JP2675003B2 - LSI packaging structure - Google Patents

LSI packaging structure

Info

Publication number
JP2675003B2
JP2675003B2 JP62151190A JP15119087A JP2675003B2 JP 2675003 B2 JP2675003 B2 JP 2675003B2 JP 62151190 A JP62151190 A JP 62151190A JP 15119087 A JP15119087 A JP 15119087A JP 2675003 B2 JP2675003 B2 JP 2675003B2
Authority
JP
Japan
Prior art keywords
chip
lsi
solder
resin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62151190A
Other languages
Japanese (ja)
Other versions
JPS63316447A (en
Inventor
文雄 中野
滋夫 天城
太佐男 曽我
寛治 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62151190A priority Critical patent/JP2675003B2/en
Publication of JPS63316447A publication Critical patent/JPS63316447A/en
Application granted granted Critical
Publication of JP2675003B2 publication Critical patent/JP2675003B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate

Landscapes

  • Wire Bonding (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はLSIを基板に搭載した実装構造体に係り、特
にLSIチップを半田バンプを介してセラミックなどの基
板に接続実装した後、樹脂によって補強する型のLSI実
装構造体に関する。 〔従来の技術〕 コンピュータ等LSIを多数用いた電子機器が広く用い
られる様になるに従って、ますます小型化、多機能化が
求められる傾向にある。この要求は、LSIの高集積化だ
けにとどまらず、LSIチップ同志あるいはLSIチップと他
の周辺位置との接続スペースの縮小にも及んでいる。 大形計算機の分野では、セラミック基板に、接続LSI
チップを搭載し、相互配線の長さを短縮しようという動
きが見られる(日経エレクトロニクス.1981年7月20日
号,p118〜114参照)。 一方、液晶表示装置など平面ディスプレイ装置におい
て、マトリクス駆動を行なう為、表示情報量の増大に伴
って、接続端子数が急激に増加し、接続部の信頼性確保
が困難になりつつあり、これら表示デバイスと、駆動用
LSIとを直接接続実装する技術の検討がなされている。
表示デバイスの基板であるガラス板上に回路を形成し、
LSIチップを搭載し、接続を行なうものである。このよ
うな技術は、液晶表示装置の他、エレクトロルミネツセ
ンス、エレクトロクロミツクなど平面ディスプレイ全般
にわたって求められているものである。 〔発明が解決しようとする課題〕 多数の集積回路が形成されたLSIチップを上記した基
板に実装する方法は、いくつか考えられる。 一つは、LSIチップをあらかじめ接続ピンを出して樹
脂モールドし、樹脂ピンと、基板上に設けられた配線と
をはんだ接続する方法である。この方法は、従来のLSI
実装技術の延長上にあり、技術的な難しさは少ない。し
かし、この方法では、樹脂モールドLSI素子のサイズ
が、チップサイズに比べて大きくなる為、スペースを大
幅に節減することは難しく、また、コストの面でもメリ
ットが出ない。 もう一つは、LSIチップを直接、基板に接続ししかる
後に、必要な封止処理を行なうもので、新しい試みに属
するものである。いわゆるフリップチップ接続である。
フリップチップ接続は、まだ、試行錯誤を繰り返してい
る段階である為、いくつかの方式が提案されている。い
ずれもチップと配線との接続の信頼性及び素子の耐環境
性を確保することを念頭に考えられているものである。 このフリップチップ接続によって実装された実装構造
が熱疲労によって破壊されるメカニズムとしては、実験
及び解析などにより、LSIチップと基板との熱膨張の違
いによる熱応力を半田バンプが受け、半田が繰返し歪み
によって破断し、接続部の断線に到ることは良く知られ
た事実である。 これを解決する最も単純な方法はチップと基板の熱膨
張係数を一致させることであるが、実用的に考えると汎
用の基板材料が使えない事になり実現性に乏しい。 両者の熱膨張差を容認した上で熱疲労寿命を向上させ
る方法として半田バンプを高くする技術が検討されてい
る。しかし、この技術は半田バンプの形成を非常に煩雑
なものとし、フリップチップ法特有の簡便なプロセスが
適用出来なくなる。 本発明は、このような従来技術を用いることなしに、
特に、構造が簡単で、既存のフリップチップ法特有の利
点を生かした汎用性の高いLSIチップ実装構造体におけ
る信頼性を向上させることを目的とする。 すなわち、本発明は、第1図に示す様な基本構造を有
し、基板との電気的な接続を行なうための半田バンプ
(3)を形成したLSIチップ(2)を基板(5)上にフ
リップチップ法で接続実装したあと、半田バンプ周辺の
間隙を樹脂(4)で充填して保護したLSI実装構造体に
おける信頼性を向上させるものであり、LSIチップを基
板にフリップチップ法で実装し、樹脂補強してなるLSI
実装構造体において、用いる樹脂の特性を最適化し、半
田接続部の熱疲労破断を防ぐだけでなく、LSIチップに
形成されている微細配線に加わる熱応力をも低減し、高
い信頼性を有するLSI実装構造体を提供することを目的
とする。 〔課題を解決するための手段〕 このような実装構造体において、半田のせん断疲労に
よる破断を抑えるためには、半田に加えられるせん断変
形量を小さくすれば良いことは明らかである。 せん断変形を受けなければ疲労することは無いからで
ある。発明者らは既にこの点に気付き、充填すべき樹脂
の物性を適正化することで信頼性が向上することを明ら
かにした。即ち、チップと基板とが作る間隔を、熱膨張
係数が半田よりも小さく、かつせん断弾性率が半田のそ
れよりも大きい硬質の絶縁性樹脂で充填するば良い事を
見い出した(特公平4−51057号公報を参照)。 しかし、上記した物性の樹脂を充填した場合、確かに
半田の熱疲労断線は回避できるものの、煩雑な電子回路
及び薄膜配線が形成されているLSIチップを搭載した例
で、薄膜導体の部分で断線するという現象が起ることが
ある。 これは、充填される樹脂とチップの熱膨張差が大きい
ため、チップ面に大きな熱応力が発生し、薄膜導体を破
断することが原因である。従って、熱疲労特性をよりい
っそう高める為には、半田の破断を回避するだけに留ま
らず、チップ面に生ずる熱応力をも小さく出来る実装構
造体とする必要がある。 本発明は、以上の現象を踏まえてなされたものであ
り、充填すべき樹脂の弾性係数をできるだけ小さくし、
熱膨張係数は接合に用いる半田のそれに近いものとすれ
ば良いことを見い出した結果生まれたものである。 すなわち、本発明は、半導体集積回路が形成されてな
るLSIチップと、該チップが搭載される基板と、該基板
と前記LSIチップとの対向する電極端子間に形成された
半田バンプと、該半田バンプ周囲の空隙部を充填するよ
うに形成されてなる樹脂層とを有するLSI実装構造体に
おいて、該樹脂の縦弾性係数が前記半田バンプを構成す
る低融点合金のそれよりも小さく、かつ熱膨張係数が該
低融点合金のそれにほぼ等しくすることで上記目的を達
成するものである。 なお、前記樹脂は、後述する第1表から第3表に示す
ように、縦弾性係数が常温付近で1000kgf/mm2以下、特
に望ましくは5〜1000kgf/mm2の範囲に有り、かつ、熱
膨張係数が常温付近で18〜46×10-6/℃の範囲にあるこ
とが好ましい。 縦弾性係数がこれ以上大きいとチップ面配線導体に生
ずる熱応力が大きくなり、熱疲労寿命が著しく低下する
場合が生ずるからであり、また縦弾性係数がこれより小
さいと半田接合部に集中する応力を樹脂層に分散する効
果が小さくなり、半田接合部に生ずる熱歪みが大きくな
って熱疲労寿命が低下するからである。 また、熱膨張係数がこの範囲を外れると樹脂と半田の
膨張収縮差が大きくなり、半田接合部に大きな引っ張り
応力が発生して、やはり半田の熱疲労断線が起こりやす
くなる。 本発明を実現するために用いられる樹脂としては未硬
化の状態で流動性が有りチップと基板の間隙にボイドな
しで充填可能であり、加熱などの手段により硬化して所
望の物性を示すものが用いられる。 このような材料はいくつか考えられるが、次のような
材料が好適である。 液状のエポキシ樹脂の主成分とし、それに縦弾性係数
低減のための液状ゴム成分及び熱膨張係数を調整するた
めの無機微粉末成分を配合し、硬化剤及び/又は硬化促
進剤などを混合した組成物が上げられる。また、より低
弾性係数の材料として、液状シリコーンコンパウンドが
あり、これに熱膨張係数及び縦弾性係数を好適な値に調
整するための無機微粉末成分を配合したものを用いるこ
とが出来る。 熱膨張係数を調整する為に用いられる無機微粉末成分
としては、石英、炭酸カルシウム、炭化珪素、窒化珪
素、アルミナなどそれ自体熱膨張係数が小さい材料が好
適である。 〔作用〕 本発明のLSI実装構造体は、配線層と半田の断線の原
因を熱膨張係数と縦弾性係数の両条件にあると突き止
め、最適な樹脂を用いるため、強度的に弱いLSIチップ
面に形成されたアルミ薄膜の多層配線が熱応力により早
期に破断することがなく、熱疲労特性が良好となる。 〔実施例〕 次に具体的実施例に基づいて本発明の実施態様及び効
果を詳しく説明する。 (実施例1〜9) [試料の作成方法] (1)試験用Siチップ 10ミリ角のSiチップを用い、Al導電体膜及びSiO2絶縁
膜を交互に形成して第4図あるいは第5図に示す層構成
の多層配線パターンを形成する。第4図の4層、第5図
は2層配線に相当する。 このような多層配線パターンを形成後、表面周辺部に
複数個の半田バンプ(17)を蒸着等により形成する。尚
隣接する半田バンプは予め表面に形成されたAl導体によ
って2個単位で接続されている。半田材料は95%Pb−5
%Sn組成の低融点合金である。この95%Pb−5%Sn組成
の低融点合金の熱膨張係数は約21.4×10-6/℃であり、
縦弾性係数は約550kgf/mm2である。 (2)実装用回路組成 焼成によって作成したアルミナ基板を用いた。25×25
mm,厚さ1.5mmであり、基板中央部に前記Siチップが実装
される。その為基板表面には同時焼成によって形成され
た複数個のW導体端子が、前記Siチップの半田バンプと
対応する位置に設けられている。上記端子はさらに半田
接続を可能にするためのAu薄膜が形成されている。さら
に上記端子は基板外周部に設けられた端子ともAu薄膜で
被覆されたW導体によって接続されている。 (3)樹脂材料 表1に示すエポキシ樹脂組成物及び表2に示すシリコ
ーン組成物を用いた。物性値が本発明の範囲を外れてい
る組成物は比較例として検討したものである。 (4)実装構造体の作製 第6図に示すように、予め蒸着法などにより接続端子
面に半田バンプが設けられたLSIチップを、その接続端
子面を上向きにして予熱板上に載置する。半田の組成は
Pb−5%Sn(融点約310℃)であり、半田には予めロジ
ン系フラシクスを塗布した。次にチップを配線基板上に
接続実装する工程を第6図を参照しながら説明する。 まず、予熱ヒータ(19)によりLSIチップ側から全体
を100℃で基板に予熱する。しかる後、赤外線ランプ(1
8)により半田バンプに赤外線を照射し、半田を溶融さ
せ接合する。直ちに赤外線ランプ及び予熱ヒータを切る
と共に、冷却管(20)に冷却水を流して冷却を行う。
尚、半田の溶融時間は約1秒である。 次に、樹脂補強の工程を第7図を用いて説明する。 こうして作製した実装構造体を溶剤で洗浄した後、チ
ップ周辺に前記した樹脂組成物(4)をマイクロディス
ペンサなどにより所定量載置する。表面張力を利用して
該樹脂をチップ(2)と基板(5)が作る間隙に完全に
充填する。充填の様子は超音波法によって検査される。 その後、表1あるいは表2に併記された条件で加熱硬
化される。 このようなプロセスを経て樹脂補強型の実装構造体
(1)が作られる。 比較例及び実施例について、初期チェックを行なった
後、上記した温度サイクル試験を実施し、基板周辺に設
けられた端子を介して実装構造体の接続状態を調べた。
温度サイクル条件は、−55〜150℃で、−55℃を30分、1
50℃を30分の1時間1サイクルの周期である。同一の条
件にある実装構造体を少なくとも10個試験し、5個の実
装構造体に断線が認められるまで試験を継続した。この
時のサイクル数をNf50とした。Nf50とはサンプル数に対
して50%のサンプルが破壊した時の寿命を示す。また、
破断した実装構造体については、断面研磨などの方法に
より断線部位の特定を行い、断線モードを判定した。 結果は表3に示す通りであり、実施例は総じてNf50が
大きく、信頼性の高い実装構造体となっていることがわ
かる。 これまでは、第1図に示す実装構造体を中心に説明し
てきたが、第2図あるいは第3図等も本発明でいうとこ
ろの実装構造体の変形例である。 半田材料としては上記のほかPbP60%Sn(融点191℃)
を用いても良く、相対的に低温で接合できるので、熱の
影響を避けたいLSIチップあるいは基板の場合に好適で
ある。 〔発明の効果〕 本発明によれば、LSIチップ面に形成される熱応力に
弱いアルミ薄膜の多層配線の破断を防止できるので、配
線層と半田の断線が少ないLSI実装構造体を得ることが
できる。
Description: TECHNICAL FIELD The present invention relates to a mounting structure in which an LSI is mounted on a substrate, and in particular, after mounting and mounting an LSI chip on a substrate such as ceramics via solder bumps, a resin The present invention relates to a reinforcement type LSI packaging structure. [Prior Art] With the widespread use of electronic devices including a large number of LSIs such as computers, there is a tendency for further miniaturization and multifunctionalization. This requirement extends not only to high integration of LSIs but also to reduction of connection space between LSI chips or LSI chips and other peripheral positions. In the field of large-scale computers, the connection LSI is mounted on a ceramic substrate.
There is a movement to reduce the length of interconnection by mounting a chip (see Nikkei Electronics, July 20, 1981, p118-114). On the other hand, in a flat panel display device such as a liquid crystal display device, since matrix driving is performed, the number of connection terminals rapidly increases as the amount of display information increases, and it is becoming difficult to secure reliability of the connection part. For device and drive
A technique for directly connecting and mounting the LSI is being studied.
Form a circuit on the glass plate that is the substrate of the display device,
It is equipped with an LSI chip and is connected. Such a technique is required for all flat displays such as electroluminescence and electrochromism in addition to liquid crystal display devices. [Problems to be Solved by the Invention] There are several possible methods for mounting an LSI chip having a large number of integrated circuits formed thereon. One is a method in which a connecting pin of the LSI chip is taken out in advance and resin-molded, and the resin pin and the wiring provided on the substrate are connected by soldering. This method is based on conventional LSI
It is an extension of the mounting technology and there are few technical difficulties. However, with this method, the size of the resin-molded LSI element is larger than the chip size, so it is difficult to significantly reduce the space, and there is no merit in terms of cost. The other is to join the LSI chip directly to the substrate and then to perform the necessary sealing process, which belongs to a new trial. This is so-called flip chip connection.
Since the flip-chip connection is still in the stage of trial and error, some methods have been proposed. In each case, the reliability of the connection between the chip and the wiring and the environmental resistance of the element are ensured. As a mechanism that the mounting structure mounted by this flip-chip connection is destroyed by thermal fatigue, the solder bump is subjected to thermal stress due to the difference in thermal expansion between the LSI chip and the substrate, and the solder is repeatedly strained by experiments and analysis. It is a well-known fact that a wire breaks at a connection portion and leads to disconnection of the connection portion. The simplest way to solve this is to match the thermal expansion coefficient of the chip with that of the substrate, but practically speaking, a general-purpose substrate material cannot be used, and it is not feasible. As a method for improving the thermal fatigue life while allowing the difference in thermal expansion between the two, a technique for raising the solder bump is being studied. However, this technique makes the formation of solder bumps very complicated, and the simple process unique to the flip chip method cannot be applied. The present invention, without using such a conventional technique,
In particular, it is an object of the present invention to improve the reliability of a highly versatile LSI chip mounting structure that has a simple structure and takes advantage of the existing flip chip method. That is, according to the present invention, an LSI chip (2) having a basic structure as shown in FIG. 1 and having solder bumps (3) for making electrical connection with a substrate is formed on a substrate (5). This is to improve the reliability of the LSI mounting structure in which the space around the solder bumps is filled with resin (4) and protected after connection and mounting by the flip chip method. The LSI chip is mounted on the substrate by the flip chip method. , LSI reinforced with resin
In the mounting structure, the characteristics of the resin used are optimized to prevent thermal fatigue breakage of the solder joints, and the thermal stress applied to the fine wiring formed on the LSI chip is also reduced, resulting in a highly reliable LSI. It is intended to provide a mounting structure. [Means for Solving the Problem] In such a mounting structure, it is clear that the amount of shear deformation applied to the solder can be reduced in order to suppress breakage of the solder due to shear fatigue. This is because no fatigue occurs unless it is subjected to shear deformation. The inventors have already noticed this point and have clarified that the reliability is improved by optimizing the physical properties of the resin to be filled. That is, it has been found that the gap between the chip and the substrate should be filled with a hard insulating resin having a thermal expansion coefficient smaller than that of the solder and a shear modulus higher than that of the solder (Japanese Patent Publication No. See 51057 publication). However, when the resin with the above physical properties is filled, although it is possible to avoid thermal fatigue disconnection of the solder, it is an example of mounting an LSI chip on which a complicated electronic circuit and thin film wiring are formed, and disconnection at the thin film conductor part The phenomenon of doing may occur. This is because a large difference in thermal expansion between the resin to be filled and the chip causes a large thermal stress on the chip surface and breaks the thin film conductor. Therefore, in order to further enhance the thermal fatigue characteristics, it is necessary to provide a mounting structure that can not only prevent the breakage of the solder but also reduce the thermal stress generated on the chip surface. The present invention has been made in view of the above phenomenon, the elastic modulus of the resin to be filled is made as small as possible,
It was found as a result of finding that the coefficient of thermal expansion should be close to that of the solder used for joining. That is, the present invention provides an LSI chip on which a semiconductor integrated circuit is formed, a substrate on which the chip is mounted, solder bumps formed between opposing electrode terminals of the substrate and the LSI chip, and the solder. In an LSI packaging structure having a resin layer formed so as to fill the voids around the bumps, the longitudinal elastic modulus of the resin is smaller than that of the low melting point alloy that constitutes the solder bumps, and the thermal expansion The above object is achieved by making the coefficient almost equal to that of the low melting point alloy. It should be noted that, as shown in Tables 1 to 3 described later, the resin has a longitudinal elastic modulus of 1000 kgf / mm 2 or less near room temperature, particularly preferably in the range of 5 to 1000 kgf / mm 2 , It is preferable that the expansion coefficient is in the range of 18 to 46 × 10 −6 / ° C. near room temperature. This is because if the longitudinal elastic modulus is larger than this, the thermal stress generated in the wiring conductor on the chip surface becomes large, and the thermal fatigue life may be significantly reduced.If the longitudinal elastic modulus is smaller than this, stress concentrated on the solder joints This is because the effect of dispersing C in the resin layer is reduced, the thermal strain generated in the solder joint is increased, and the thermal fatigue life is reduced. If the coefficient of thermal expansion deviates from this range, the difference in expansion and contraction between the resin and the solder becomes large, and a large tensile stress is generated at the solder joint portion, so that the thermal fatigue disconnection of the solder also easily occurs. The resin used to realize the present invention is a resin that has fluidity in an uncured state, can be filled in a gap between a chip and a substrate without voids, and has a desired physical property when cured by a means such as heating. Used. Although several such materials are possible, the following materials are preferable. A composition in which a liquid epoxy component as a main component, a liquid rubber component for reducing the longitudinal elastic modulus, and an inorganic fine powder component for adjusting the thermal expansion coefficient are mixed with a curing agent and / or a curing accelerator. Things are lifted. Further, as a material having a lower modulus of elasticity, there is a liquid silicone compound, and a material obtained by blending an inorganic fine powder component for adjusting the coefficient of thermal expansion and the modulus of longitudinal elasticity to suitable values can be used. As the inorganic fine powder component used to adjust the coefficient of thermal expansion, a material having a small coefficient of thermal expansion such as quartz, calcium carbonate, silicon carbide, silicon nitride, or alumina is suitable. [Operation] In the LSI mounting structure of the present invention, the cause of the disconnection of the wiring layer and the solder is found to be in both conditions of the thermal expansion coefficient and the longitudinal elastic coefficient, and since the optimum resin is used, the strength of the LSI chip surface is weak. The multi-layered wiring of the aluminum thin film formed in 1 is not broken early due to thermal stress, and the thermal fatigue property is improved. [Examples] Next, embodiments and effects of the present invention will be described in detail based on specific examples. (Examples 1 to 9) [Method of preparing sample] (1) Si chip for test Using a 10 mm square Si chip, Al conductor films and SiO 2 insulating films are alternately formed, and as shown in FIG. A multilayer wiring pattern having the layer structure shown in the figure is formed. The fourth layer of FIG. 4 and the fifth layer of FIG. After forming such a multilayer wiring pattern, a plurality of solder bumps (17) are formed on the peripheral portion of the surface by vapor deposition or the like. The adjacent solder bumps are connected in units of two by an Al conductor formed on the surface in advance. Solder material is 95% Pb-5
It is a low melting point alloy with a% Sn composition. The thermal expansion coefficient of this low melting point alloy of 95% Pb-5% Sn composition is about 21.4 × 10 -6 / ° C,
The longitudinal elastic modulus is about 550 kgf / mm 2 . (2) Circuit composition for mounting An alumina substrate prepared by firing was used. 25 x 25
The thickness is 1.5 mm and the thickness is 1.5 mm, and the Si chip is mounted on the central portion of the substrate. Therefore, a plurality of W conductor terminals formed by simultaneous firing are provided on the surface of the substrate at positions corresponding to the solder bumps of the Si chip. The terminals are further formed with an Au thin film for enabling solder connection. Further, the above terminals are also connected to the terminals provided on the outer peripheral portion of the substrate by a W conductor covered with an Au thin film. (3) Resin Material The epoxy resin composition shown in Table 1 and the silicone composition shown in Table 2 were used. Compositions having physical properties outside the range of the present invention were investigated as comparative examples. (4) Fabrication of mounting structure As shown in FIG. 6, an LSI chip having solder bumps provided on the connection terminal surface in advance by vapor deposition or the like is placed on a preheating plate with the connection terminal surface facing upward. . The composition of the solder
Pb-5% Sn (melting point: about 310 ° C.), and rosin flash was applied to the solder in advance. Next, a process of connecting and mounting the chip on the wiring board will be described with reference to FIG. First, the preheater (19) preheats the entire substrate from the LSI chip side to 100 ° C. Then, the infrared lamp (1
By irradiating the solder bumps with infrared rays according to 8), the solder is melted and bonded. Immediately, the infrared lamp and the preheater are turned off, and cooling water is caused to flow through the cooling pipe (20) for cooling.
The melting time of the solder is about 1 second. Next, the resin reinforcing step will be described with reference to FIG. After the mounting structure thus produced is washed with a solvent, the resin composition (4) described above is placed on the periphery of the chip by a predetermined amount using a microdispenser or the like. Using the surface tension, the resin is completely filled in the gap formed by the chip (2) and the substrate (5). The state of filling is inspected by an ultrasonic method. Then, it is heat-cured under the conditions shown in Table 1 or Table 2. The resin-reinforced mounting structure (1) is manufactured through such a process. After performing an initial check on the comparative example and the example, the above-mentioned temperature cycle test was performed to examine the connection state of the mounting structure through the terminals provided around the substrate.
The temperature cycle condition is -55 to 150 ° C.
The cycle is 50 ° C. for 1/30 hour. At least 10 mounting structures under the same conditions were tested, and the test was continued until disconnection was observed in 5 mounting structures. The number of cycles at this time was Nf50. Nf50 is the life when 50% of the samples are destroyed. Also,
For the fractured mounting structure, the disconnection site was specified by a method such as cross-section polishing, and the disconnection mode was determined. The results are as shown in Table 3, and it can be seen that the example has a large Nf50 in general and has a highly reliable mounting structure. Up to now, the description has been centered on the mounting structure shown in FIG. 1, but FIG. 2 or FIG. 3 is also a modification of the mounting structure referred to in the present invention. In addition to the above, PbP60% Sn (melting point 191 ℃)
May be used, and since it can be bonded at a relatively low temperature, it is suitable for an LSI chip or substrate where it is desired to avoid the influence of heat. [Effects of the Invention] According to the present invention, it is possible to prevent the multi-layered wiring of the aluminum thin film, which is formed on the LSI chip surface and is weak against thermal stress, from being broken, so that it is possible to obtain an LSI mounting structure with less disconnection between the wiring layer and the solder. it can.

【図面の簡単な説明】 第1図〜第3図は本発明になる半導体集積回路実装構造
体をモデル化した断面図、第4図は4層導体配線のLSI
チップの部分断面図、第5図は2層導体配線のLSIチッ
プの部分断面図、第6図は半田接合工程の説明図、第7
図は樹脂充填工程の説明図である。 〔符号の説明〕 1……実装構造体、 2……LSIチップ、 3……半田バンプ、 4……樹脂、 5……基板、 6……スルホール導体、 7……薄膜配線層、 8……薄膜内配線、 9……チップ、 10……第一層導体、 11……第2層導体、 12……第3層導体、 13……第4層導体、 14……第1層絶縁体、 15……第2層絶縁体、 16……第3層絶縁体。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 to 3 are sectional views modeling a semiconductor integrated circuit mounting structure according to the present invention, and FIG. 4 is a 4-layer conductor wiring LSI.
FIG. 5 is a partial cross-sectional view of the chip, FIG. 5 is a partial cross-sectional view of a two-layer conductor wiring LSI chip, and FIG.
The figure is an illustration of the resin filling step. [Explanation of reference numerals] 1 ... Mounting structure, 2 ... LSI chip, 3 ... solder bumps, 4 ... resin, 5 ... substrate, 6 ... through-hole conductor, 7 ... thin film wiring layer, 8 ... Wiring in thin film, 9 ... Chip, 10 ... First layer conductor, 11 ... Second layer conductor, 12 ... Third layer conductor, 13 ... Fourth layer conductor, 14 ... First layer insulator, 15 …… Second layer insulator, 16 …… Third layer insulator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 曽我 太佐男 日立市久慈町4026番地 株式会社日立製 作所日立研究所内 (72)発明者 大塚 寛治 小平市上水本町1450番地 株式会社日立 製作所コンピュータ事業本部デバイス開 発センタ内   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Taso Soga               4026 Kuji-cho, Hitachi City Hitachi, Ltd.               Inside the Hitachi Research Laboratory (72) Inventor Hiroharu Otsuka               1450 Kosui Honcho, Kodaira City Hitachi, Ltd.               Device opening of computer business headquarters               Within the originating center

Claims (1)

(57)【特許請求の範囲】 1.半導体集積回路が形成されてなるLSIチップと、該
チップが搭載される基板と、該基板と前記LSIチップと
の対向する電極端子間に形成された半田バンプと、該半
田バンプ周囲の空隙部を充填するように形成されてなる
樹脂層とを有するLSI実装構造体において、 該樹脂の縦弾性係数が前記半田バンプを構成する低融点
合金のそれよりも小さく、かつ熱膨張係数が該低融点合
金のそれにほぼ等しいことを特徴とするLSI実装構造
体。
(57) [Claims] An LSI chip on which a semiconductor integrated circuit is formed, a substrate on which the chip is mounted, solder bumps formed between electrode terminals of the substrate and the LSI chip facing each other, and a void portion around the solder bump are provided. In an LSI mounting structure having a resin layer formed so as to be filled, the longitudinal elastic modulus of the resin is smaller than that of the low melting point alloy that constitutes the solder bump, and the thermal expansion coefficient is the low melting point alloy. An LSI mounting structure characterized by being approximately equal to that of.
JP62151190A 1987-06-19 1987-06-19 LSI packaging structure Expired - Lifetime JP2675003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62151190A JP2675003B2 (en) 1987-06-19 1987-06-19 LSI packaging structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62151190A JP2675003B2 (en) 1987-06-19 1987-06-19 LSI packaging structure

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP7144794A Division JP2720831B2 (en) 1995-06-12 1995-06-12 LSI mounting structure and electronic device using the same
JP7144795A Division JPH088301A (en) 1995-06-12 1995-06-12 Lsi mounting resin for display element and mounting structure
JP8298415A Division JP2718412B2 (en) 1996-11-11 1996-11-11 Electronics

Publications (2)

Publication Number Publication Date
JPS63316447A JPS63316447A (en) 1988-12-23
JP2675003B2 true JP2675003B2 (en) 1997-11-12

Family

ID=15513241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62151190A Expired - Lifetime JP2675003B2 (en) 1987-06-19 1987-06-19 LSI packaging structure

Country Status (1)

Country Link
JP (1) JP2675003B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08510358A (en) * 1993-04-14 1996-10-29 アムコール・エレクトロニクス・インク Interconnection of integrated circuit chips and substrates
JP2720831B2 (en) * 1995-06-12 1998-03-04 株式会社日立製作所 LSI mounting structure and electronic device using the same
JPH088301A (en) * 1995-06-12 1996-01-12 Hitachi Ltd Lsi mounting resin for display element and mounting structure
US5795818A (en) * 1996-12-06 1998-08-18 Amkor Technology, Inc. Integrated circuit chip to substrate interconnection and method
JP3581086B2 (en) * 2000-09-07 2004-10-27 松下電器産業株式会社 Semiconductor device
JP4917979B2 (en) * 2007-07-09 2012-04-18 半導体特許株式会社 Semiconductor device and manufacturing method thereof
JP5365373B2 (en) * 2009-06-29 2013-12-11 富士通株式会社 Electronic component package and manufacturing method thereof

Also Published As

Publication number Publication date
JPS63316447A (en) 1988-12-23

Similar Documents

Publication Publication Date Title
US6130111A (en) Packaged semiconductor device and method of manufacturing the same
US7214561B2 (en) Packaging assembly and method of assembling the same
JP2848357B2 (en) Semiconductor device mounting method and its mounting structure
KR20030055130A (en) Semiconductor device and manufacturing method of the same
JPH08195414A (en) Semiconductor device
US20050266668A1 (en) Semiconductor device and method of manufacturing the same
US6605491B1 (en) Method for bonding IC chips to substrates with non-conductive adhesive
JP2675003B2 (en) LSI packaging structure
JPH08330506A (en) Circuit board structure
US20010053564A1 (en) Method of manufacturing semiconductor device
JP2720831B2 (en) LSI mounting structure and electronic device using the same
JPH088301A (en) Lsi mounting resin for display element and mounting structure
JPH1187424A (en) Semiconductor device and production thereof
US20050151270A1 (en) Materials for electronic devices
JP2718412B2 (en) Electronics
JP3566680B2 (en) Method for manufacturing semiconductor device
JPH0639563B2 (en) Manufacturing method of semiconductor device
JPH06333985A (en) Flip chip junction method
JP3422243B2 (en) Resin film
JP2000164610A (en) Semiconductor device and its manufacture
JP2863426B2 (en) Semiconductor device mounting structure and mounting method thereof
JPH08340060A (en) Package for semiconductor and semiconductor module
JP2001185642A (en) Package substrate for mounting semiconductor
JPH0283963A (en) Organic and inorganic composite multilayer board
JP2005050878A (en) Laminated wiring board, electric apparatus, and its mounting structure

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term