JP2671310B2 - Method for detecting roll attitude angle of guided vehicle - Google Patents

Method for detecting roll attitude angle of guided vehicle

Info

Publication number
JP2671310B2
JP2671310B2 JP62202506A JP20250687A JP2671310B2 JP 2671310 B2 JP2671310 B2 JP 2671310B2 JP 62202506 A JP62202506 A JP 62202506A JP 20250687 A JP20250687 A JP 20250687A JP 2671310 B2 JP2671310 B2 JP 2671310B2
Authority
JP
Japan
Prior art keywords
attitude
roll
pitch
angle
sensor unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62202506A
Other languages
Japanese (ja)
Other versions
JPS6446112A (en
Inventor
透 中野
光彦 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP62202506A priority Critical patent/JP2671310B2/en
Publication of JPS6446112A publication Critical patent/JPS6446112A/en
Application granted granted Critical
Publication of JP2671310B2 publication Critical patent/JP2671310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、誘導飛翔体のロール姿勢角検知方法に関す
る。 従来の技術 ロケットのような誘導飛翔体の慣性誘導装置にあって
は、例えば昭和61年7月20日(株)地人書館発行「宇宙
航行の理論と技術」第121頁に示されるように、飛翔体
に慣性センサユニット,慣性誘導計算機,姿勢制御装置
を搭載し、いったん飛び立つと、地上から何ら援助を受
けることなく、飛翔体の運動を制御して、飛翔体を所定
のコースあるいは目標に誘導するようになっている。 そして、飛翔体のロールの姿勢角、すなわち機体のピ
ッチ軸,ヨー軸が基準座標系でどの方向を向いている
か、を知るためには、慣性誘導計算機によって射点か
らの姿勢変化を積分する、高度計を使って高度の変化
を知り、その高度の変化と機体に発生する加速度とから
重力の方向を知る、等の方法がとられていた。 このロール姿勢角の検知は、例えば機体外周面の一部
にシーカを備えた誘導ミサイルにおいて、そのシーカを
地表の特定領域に向けるように制御する上で重要な要素
となる。 発明が解決しようとする問題点 従来の前者の方式では、飛翔体の発射地点からの姿勢
変化を積分するために、長射程になればなるほど慣性セ
ンサユニットによる計算誤差が積み重なる。このため、
測定精度の高い慣性センサユニットが必要であり、慣性
センサユニットが高価であった。また、終端(終末)誘
導においてのみ姿勢制御が必要な場合でも、慣性センサ
ユニットを発射地点から継続して駆動する必要があり、
電源の負荷が大きかった。 また、後者の方式では、高度計を高々度で使用する場
合には高出力のものが必要となり、高度計が大型化する
という問題があった。 本発明は以上のような背景のもとになされたもので、
とりわけ、高精度な慣性センサユニットを必要とせず、
しかも、姿勢制御の必要な時だけ慣性センサユニットを
駆動するだけで所期の目的を達成できるようにしたロー
ル姿勢角検知方法を提供しようとするものである。 問題点を解決するための手段 第1の発明は、慣性センサユニット,慣性誘導計算
機,姿勢制御装置を搭載した飛翔体を、一時的にピッ
チ,ヨー軸まわりの回転方向の姿勢制御を行うことなく
ロール姿勢角を固定したまま放物線弾道を描くように自
由飛翔させ、その間に慣性センサユニットで所定時間内
におけるピッチおよびヨーの姿勢角変化を検出し、この
検出したピッチおよびヨーの姿勢変化量を慣性誘導計算
機に入力して飛翔体軸の重力方向に対するロール姿勢角
を算出することを特徴としている。 また、第2の発明は、慣性センサユニット,慣性誘導
計算機,姿勢制御装置を搭載した飛翔体を、スピンさせ
たままで一時的にピッチ,ヨー軸まわりの回転方向の姿
勢制御を行うことなく放物線弾道を描くように自由飛翔
させ、その自由飛翔中の所定のタイミングで慣性センサ
ユニットによるピッチの姿勢角の検出を開始するととも
に並行してロールの姿勢角変化を検出して、これらの検
出出力を慣性誘導計算機に入力し、ピッチ姿勢角が極小
となる時点でのロール姿勢角を零としてリセットした上
で、以降はこのリセットされたロール姿勢角を基準に飛
翔体軸の重力方向に対するロール姿勢角を算出して出力
することを特徴としている。 例えば、飛翔体を無制御で自由飛翔させると、飛翔体
は重力のために放物線弾道を描く一方、それに伴って軌
道が徐々に鉛直下向きとなり、飛翔体は風見安定をとる
ために鉛直面内でピッチ運動を起こすようになる。本発
明はこの性質を利用したもので、飛翔体に搭載した慣性
センサユニットにより機体のピッチ運動を検出して鉛直
面を知り、ひいては、機体のロール軸が鉛直面に対して
どのような角度をもっているか、すなわちロール姿勢角
を知ることができる。 実施例 以下、本発明の実施例を図面に基づいて詳述する。 第1〜3図は本発明の第1実施例を示すものであっ
て、飛翔体1はロケットのように空気力学的に安定性を
有する構造になっており、これには慣性センサユニット
2、慣性誘導計算機3および姿勢制御装置4を搭載して
ある。慣性センサユニット2は、周知のように姿勢セン
サとしてロール、ピッチおよびヨーそれぞれのレートジ
ャイロを有している。 そして、発射後の飛翔体1、例えばロケットモータ燃
焼完了後に慣性で飛翔し続けている飛翔体1についてそ
の姿勢制御が必要な時期になると、慣性誘導計算機3が
慣性センサユニット2と姿勢制御装置4とを起動して、
飛翔体1のスピンを止めるとともに、ロール制御のみを
行ってロール姿勢角を固定し(この時にはピッチ,ヨー
の制御は行わない)、飛翔体1を一時的に放物線弾道を
描くように自由落下状態で飛翔させる。 次に、飛翔体1の自由落下状態の開始から所要の時間
t1後に慣性誘導計算機3からの指令によって慣性センサ
ユニット2でその間のヨーの姿勢角変化とピッチの姿勢
角変化を検出する。すると、飛翔体1がスピンしていな
いので、ヨー,ピッチの姿勢角変化は第2図に示すよう
になる。そこでこれらヨー,ピッチの姿勢角変化a,bを
慣性誘導計算機3に入力し、慣性誘導計算機3でヨー,
ピッチの姿勢変化分から飛翔体1の機軸の重力に対する
ロール姿勢角を次式(1)から算出して出力する。 ロール姿勢角=tan-1(ヨー姿勢角変化分/ピッチ姿勢角変化分) =tan-1(a/b) ……(1) 第4,5図は第2実施例を示すものであって、慣性セン
サユニット2、慣性誘導計算機3および姿勢制御装置4
を搭載した飛翔体1を一時的に放物線弾道を描くように
自由落下状態で飛翔させてロール姿勢角を検知するので
あるが、先ず、発射後の飛翔体1の姿勢制御が必要な時
期になると、飛翔体1がスピンしている状態のまま、慣
性誘導計算機3がヨーおよびピッチ軸まわりの姿勢制御
用の姿勢制御装置4を停止させ、同時に慣性センサユニ
ット2を起動して、ある時点からのピッチの姿勢角の検
出を開始する。なお、この時には並行してロールの姿勢
角変化が検出される。 すると、飛翔体1がスピンしているので、ピッチの姿
勢角は第5図に示すように変化する。そこで、慣性誘導
計算機3では、ピッチの姿勢角が極小となった時間t2
おいてロール姿勢角をいわゆるゼロリセットして、以降
な慣性センサユニット2から慣性誘導計算機3に入力さ
れるロール姿勢角変化の検出信号を計算して、ゼロリセ
ットされたロール姿勢角を基準としてそれ以後のロール
姿勢角を求めて出力する。 発明の効果 以上のように本発明によれば、飛翔体のロール姿勢角
の検知にあたって飛翔体の発射地点からの姿勢変化を積
分しないので、特別に高精度な慣性センサユニットを必
要とせず、その分コストダウンを図ることができ、しか
も、姿勢制御の必要な時だけ慣性センサユニットを駆動
すればよいので電源の負荷を軽減することができるほ
か、高々度用の高度計を使用した場合のように搭載機器
の大型化を招くこともない等の新規な効果がある。
Description: TECHNICAL FIELD The present invention relates to a roll attitude angle detection method for a guided vehicle. 2. Description of the Related Art For inertial guidance devices for guided vehicles such as rockets, see, for example, "Theory and Technology of Space Navigation", page 121, published by Jijishokan Co., Ltd., July 20, 1986. Incorporating an inertial sensor unit, inertial guidance calculator, and attitude control device into a flying object, once it takes off, it controls the motion of the flying object without any assistance from the ground to set the flying object to a predetermined course or target. It is designed to guide you. Then, in order to know the attitude angle of the roll of the flying body, that is, the direction in which the pitch axis and the yaw axis of the airframe are oriented in the reference coordinate system, the inertial change calculator integrates the attitude change from the shooting point, The method of knowing the change in altitude using an altimeter and knowing the direction of gravity from the change in altitude and the acceleration generated in the aircraft was used. The detection of the roll attitude angle is an important element for controlling the seeker toward a specific area on the ground surface in a guided missile including a seeker on a part of the outer peripheral surface of the machine body. Problems to be Solved by the Invention In the former method of the related art, since the attitude change from the launch point of the flying object is integrated, the calculation error due to the inertial sensor unit accumulates as the range becomes longer. For this reason,
An inertial sensor unit with high measurement accuracy is required, and the inertial sensor unit is expensive. Further, even when the attitude control is required only in the terminal (terminal) guidance, the inertial sensor unit needs to be continuously driven from the launch point,
The load on the power supply was heavy. Further, in the latter method, when the altimeter is used at high altitude, a high output is required, and there is a problem that the altimeter becomes large. The present invention has been made based on the above background,
Above all, it does not require a highly accurate inertial sensor unit,
Moreover, it is an object of the present invention to provide a roll attitude angle detection method capable of achieving a desired purpose only by driving the inertial sensor unit only when attitude control is required. Means for Solving the Problems The first invention is a flying vehicle equipped with an inertial sensor unit, an inertial guidance computer, and an attitude control device, without temporarily performing attitude control in the rotational direction around the pitch and yaw axes. While the roll attitude angle is fixed, the robot freely flies so as to draw a parabolic trajectory, during which the inertia sensor unit detects changes in the pitch and yaw attitude angles within a predetermined time, and the detected pitch and yaw attitude change amounts It is characterized in that it is input to the guidance computer to calculate the roll attitude angle with respect to the gravity direction of the projectile axis. The second invention is a parabolic trajectory without temporarily controlling the attitude in the rotational direction around the pitch and yaw axes of a flying object equipped with an inertial sensor unit, an inertial guidance computer, and an attitude control device while being spun. , The inertial sensor unit starts detecting the attitude angle of the pitch at a predetermined timing during the free flight, and at the same time detects the change in the attitude angle of the roll, and outputs these detection outputs as inertial. After inputting it to the guidance computer and resetting the roll attitude angle at the time when the pitch attitude angle becomes the minimum to be zero, the roll attitude angle with respect to the gravity direction of the projectile axis is thereafter referred to based on the reset roll attitude angle. The feature is that it is calculated and output. For example, when a flying object is allowed to fly freely without control, the flying object draws a parabolic trajectory due to gravity, and the orbit gradually becomes vertically downward with it, and the flying object moves within the vertical plane to stabilize the wind. Starts pitch movement. The present invention utilizes this property and detects the pitch motion of the airframe by the inertial sensor unit mounted on the flying object to know the vertical plane, and by what angle the roll axis of the airframe with respect to the vertical plane. That is, the roll attitude angle can be known. Embodiment Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. 1 to 3 show a first embodiment of the present invention, in which a projectile 1 has a structure that is aerodynamically stable like a rocket and includes an inertial sensor unit 2, An inertial guidance computer 3 and an attitude control device 4 are mounted. As is well known, the inertial sensor unit 2 has roll, pitch, and yaw rate gyros as attitude sensors. Then, when it becomes time to control the attitude of the flying body 1 after the launch, for example, the flying body 1 which continues to fly by inertia after the completion of the rocket motor combustion, the inertial guidance computer 3 causes the inertial sensor unit 2 and the attitude control device 4 to operate. And start
The spin of the projectile 1 is stopped, and only the roll control is performed to fix the roll attitude angle (the pitch and yaw are not controlled at this time), and the projectile 1 is temporarily fallen in a parabolic trajectory. To fly. Next, the time required from the start of the free falling state of the flying object 1
After t 1 , the inertial sensor unit 2 detects a yaw attitude angle change and a pitch attitude angle change in accordance with a command from the inertial guidance computer 3. Then, since the flying object 1 is not spinning, the attitude angle changes of yaw and pitch are as shown in FIG. Then, these yaw and pitch attitude angle changes a and b are input to the inertial guidance computer 3, and the yaw
The roll attitude angle with respect to the gravity of the axis of the flying body 1 is calculated from the following expression (1) from the change in pitch attitude, and is output. Roll attitude angle = tan −1 (yaw attitude angle change amount / pitch attitude angle change amount) = tan −1 (a / b) (1) FIGS. 4 and 5 show the second embodiment. , Inertial sensor unit 2, inertial guidance computer 3 and attitude control device 4
The flying posture of the flying body 1 loaded with is temporarily detected in a free fall state so as to draw a parabolic trajectory, and the roll posture angle is detected. First, when it becomes necessary to control the posture of the flying body 1 after launch. While the flying body 1 is spinning, the inertial guidance computer 3 stops the attitude control device 4 for attitude control around the yaw and pitch axes, and at the same time activates the inertial sensor unit 2 from a certain point in time. Start detecting the attitude angle of the pitch. At this time, a change in the posture angle of the roll is detected in parallel. Then, since the flying object 1 is spinning, the attitude angle of the pitch changes as shown in FIG. Therefore, the inertial guidance computer 3 resets the roll posture angle to zero at the time t 2 when the pitch posture angle becomes the minimum, and changes the roll posture angle input from the inertial sensor unit 2 to the inertial guidance computer 3 thereafter. Is calculated, and the roll attitude angle after that is obtained and output based on the zero-reset roll attitude angle. As described above, according to the present invention, since the attitude change from the launch point of the projectile is not integrated in detecting the roll attitude angle of the projectile, a specially accurate inertial sensor unit is not required. The cost can be reduced, and the inertial sensor unit can be driven only when attitude control is required, so the load on the power supply can be reduced, and it can be mounted as if using an altimeter for high altitude. There is a new effect that the device is not upsized.

【図面の簡単な説明】 第1図は本発明の第1実施例を示すフローチャート、第
2図は同第1実施例の慣性センサユニットのヨー,ピッ
チの姿勢角変化の時間に対する特性図、第3図は同第1
実施例の概略構成図、第4図は本発明の第2実施例を示
すフローチャート、第5図は同第2実施例の慣性センサ
ユニットのピッチの姿勢角変化の時間に対する特性図で
ある。 1……誘導飛翔体、2……慣性センサユニット、3……
慣性誘導計算機、4……姿勢制御装置。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart showing a first embodiment of the present invention, and FIG. 2 is a characteristic diagram of the inertial sensor unit of the first embodiment with respect to changes in attitude angle of yaw and pitch with respect to time. Figure 3 is the same as the first
FIG. 4 is a schematic configuration diagram of an embodiment, FIG. 4 is a flow chart showing a second embodiment of the present invention, and FIG. 5 is a characteristic diagram of the inertial sensor unit of the second embodiment with respect to the change in the attitude angle of the pitch. 1 ... Guidance projectile, 2 ... Inertial sensor unit, 3 ...
Inertial guidance calculator, 4 ... Attitude control device.

Claims (1)

(57)【特許請求の範囲】 1.慣性センサユニット,慣性誘導計算機,姿勢制御装
置を搭載した飛翔体を、一時的にピッチ,ヨー軸まわり
の回転方向の姿勢制御を行うことなくロール姿勢角を固
定したまま放物線弾道を描くように自由飛翔させ、 その間に慣性センサユニットで所定時間内におけるピッ
チおよびヨーの姿勢角変化を検出し、 この検出したピッチおよびヨーの姿勢変化量を慣性誘導
計算機に入力して飛翔体軸の重力方向に対するロール姿
勢角を算出することを特徴とする誘導飛翔体のロール姿
勢角検知方法。 2.慣性センサユニット,慣性誘導計算機,姿勢制御装
置を搭載した飛翔体を、スピンさせたままで一時的にピ
ッチ,ヨー軸まわりの回転方向の姿勢制御を行うことな
く放物線弾道を描くように自由飛翔させ、 その自由飛翔中の所定のタイミングで慣性センサユニッ
トによるピッチの姿勢角の検出を開始するとともに並行
してロールの姿勢角変化を検出して、これらの検出出力
を慣性誘導計算機に入力し、 ピッチ姿勢角が極小となる時点でのロール姿勢角を零と
してリセットした上で、以降はこのリセットされたロー
ル姿勢角を基準に飛翔体軸の重力方向に対するロール姿
勢角を算出して出力することを特徴とする誘導飛翔体の
ロール姿勢角検知方法。
(57) [Claims] A flying object equipped with an inertial sensor unit, inertial guidance computer, and attitude control device can be freely drawn as a parabolic trajectory with the roll attitude angle fixed without temporarily controlling the attitude in the rotational direction around the pitch and yaw axes. During flight, the inertial sensor unit detects changes in the pitch and yaw attitude angles within a predetermined time, and the detected pitch and yaw attitude change amounts are input to the inertial guidance computer to roll the flying body axis in the direction of gravity. A method for detecting a roll attitude angle of a guided vehicle characterized by calculating an attitude angle. 2. A flying object equipped with an inertial sensor unit, inertial guidance computer, and attitude control device is allowed to freely fly while drawing a parabolic trajectory without temporarily controlling the attitude in the rotational direction around the pitch and yaw axes while spinning. The inertial sensor unit starts detecting the attitude angle of the pitch at a predetermined timing during its free flight, and at the same time, it detects changes in the attitude angle of the roll, and inputs these detection outputs to the inertial guidance computer to determine the pitch attitude. The roll posture angle at the time when the angle becomes the minimum is reset to zero, and thereafter, the roll posture angle with respect to the gravity direction of the projectile axis is calculated and output based on the reset roll posture angle. A method for detecting the roll attitude angle of a guided air vehicle.
JP62202506A 1987-08-13 1987-08-13 Method for detecting roll attitude angle of guided vehicle Expired - Fee Related JP2671310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62202506A JP2671310B2 (en) 1987-08-13 1987-08-13 Method for detecting roll attitude angle of guided vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62202506A JP2671310B2 (en) 1987-08-13 1987-08-13 Method for detecting roll attitude angle of guided vehicle

Publications (2)

Publication Number Publication Date
JPS6446112A JPS6446112A (en) 1989-02-20
JP2671310B2 true JP2671310B2 (en) 1997-10-29

Family

ID=16458610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62202506A Expired - Fee Related JP2671310B2 (en) 1987-08-13 1987-08-13 Method for detecting roll attitude angle of guided vehicle

Country Status (1)

Country Link
JP (1) JP2671310B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112284186B (en) * 2020-09-24 2022-08-12 北京航天自动控制研究所 Method for ensuring takeoff safety by reducing rolling angle deviation of carrier rocket

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3249324A (en) 1958-09-19 1966-05-03 William B Coffman Method and system for inertial guidance
US3281094A (en) 1962-04-16 1966-10-25 Trident Engineering Associates Self-contained guidance system
US4044237A (en) 1976-03-16 1977-08-23 The United States Of America As Represented By The Secretary Of The Army Missile maneuver concept

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171798A (en) * 1983-03-16 1984-09-28 宇宙開発事業団 Determination system of attitude of artificial satellite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3249324A (en) 1958-09-19 1966-05-03 William B Coffman Method and system for inertial guidance
US3281094A (en) 1962-04-16 1966-10-25 Trident Engineering Associates Self-contained guidance system
US4044237A (en) 1976-03-16 1977-08-23 The United States Of America As Represented By The Secretary Of The Army Missile maneuver concept

Also Published As

Publication number Publication date
JPS6446112A (en) 1989-02-20

Similar Documents

Publication Publication Date Title
JP2952397B2 (en) Active air control aircraft using air speed vector measurement device
US3746281A (en) Hybrid strapdown guidance system
CA1087714A (en) Rolling airframe autopilot
CN110615104A (en) Unmanned aerial vehicle weapon platform stable aiming control method
CN110300941A (en) A kind of method for controlling rotation of holder, device and control equipment, mobile platform
JP2019064280A (en) Flight device
US3200642A (en) Maximum performance take-off director
US4136844A (en) Quasi-inertial attitude reference platform
JP2671310B2 (en) Method for detecting roll attitude angle of guided vehicle
US3188019A (en) Simplified inertial guidance system
US5988562A (en) System and method for determining the angular orientation of a body moving in object space
JP2022520118A (en) Systems and methods for determining wind direction and velocity measurements from unmanned aerial vehicle altitude
US4530270A (en) Method of directing a close attack missile to a target
CN112540618B (en) High-dynamic rotary aircraft composite guidance control system and method
JP4294994B2 (en) Spray control device
CN109857140A (en) Carrier rocket pitch program angle calculation method, system, equipment and storage medium
JP3185081B2 (en) Unmanned helicopter attitude control system
US20200064868A1 (en) Unmanned aerial vehicle control
JP3137438B2 (en) Initial coordinate value setting method for inertial detection means of moving object
US3638883A (en) Cross-rate axis sensor
JP3518967B2 (en) Guidance control device and method for TVC guidance projectile
JPH06213669A (en) Calibration method for set value of coordinate system of inertia reference device of moving body
JPS5866120A (en) Attitude controller for flying object
JP2940693B2 (en) Flying object guidance method
Garner Simulator studies of simple attitude control for spin-stabilized vehicles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees