JP2674291B2 - Method of manufacturing heat pipe heat exchanger - Google Patents

Method of manufacturing heat pipe heat exchanger

Info

Publication number
JP2674291B2
JP2674291B2 JP2243273A JP24327390A JP2674291B2 JP 2674291 B2 JP2674291 B2 JP 2674291B2 JP 2243273 A JP2243273 A JP 2243273A JP 24327390 A JP24327390 A JP 24327390A JP 2674291 B2 JP2674291 B2 JP 2674291B2
Authority
JP
Japan
Prior art keywords
heat
heat pipe
transfer member
heat transfer
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2243273A
Other languages
Japanese (ja)
Other versions
JPH04124591A (en
Inventor
有孝 辰己
中島  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2243273A priority Critical patent/JP2674291B2/en
Publication of JPH04124591A publication Critical patent/JPH04124591A/en
Application granted granted Critical
Publication of JP2674291B2 publication Critical patent/JP2674291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0283Means for filling or sealing heat pipes

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ヒートパイプの周囲に伝熱部材を配置して
なるヒートパイプ熱交換器の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for manufacturing a heat pipe heat exchanger in which a heat transfer member is arranged around a heat pipe.

〔従来の技術〕[Conventional technology]

ヒートパイプは密閉容器内に作動液を封入するという
比較的簡単な構造を有し、小さい温度差で大量の熱移動
を行えるため、熱交換器として近年種々の分野で利用さ
れている。このようなヒートパイプを利用した熱交換器
は、一般にヒートパイプの外周に放熱フィンが形成され
た伝熱部材を配置している。
The heat pipe has a relatively simple structure in which a working fluid is sealed in a closed container and can transfer a large amount of heat with a small temperature difference, and thus has been used in various fields as a heat exchanger in various fields in recent years. In a heat exchanger using such a heat pipe, generally, a heat transfer member having heat radiation fins is arranged on the outer periphery of the heat pipe.

このようなヒートパイプ熱交換器においては、ヒート
パイプと伝熱部材との間の熱抵抗値を低減させる手段と
して、従来より以下のような種々の方法が採られてい
る。
In such a heat pipe heat exchanger, the following various methods have been conventionally adopted as means for reducing the thermal resistance value between the heat pipe and the heat transfer member.

伝熱部材にヒートパイプの外径より若干径の小さな
挿入孔を形成し、この挿入孔にヒートパイプを圧入して
ヒートパイプと伝熱部材とを密着させる(圧入法)。
An insertion hole having a diameter slightly smaller than the outer diameter of the heat pipe is formed in the heat transfer member, and the heat pipe is press-fitted into this insertion hole to bring the heat pipe and the heat transfer member into close contact with each other (press-fitting method).

伝熱部材にヒートパイプ用密閉容器の外径より若干
径の大きな挿入孔を形成し、この挿入孔に当該容器を挿
入し、マンドレルや液圧によって機械的に容器を膨張さ
せて、当該容器と伝熱部材とを密着させた後、当該容器
にヒートパイプの加工を施して作動液を封入する(拡管
法)。
An insertion hole having a diameter slightly larger than the outer diameter of the heat pipe closed container is formed in the heat transfer member, the container is inserted into the insertion hole, and the container is mechanically expanded by a mandrel or hydraulic pressure, After the heat transfer member is brought into close contact with the heat transfer member, the container is processed into a heat pipe to seal the working fluid (tube expansion method).

伝熱部材にヒートパイプの外径より若干径の大きな
挿入孔を形成し、この挿入孔に当該ヒートパイプを挿入
し、両者の隙間に高熱伝導性樹脂や半田を充填する(充
填法)。
An insertion hole having a diameter slightly larger than the outer diameter of the heat pipe is formed in the heat transfer member, the heat pipe is inserted into the insertion hole, and a gap between the two is filled with a high thermal conductive resin or solder (filling method).

伝熱部材にヒートパイプの外径より若干径の大きな
挿入孔を形成し、この挿入孔に当該ヒートパイプを挿入
した後、これらを加熱し、密閉容器内の作動液の蒸気圧
によって伝熱部材とヒートパイプとを密着させる(加熱
拡管法)。なお、このように製造されたヒートパイプを
モータのシャフトに適用した例が特開昭59−110432号公
報に示されている。
An insertion hole having a diameter slightly larger than the outer diameter of the heat pipe is formed in the heat transfer member, the heat pipe is inserted into the insertion hole, then these are heated, and the heat transfer member is heated by the vapor pressure of the working liquid in the closed container. And close contact with the heat pipe (heating pipe expansion method). An example in which the heat pipe manufactured as described above is applied to a shaft of a motor is shown in Japanese Patent Laid-Open No. 59-110432.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上記のような従来のヒートパイプ熱交
換器では以下のような不都合がある。
However, the conventional heat pipe heat exchanger as described above has the following disadvantages.

(圧入法)においては、ヒートパイプの圧入作業自
体が煩雑、且つ困難である。
In the (press-fitting method), the work of press-fitting the heat pipe itself is complicated and difficult.

(拡管法)においては、拡管作業時の潤滑剤の注
入,除去や、拡管作業後の作動液の封入等に多くの手間
がかかり作業効率が悪い。
In the (tube expansion method), it takes a lot of time to inject and remove the lubricant during the tube expansion work and to fill the working fluid after the tube expansion work, resulting in poor work efficiency.

(充填法)においては、充填作業に大きなコストが
かかる。また、充填剤の熱伝導率は一般に伝熱部材やヒ
ートパイプ用密閉容器に比べて低いことと、充填剤の充
填によりヒートパイプと伝熱部材間に境界面が増加し、
熱抵抗値の低減の妨げになる。
In the (filling method), the filling operation requires a large cost. Further, the thermal conductivity of the filler is generally lower than that of the heat transfer member or the closed container for the heat pipe, and the interface between the heat pipe and the heat transfer member increases due to the filling of the filler,
This hinders the reduction of the thermal resistance value.

(加熱拡管法)は、作業性の面では優れているが、
一般に伝熱部材の熱膨張率がヒートパイプ用密閉容器よ
り小さいため、加熱時に両者が密着していても常温状態
になると、両者の境界部にギャップが形成されてしま
う。
(Heating expansion method) is excellent in workability,
In general, the coefficient of thermal expansion of the heat transfer member is smaller than that of the heat pipe closed container, so that a gap is formed at the boundary between the two when they are in close contact with each other at the time of heating.

〔発明の目的〕[Object of the invention]

本発明は、上記各問題点を解決するためになされたも
のであり、熱抵抗値の低減を良好に達成できる且つ、作
業性に優れたヒートパイプ熱交換器の製造方法を提供す
ることを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method of manufacturing a heat pipe heat exchanger that can achieve a good reduction in thermal resistance and is excellent in workability. And

〔課題を解決するための手段〕[Means for solving the problem]

本発明は上記目的を達成するために、本発明に係るヒ
ートパテプ熱交換器の製造方法は、第1の熱膨脹率を有
する金属の容器内に後述する加熱温度において液相が残
存しない量の作動液を封入して所定の外径を有するヒー
トパイプを加工し;前記第1の熱膨張率より大なる熱膨
張率を有する金属によって前記ヒートパイプの外径より
所定の寸法だけ大きい内径の挿入孔を有する伝熱部材を
加工し;前記伝熱部材の前記挿入孔に前記ヒートパイプ
を挿入し;全体を前記作動液の蒸気圧が前記ヒートパイ
プ容器の破裂強度と等しくなる値以下の温度で加熱して
前記ヒートパイプ容器を塑性変形させ、この塑性変形に
よって前記ヒートパイプを前記伝熱部材の前記挿入孔の
内壁に密着させるという各工程を有する。
In order to achieve the above-mentioned object, the present invention provides a method for manufacturing a heat-type heat exchanger according to the present invention, in which the amount of working fluid is such that a liquid phase does not remain in a metal container having a first coefficient of thermal expansion at a heating temperature described later. And heat-processing a heat pipe having a predetermined outer diameter; an insertion hole having an inner diameter larger than the outer diameter of the heat pipe by a predetermined dimension is formed by a metal having a coefficient of thermal expansion larger than the first coefficient of thermal expansion. Processing the heat transfer member having; inserting the heat pipe into the insertion hole of the heat transfer member; heating the whole at a temperature below a value at which the vapor pressure of the working fluid becomes equal to the burst strength of the heat pipe container. And then plastically deform the heat pipe container, and by this plastic deformation, the heat pipe is brought into close contact with the inner wall of the insertion hole of the heat transfer member.

〔作用〕[Action]

本発明は以上のように、密閉容器を塑性変形させて伝
熱部材に密着させているため、極めて容易な作業によっ
てヒートパイプと伝熱部材との密着を図れる。また、伝
熱部材を密閉容器より熱膨張率の高い材質によって成形
しているため、製造された熱交換器を冷却した場合に
も、伝熱部材の方が密閉容器より大きく収縮し、ヒート
パイプの外壁と伝熱部材の内壁との密着状態が永久的に
保証される。
As described above, according to the present invention, since the closed container is plastically deformed and brought into close contact with the heat transfer member, the heat pipe and the heat transfer member can be brought into close contact with each other by an extremely easy operation. Further, since the heat transfer member is formed of a material having a higher coefficient of thermal expansion than the closed container, even when the manufactured heat exchanger is cooled, the heat transfer member shrinks more than the closed container, resulting in a heat pipe. The close contact between the outer wall of the heat transfer member and the inner wall of the heat transfer member is permanently guaranteed.

〔実施例〕〔Example〕

以下、本発明の一実施例を添付図面を参照しつつ詳細
に説明する。
Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

第1図(A)には、最終加工が終了する前のヒートパ
イプ熱交換器の構成が示されている。このヒートパイプ
熱交換器は、ヒートパイプ10と、このヒートパイプ10を
包囲する伝熱部材12とから構成されている。
FIG. 1 (A) shows the configuration of the heat pipe heat exchanger before the final processing is completed. The heat pipe heat exchanger includes a heat pipe 10 and a heat transfer member 12 that surrounds the heat pipe 10.

ヒートパイプ10は、円筒状の密閉容器14と、この密閉
容器14内に封入された所定量の作動液16とから構成され
る。密閉容器14の材質としては銅、作動液16としては水
を用いる。なお、作動液16の量は、後述する温度Tにお
いて全て気化する量とする。
The heat pipe 10 is composed of a cylindrical hermetic container 14 and a predetermined amount of hydraulic fluid 16 enclosed in the hermetic container 14. Copper is used as the material of the closed container 14, and water is used as the hydraulic fluid 16. In addition, the amount of the hydraulic fluid 16 is an amount that is completely vaporized at a temperature T described later.

密閉容器14と作動液16の組み合わせとしては、上記の
ような銅−水の他に、銅−フロン,アルミ−フロン,ア
ルミ−アンモニア,ステンレス鋼−フロン,ステンレス
鋼−アンモニア等が考えられるが、容器の強度と作動液
の高温性質等を考慮すると、上記銅と水の組み合わせ以
外では、アルミとアンモニアの組み合わせが実用的であ
る。
As a combination of the closed container 14 and the hydraulic fluid 16, in addition to copper-water as described above, copper-CFC, aluminum-CFC, aluminum-ammonia, stainless steel-CFC, stainless steel-Ammonia, etc. are conceivable. Considering the strength of the container and the high temperature property of the hydraulic fluid, the combination of aluminum and ammonia is practical except the combination of copper and water.

伝熱部材12は、上記密閉容器14より熱膨張率の高い材
質により成形される。例えば、密閉容器14の材質として
銅を用いた場合には、アルミニウム,,銅合金,合金鋼,
マグネシウム,鉛,亜鉛,錫や、これらの合金を用い
る。また、密閉容器14の素材をアルミニウムにした場合
には、マグネシウム,亜鉛,鉛や、これらの合金を用い
る。
The heat transfer member 12 is formed of a material having a higher thermal expansion coefficient than the closed container 14. For example, when copper is used as the material of the closed container 14, aluminum, copper alloy, alloy steel,
Magnesium, lead, zinc, tin, or alloys of these are used. If aluminum is used as the material of the closed container 14, magnesium, zinc, lead, or an alloy thereof is used.

伝熱部材12の外周下部には吸熱用のフィン12a、上部
には放熱用のフィン12bがそれぞれ一体成形され、吸熱
用のフィン12aから吸収された熱をヒートパイプ10に伝
え、この熱を放熱用のフィン12bから外部に放出するよ
うになっている。
A heat absorbing fin 12a is integrally formed on the lower peripheral portion of the heat transfer member 12, and a heat radiating fin 12b is integrally molded on the upper portion, and the heat absorbed from the heat absorbing fin 12a is transmitted to the heat pipe 10, and this heat is radiated. It is designed to be discharged to the outside from the fins 12b for use.

伝熱部材12の中央には、ヒートパイプ10を挿入するた
めの挿入孔18が形成されている。この挿入孔18は、密閉
容器14の外径より若干大きな内径を有する。
An insertion hole 18 for inserting the heat pipe 10 is formed in the center of the heat transfer member 12. The insertion hole 18 has an inner diameter slightly larger than the outer diameter of the closed container 14.

ヒートパイプ10を伝熱部材12の挿入孔18内に挿入した
後、熱交換器全体を温度Tで加熱し、第1図(B)のよ
うに作動液16の蒸気圧によって密閉容器14を拡管し、そ
の際の塑性変形によって当該容器14を挿入孔18の内壁に
密着させる。
After inserting the heat pipe 10 into the insertion hole 18 of the heat transfer member 12, the entire heat exchanger is heated at the temperature T, and the closed container 14 is expanded by the vapor pressure of the hydraulic fluid 16 as shown in FIG. 1 (B). Then, the container 14 is brought into close contact with the inner wall of the insertion hole 18 by plastic deformation at that time.

その後、ヒートパイプ熱交換器全体を冷却する。この
冷却により、熱交換器が全体に収縮するが、密閉容器14
に比べて伝熱部材12の方が熱膨張率が高いため、密閉容
器14より伝熱部材12の方が大きく収縮し、密閉容器14と
伝熱部材12との密着状態が維持される。
Then, the entire heat pipe heat exchanger is cooled. Due to this cooling, the heat exchanger contracts as a whole, but the closed container 14
Since the heat transfer member 12 has a higher coefficient of thermal expansion than the heat transfer member 12, the heat transfer member 12 contracts more than the closed container 14, and the close contact state between the closed container 14 and the heat transfer member 12 is maintained.

次に、上記実施例におけるヒートパイプ熱交換器の加
熱温度T,作動液16の封入量Xについて考察する。
Next, the heating temperature T of the heat pipe heat exchanger and the enclosed amount X of the working fluid 16 in the above embodiment will be considered.

加熱温度Tは、密閉容器14内の作動液16の蒸気圧が密
閉容器14の破裂圧を越えない温度とする。例えば、銅製
の密閉容器14の外径を9.52mm,肉厚を0.34mm,有効長さを
1000mmとした場合には、温度T=299℃とする。これ
は、第2図に示されているように、加熱温度Tに対する
作動液16である水の蒸気圧P1(実線)と、加熱温度Tに
対する銅管の破裂圧P2(破線)との関係より、両曲線
P1,P2が交差する点(限界温度304℃)より低い値に加熱
温度Tを設定し、密閉容器14の破裂を防止するためであ
る。
The heating temperature T is a temperature at which the vapor pressure of the hydraulic fluid 16 in the closed container 14 does not exceed the burst pressure of the closed container 14. For example, the outer diameter of the copper closed container 14 is 9.52 mm, the wall thickness is 0.34 mm, the effective length is
When it is 1000 mm, the temperature T is 299 ° C. This is because, as shown in FIG. 2, the vapor pressure P 1 (solid line) of the working fluid 16 with respect to the heating temperature T and the burst pressure P 2 (broken line) of the copper tube with respect to the heating temperature T Both curves from the relationship
This is because the heating temperature T is set to a value lower than the point where P 1 and P 2 intersect (the limit temperature 304 ° C.) to prevent the closed container 14 from bursting.

このように設定された加熱温度Tに対し、作動液16の
封入量Xを求めると、作動液16の量Xは3.0g以下とな
る。これは、限界温度304℃の時に飽和液が残存しない
量であり、密閉容器14の内容積(61.4cm3)を飽和蒸気
の比容積(20.3cm3)で除することによって求められ
る。
When the enclosed amount X of the hydraulic fluid 16 is calculated for the heating temperature T set in this way, the amount X of the hydraulic fluid 16 becomes 3.0 g or less. This is the amount that a saturated solution does not remain when the limit temperature 304 ° C., the internal volume of the sealed container 14 (61.4cm 3) is determined by dividing the specific volume of the saturated vapor (20.3 cm 3).

仮に、作動液16の封入量Xを2.8gとすると、加熱温度
T≒299℃において飽和液が存在しなくなり、加熱温度
T=299℃〜310℃の間での蒸気圧は1℃に対し1/571kgf
/cm2と非常に小さな値となるため、加熱温度Tの調整が
容易になる。また、2.8gという作動液16の量は、密封容
器14の内容積R(61.4cm3)の約4.6%に相当し、ヒート
パイプのボトムヒートモードでの使用において十分な量
となる。
Supposing that the amount X of the working fluid 16 enclosed is 2.8 g, the saturated liquid does not exist at the heating temperature T≈299 ° C., and the vapor pressure between the heating temperature T = 299 ° C. and 310 ° C. is 1 per 1 ° C. / 571kgf
Since the value is as very small as / cm 2 , the heating temperature T can be easily adjusted. Further, the amount of the working fluid 16 of 2.8 g corresponds to about 4.6% of the internal volume R (61.4 cm 3 ) of the sealed container 14, which is a sufficient amount for use in the bottom heat mode of the heat pipe.

一方、作動液16の量Xを3.0g以上にした場合には、温
度上昇に伴う密閉容器14の外径の変化量は、第2図の曲
線l(一点鎖線)に示されているように、極めて急激に
変化し、当該密閉容器14が破壊し易くなるため、実用化
は非常に困難となる。これは、ヒートパイプの作動液を
増加させた場合、限界温度(304℃)付近で加熱温度を
上昇させるとヒートパイプの外径が限界温度を示す直線
Lに沿って急激に大になるという事実によるものであ
る。
On the other hand, when the amount X of the hydraulic fluid 16 is set to 3.0 g or more, the amount of change in the outer diameter of the closed container 14 due to the temperature rise is as shown by the curve 1 (dashed line) in FIG. Since the closed container 14 changes extremely rapidly and is easily broken, it is very difficult to put it into practical use. This is due to the fact that when the working fluid of the heat pipe is increased, if the heating temperature is raised near the limit temperature (304 ° C), the outer diameter of the heat pipe rapidly increases along the straight line L indicating the limit temperature. It is due to.

以上のように製造されたヒートパイプ熱交換器の使用
に際しては、被冷却体の熱が伝熱部材12の吸熱フィン12
aを介してヒートパイプ10に与えられる。この熱によ
り、ヒートパイプ10内の作動液16が蒸発し、ヒートパイ
プ10の他端(上部)に熱伝達を行う。伝達された熱は伝
熱部材12の放熱フィン12bから放出され、蒸発気体の凝
縮が行われ、凝縮された作動液16がヒートパイプ10の受
熱部(下部)に戻される。このような動作の繰り返しに
より、ヒートパイプ10を介して被冷却体と放熱雰囲気
(大気,水等の冷却媒体)間で熱交換が行われる。
When using the heat pipe heat exchanger manufactured as described above, the heat of the object to be cooled is absorbed by the heat absorbing fins 12 of the heat transfer member 12.
It is given to the heat pipe 10 via a. This heat causes the working fluid 16 in the heat pipe 10 to evaporate and transfer heat to the other end (upper part) of the heat pipe 10. The transferred heat is released from the radiating fins 12b of the heat transfer member 12, the evaporated gas is condensed, and the condensed working fluid 16 is returned to the heat receiving portion (lower part) of the heat pipe 10. By repeating such operations, heat is exchanged between the object to be cooled and the heat radiation atmosphere (cooling medium such as air and water) via the heat pipe 10.

この際、ヒートパイプ10と伝熱部材12とが密着してい
るため、両者の境界部分においての熱損失はほとんどな
い。その密着度は、加工時の温度との温度差が大になれ
ばなるほど大になる。
At this time, since the heat pipe 10 and the heat transfer member 12 are in close contact with each other, there is almost no heat loss at the boundary between them. The degree of adhesion increases as the temperature difference from the processing temperature increases.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明においては、ヒートパイプ
の密閉容器より熱膨張率の高い伝熱部材を用い、密閉容
器内の作動液の蒸気圧によって密閉容器を拡管し、その
時の塑性変形によって当該密閉容器と伝熱部材とを密着
させているため、作業性が向上し、且つ熱抵抗値を良好
に低減させることができるという効果がある。
As described above, in the present invention, a heat transfer member having a higher coefficient of thermal expansion than the closed container of the heat pipe is used, the closed container is expanded by the vapor pressure of the working liquid in the closed container, and the sealed by plastic deformation at that time. Since the container and the heat transfer member are in close contact with each other, the workability is improved, and the thermal resistance value can be favorably reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図(A),(B)は、本発明の一実施例に係るヒー
トパイプ熱交換器の構成及び製造工程を示す断面図であ
る。第2図は、実施例の作用を説明するためのグラフで
ある。 符号の説明 10……ヒートパイプ 12……伝熱部材 12a……吸熱フィン 12b……放熱フィン 14……密閉容器 16……作動液 18……挿入孔
1 (A) and 1 (B) are cross-sectional views showing a configuration and a manufacturing process of a heat pipe heat exchanger according to an embodiment of the present invention. FIG. 2 is a graph for explaining the operation of the embodiment. Explanation of code 10 …… Heat pipe 12 …… Heat transfer member 12a …… Heat absorption fin 12b …… Heat radiation fin 14 …… Closed container 16 …… Working fluid 18 …… Insertion hole

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1の熱膨脹率を有する金属の容器内に後
述する加熱温度において液相が残存しない量の作動液を
封入して所定の外径を有するヒートパイプを加工し、 前記第1の熱膨張率より大なる熱膨張率を有する金属に
よって前記ヒートパイプの外径より所定の寸法だけ大き
い内径の挿入孔を有する伝熱部材を加工し、 前記伝熱部材の前記挿入孔に前記ヒートパイプを挿入
し、 全体を前記作動液の蒸気圧が前記ヒートパイプ容器の破
裂強度と等しくなる値以下の温度で加熱して前記ヒート
パイプ容器を塑性変形させ、この塑性変形によって前記
ヒートパイプを前記伝熱部材の内壁に密着させることを
特徴とするヒートパイプ熱交換器の製造方法。
1. A heat pipe having a predetermined outer diameter is processed by enclosing a working fluid in an amount such that a liquid phase does not remain at a heating temperature, which will be described later, in a metal container having a first coefficient of thermal expansion. A heat transfer member having an insertion hole having an inner diameter larger than the outer diameter of the heat pipe by a predetermined dimension is processed with a metal having a coefficient of thermal expansion higher than that of the heat pipe, and the heat is applied to the insertion hole of the heat transfer member. Insert a pipe, and heat the whole at a temperature below the value at which the vapor pressure of the working fluid becomes equal to the burst strength of the heat pipe container to plastically deform the heat pipe container, and by this plastic deformation, the heat pipe is A method for manufacturing a heat pipe heat exchanger, which comprises closely contacting an inner wall of a heat transfer member.
JP2243273A 1990-09-13 1990-09-13 Method of manufacturing heat pipe heat exchanger Expired - Lifetime JP2674291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2243273A JP2674291B2 (en) 1990-09-13 1990-09-13 Method of manufacturing heat pipe heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2243273A JP2674291B2 (en) 1990-09-13 1990-09-13 Method of manufacturing heat pipe heat exchanger

Publications (2)

Publication Number Publication Date
JPH04124591A JPH04124591A (en) 1992-04-24
JP2674291B2 true JP2674291B2 (en) 1997-11-12

Family

ID=17101416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2243273A Expired - Lifetime JP2674291B2 (en) 1990-09-13 1990-09-13 Method of manufacturing heat pipe heat exchanger

Country Status (1)

Country Link
JP (1) JP2674291B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185322A (en) * 2007-01-31 2008-08-14 Furukawa Electric Co Ltd:The Ignition structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198280A (en) * 1993-12-28 1995-08-01 Furukawa Electric Co Ltd:The Manufacture of heat pipe
US7621318B2 (en) 2006-07-10 2009-11-24 Exxonmobile Research And Engineering Co. Heat pipe structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110432A (en) * 1982-12-16 1984-06-26 Showa Alum Corp Manufacture of heat pipe shaft or the like

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185322A (en) * 2007-01-31 2008-08-14 Furukawa Electric Co Ltd:The Ignition structure

Also Published As

Publication number Publication date
JPH04124591A (en) 1992-04-24

Similar Documents

Publication Publication Date Title
US7743502B2 (en) Chemically compatible, lightweight heat pipe
US20150013928A1 (en) Method for manufacturing heat-dissipating module
JP2674291B2 (en) Method of manufacturing heat pipe heat exchanger
JP2005303248A (en) Radiation module
JP2569452B2 (en) Heat exchanger manufacturing method
JP3438944B2 (en) Heat pipe type heat radiating unit and manufacturing method thereof
JP2541056B2 (en) Method of manufacturing heat pipe type heat exchanger
JP2008196787A (en) Heat pipe
JP2714883B2 (en) Micro heat pipe
JPS62284193A (en) Heat transfer pipe
JPH04332390A (en) Heat pipe type heat exchanger and manufacture thereof
JPH08278091A (en) Manufacture of heat pipe type cooling unit
JPS58159935A (en) Manufacture of heat collecting and radiating panel
JP4514349B2 (en) Heat sink manufacturing method by thermal expansion method
EP3252419A1 (en) Gravity-assisted heat pipe
JP2773459B2 (en) Manufacturing method of fin and tube heat exchanger
JPH05248778A (en) Composite heat pipe
CN1621772A (en) Heat pipe and manufacturing method thereof
CN217032146U (en) High-power sintered heat pipe
JP2619744B2 (en) Heat pipe cooler
JP2822015B2 (en) Pipe for heat exchanger and method for producing the same
CN216745630U (en) Connecting structure of metal vacuum heat pipe
JPS5816107B2 (en) Flat solar heat exchanger
JPH10160374A (en) Manufacture of heat exchanger
JP3955663B2 (en) Aluminum electrolytic capacitor