2Zn-SeR2 in the gas phase is mixed.
After forming the adduct, it is mixed with H2Se and supplied to the reaction tube. (J. Cryst. Growth. 66 (198
4) Measures based on raw materials such as P231) were known. The MO-CVD method based on the above-mentioned prior art has the following problems in terms of manufacturing method and application to devices, and it has been desired to solve the problems. . For the prior arts (1) and (2), 1. Since they are mixed just before the substrate, it is difficult to obtain the uniformity of the thin film thickness, composition, dopant distribution and the like. [0009] 2. Large area and large number of substrates are difficult to process and mass productivity is poor. 3. The quality of the crystals is poor, and the emission and conduction properties cannot be controlled. For example, in the conventional manufacturing method, R2Zn
And H2Se were mixed and sprayed at a distance of 2 cm from the substrate, and the size of the substrate which could be processed by this was 20 mm in diameter at most. The obtained crystal has many defects, and its photoluminescence property is that it is used for blue light emitting diodes, in addition to blue light emission observed in high quality crystals, red light emission from a deep level is also observed. could not. As compared with the prior art (3), Although the deposition of ZnSe fine particles at room temperature due to mixing can be suppressed, conversely, since R2Se is less likely to decompose, a high temperature of about 450 ° C. is required to obtain a sufficient growth rate, and the obtained crystal has many defects. Have. 2. The growth of the film is reaction-limited at 500 ° C. or lower, and the variation greatly depends on the temperature distribution on the growth substrate. With respect to the prior art (4), The reaction of R2Zn and R2Se is incomplete in the mixing in the gas phase, and the degree of the reaction is influenced by the gas flow rate, the length of the pipe, the temperature, etc., and the unnecessary pre-reaction cannot be completely suppressed. I couldn't do that, and there was a lot of variation in the data. Especially,
When the gas in the reaction tube was analyzed by infrared absorption spectrum, it was reported that the adduct of R2Zn-SeR2 was not formed (J. Cryst. Growth. 68).
(1984), P656). The method of using the above R2Zn-SeR2 adduct as a Zn raw material is further improved by using an adduct obtained by mixing both of them in an equimolar amount from the beginning, but in this case as well, the following problems occur. Have. 1. The reactivity between R2Zn and R2Se is not very high, and simply mixing the two in equimolar amounts cannot complete the R2Zn + R2Se → R2Zn-SeR2 (3) reaction of the following formula, and the physical properties such as vapor pressure of the obtained product Also,
The variation was large and varied depending on the mixing conditions, history until use in the reaction and the like. 2. In addition, as a result, using the adduct obtained by mixing the equimolar amounts as a raw material, H2S
When ZnSe epitaxial growth was performed by reacting with e, the growth rate of the epitaxial thin film and the reproducibility of its physical properties were poor. The object of the present invention is to solve such problems.
As a Zn raw material, reactivity with H2Se or H2S is lower than that of R2Zn, unnecessary pre-reaction occurring upstream of the substrate at room temperature can be more completely suppressed, and at a relatively low temperature of 200 ° C. or higher. Reacts well, and the MO-CVD method makes Zn
By using it as a raw material, a good quality thin crystal film on a large area,
A high-purity organozinc compound that can be grown on a large number of sheets and has a device-level quality with no emission from deep defect levels and a ZnSe crystal and its mixed crystal thin film with good reproducibility.
The point is to provide things . The organozinc compound of the present invention is obtained by mixing dialkylzinc and dialkylselenium, and is represented by the general formula R 2 Zn-
It is characterized by being an adduct represented by SeR 2 (wherein R represents an alkyl group). Specifically, in order to ensure high-purity and reproducible physical properties of the adduct, R 2 Zn-obtained by removing unnecessary components after the reaction and aging by mixing excessively low-boiling components out of them It is an adduct of SeR 2 . As a highly pure and reproducible method for producing the same, the low-boiling components of the both are generally mixed in excess, and the reaction conditions vary depending on the combination of individual alkyl groups, but the reaction temperature is from 0 ° C to 40 ° C. After reacting at 0 ° C for 10 minutes to 3 hours, the temperature is gradually raised, and after aging at 30 ° C to 80 ° C for 10 minutes to 2 hours,
It comprises a step of distilling off excess components. R2Zn and R2Se applicable to the present invention
Are summarized in Table 1, but it is clear that this is not the case. [Table 1] The adduct of R2Zn and R2Se is obtained as a result of a one-to-one acid-base reaction between R2Zn as an electron acceptor and R2Se as an electron donor.
(4) The structure is represented by the formula R2Zn-SeR2 (4). The adduct can be produced in principle by mixing equimolar amounts of the respective components, but in order to complete the reaction and produce an adduct having high purity and reproducible physical properties, The following steps are required. R2Zn and R2Se are mixed in a low-boiling point component in an excessive amount, preferably in a low-boiling point component to high-boiling point component ratio of 1.05 to 1.2 equivalents, and both are mixed. Below the boiling point of the component, 10 at about 0 ℃ ~ 40 ℃
The reaction is sufficiently carried out for minutes to 3 hours, preferably 10 minutes to 35 ° C. for 30 minutes to 1 hour. After that, in order to complete the reaction, the temperature is gradually raised to 30 minutes to 80 ° C. for 10 minutes to 2 hours, preferably 10 minutes.
The temperature is raised at a rate of 15 ° C./hour and 30 minutes to 1 at 30 to 70 ° C.
Let it mature for hours. Finally, excess components are removed by distillation. The formation of the adduct can be confirmed by the following facts. (1) Heat is generated by mixing the two. (2) The vapor pressure-temperature curve of the produced adduct is different from that of the starting materials R2Zn and R2Se. (3) The reaction takes place at a ratio of R2Zn and R2Se of 1: 1 due to the charged amount of the raw materials, the amount of the product and the excess distillate component. (4) Analysis by NMR The organozinc compound according to the present invention and the method for producing the same will be described below with reference to Examples. EXAMPLES (CH3) 2Zn-Se (CH3) 2 63.5 of (CH3) 2Se was added to a 300 ml round bottom flask.
g (0.583 mol), while stirring (CH
3) 58.5 g (0.613 mol) of 2Zn was dropped and reacted with the dropping funnel. The reaction was exothermic and the exotherm was large. The reaction temperature was controlled at 8 to 15 ° C. and the reaction was carried out for 40 minutes. Thereafter, the temperature was gradually raised at a rate of 15 ° C./hour, and aging was carried out at 45 ° C. for 1 hour. After that, unnecessary excess was distilled off by distillation. The product was 118 g. FIG. 1 shows vapor pressure-temperature characteristics of the obtained adduct. The horizontal axis 1 is temperature and the vertical axis 2 is vapor pressure. Solid line 3
Is an adduct, and broken lines 4 and 5 are Se as raw materials, respectively.
3 shows vapor pressure characteristics of (CH3) 2 and (CH3) 2Zn. Table (2) shows vapor pressure values at typical temperatures. [Table 2] FIG. 2 shows the product (CH3) 2 by NMR.
The signal by the proton of the methyl group of Zn is shown. The chemical shift of the product is δ = -0.6.
3 ppm, and δ = for a single component of (CH3) 2Zn
Since it is -0.67 ppm, it is (CH3) 2Zn-Se.
Formation of (CH3) 2 adduct was observed. By following the same steps, the adducts shown in Table 3 were obtained. [Table 3] The variation between lots having different physical properties such as vapor pressure characteristics of the obtained adduct is less than the detection, and N
From the MR results, the presence of a single component of (CH3) 2Zn as a raw material was not recognized, and the purity was extremely high. Next, a ZnSe crystal thin film was formed on a GaAs single crystal substrate by using a lateral MO-CVD apparatus at atmospheric pressure using the adducts obtained in the above examples. A crystalline thin film was obtained. (1) The flow of white turbid particles due to the pre-reaction of R2Zn and H2Se in the gas phase, which occurred at the same time as the conventional mixing, and the deposition of particles upstream of the thin film growth substrate were not observed. The adduct according to the present invention and H2Se are converted into H2
Using the gas as a carrier gas, mixing just before the reaction tube,
A ZnSe single crystal thin film with a smooth mirror surface was obtained on the GaAs single crystal substrate 200 mm away from the inlet. (2) The film thickness distribution was within ± 5% on three 2-inch GaAs substrates arranged side by side in the gas flow direction. (3) (400) X of the obtained single crystal thin film
The half-width of the line rocking curve is about 0.1 degree and it has a very good crystal orientation, and by irradiating it with 365 nm light of a high pressure Hg lamp, it is 4610 Å (Angst
Light emission near the sharp band edge of Rohm) was obtained, and no light emission in the red region was observed. (4) Zn source R2Zn-SeR2
With respect to the supply of the adduct, under the H2Se rich condition, the growth rate of the film thickness was the rate-determining supply of the adduct, and its temperature dependence was extremely small. (5) The reproducibility of crystal quality such as growth rate and emission characteristics was very stable between MO-CVD batches and between adduct batches. Due to the facts described above, R2Zn according to the present invention
An organozinc compound consisting of an adduct of -SeR2 is MO-
It is clear that the CVD method is effective. [0049] As mentioned above, according to the present invention, according to the present invention, a high net <br/> degree, R2Zn and R having the reproducibility of the vapor pressure or the like physical constants
An organozinc compound consisting of an adduct of 2Se can be provided. From this, it is convinced that the role of the present invention is great for manufacturing not only blue light but also visible light emitting diodes, semiconductor lasers, thin film EL elements and the like.

【図面の簡単な説明】 【図1】有機亜鉛化合物の蒸気圧−温度特性図。 【図2】生成物のメチル基のプロトンによるシグナル
図。 【符号の説明】 1・・温度 2・・蒸気圧 3・・付加体 4・・Se(CH3)2 5・・(CH3)2Zn 6・・ケミカルシフト 7・・シグナル強度 8・・TMS 9・・生成物
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a vapor pressure-temperature characteristic diagram of an organozinc compound. FIG. 2 is a signal diagram of a methyl group proton of a product. [Explanation of symbols] 1 ... Temperature 2 ... Vapor pressure 3 ... Adduct 4 ... Se (CH3) 2 5 ... (CH3) 2Zn 6 ... Chemical shift 7 ... Signal strength 8 ... TMS 9 ...・ Product

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下林 隆 長野県諏訪市大和3丁目3番5号 株式 会社諏訪精工舎内 (72)発明者 水本 照之 長野県諏訪市大和3丁目3番5号 株式 会社諏訪精工舎内 (72)発明者 藤沢 正男 山口県防府市大字勝間3丁目1番 (72)発明者 市川 昭宏 山口県徳山市大字徳山287番155号 審査官 脇村 善一   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Takashi Shimobayashi               Shares 3-3-5 Yamato, Suwa City, Nagano Prefecture               Inside the company Suwa Seikosha (72) Inventor Teruyuki Mizumoto               Shares 3-3-5 Yamato, Suwa City, Nagano Prefecture               Inside the company Suwa Seikosha (72) Inventor Masao Fujisawa               3-1-1 Katsuma, Hofu-shi, Yamaguchi Prefecture (72) Inventor Akihiro Ichikawa               No.287-155 Tokuyama, Tokuyama City, Yamaguchi Prefecture                    Examiner Zenichi Wakimura

Claims (1)

(57)【特許請求の範囲】 1.ジアルキル亜鉛とジアルキルセレンとが混合されて
なり,それらの過剰成分が存在しない一般式R2Zn−
SeR2(式中,Rはアルキル基を示す)で示される付
加体であることを特徴とする有機亜鉛化合物。
(57) [Claims] Dialkyl zinc and dialkyl selenium are mixed
And the general formula R 2 Zn−
An organozinc compound characterized by being an adduct represented by SeR 2 (wherein R represents an alkyl group).
JP24310894A 1994-10-06 1994-10-06 Organozinc compound Expired - Lifetime JP2678736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24310894A JP2678736B2 (en) 1994-10-06 1994-10-06 Organozinc compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24310894A JP2678736B2 (en) 1994-10-06 1994-10-06 Organozinc compound

Publications (2)

Publication Number Publication Date
JPH08143574A JPH08143574A (en) 1996-06-04
JP2678736B2 true JP2678736B2 (en) 1997-11-17

Family

ID=17098920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24310894A Expired - Lifetime JP2678736B2 (en) 1994-10-06 1994-10-06 Organozinc compound

Country Status (1)

Country Link
JP (1) JP2678736B2 (en)

Also Published As

Publication number Publication date
JPH08143574A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
US7238596B2 (en) Method for preparing Ge1-x-ySnxEy (E=P, As, Sb) semiconductors and related Si-Ge-Sn-E and Si-Ge-E analogs
Jones Developments in metalorganic precursors for semiconductor growth from the vapour phase
WO1986002951A1 (en) Method of growing crystalline layers by vapour phase epitaxy
JP2678736B2 (en) Organozinc compound
JP2678737B2 (en) Organozinc compound
Shin et al. Trisdimethylaminoantimony: a new Sb source for low temperature epitaxial growth of InSb
JPH0742295B2 (en) Method for producing organozinc compound
US7026228B1 (en) Methods of fabricating devices and semiconductor layers comprising cadmium mercury telluride, mercury telluride, and cadmium telluride
US5882805A (en) Chemical vapor deposition of II/VI semiconductor material using triisopropylindium as a dopant
JPH0742296B2 (en) Method for producing organozinc compound
KR100385634B1 (en) Metal-organic chemical vapor deposition of zinc oxide thin films exhibiting lasers
JP2706337B2 (en) Method for manufacturing compound semiconductor thin film
Irvine et al. Epitaxial photochemical deposition of II–VI semiconductors
JPH0463040B2 (en)
IE61292B1 (en) Allyltellurides and their use in the mocvd growth of group II-VI epitaxial films
JP3557295B2 (en) Method for producing p-type II-VI compound semiconductor thin film
JPS6324683A (en) Manufacture of light-emitting element
JPS63220528A (en) Compound semiconductor film and manufacture thereof
JPS61224332A (en) Manufacture of semiconductor device
JPH06101432B2 (en) Semiconductor thin film manufacturing method
JPH07118453B2 (en) Manufacturing method of semiconductor superlattice
JPH10270470A (en) Method of forming ii-vi compound semiconductor and group vi material for vapor growth of ii-vi compound semiconductor
JPS6247174A (en) Manufacture of semiconductor light emitting device
JPH0645878B2 (en) Manufacturing method of zinc sulfide thin film
JPH1051031A (en) Formation of p-type ii-vi compound semiconductor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970603

EXPY Cancellation because of completion of term