JP2670051B2 - Quantum well type optical modulator - Google Patents

Quantum well type optical modulator

Info

Publication number
JP2670051B2
JP2670051B2 JP62190421A JP19042187A JP2670051B2 JP 2670051 B2 JP2670051 B2 JP 2670051B2 JP 62190421 A JP62190421 A JP 62190421A JP 19042187 A JP19042187 A JP 19042187A JP 2670051 B2 JP2670051 B2 JP 2670051B2
Authority
JP
Japan
Prior art keywords
quantum well
layer
light
optical
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62190421A
Other languages
Japanese (ja)
Other versions
JPS6435525A (en
Inventor
悦弘 川口
紘一 脇田
俊司 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62190421A priority Critical patent/JP2670051B2/en
Publication of JPS6435525A publication Critical patent/JPS6435525A/en
Application granted granted Critical
Publication of JP2670051B2 publication Critical patent/JP2670051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は1.3〜1.6μmの波長領域の光を高速かつ低電
圧で変調或いはスイッチする量子構造を有する量子井戸
型光スイッチ/変調器に関するものである。 [従来の技術] 光通信においては半導体レーザを駆動する注入電流自
身を、情報の信号により変化させてその情報を光の強弱
に変える直接変調方式が用いられている。この方法で
は、数Gb/s以上の高速で長距離にわたり光ファイバを通
して伝送する場合、レーザ光のスペクトル幅が広がり、
群遅延の広がりはほぼこれによって決まってしまう。こ
のため光ファイバの低損失領域である1.55μm帯を用い
た光通信など、さらに高速伝送や無中継長距離伝送、或
いは光の性質を利用したコヒーレント光通信を実現しよ
うとすると、高性能の外部変調器が不可欠とされる。 従来、このような外部変調器あるいは光スイッチとし
て、LiNbO3のバルク結晶が主として用いられており、こ
れにより20GHzの高周波変調も実現されている。 しかし、この素子は電気光学効果(電界による屈折率
の変化)を利用しており、この効果では使用波長に逆比
例して変調深さが変化するので、上記長波長帯で使用す
る場合に、同一の素子寸法で同一の変調深さを得るに
は、高電圧を必要とする。一方、変調深さを劣化させず
に低電圧で駆動するためには、試料を長くしなければな
らず、試料容量が増加して高速動作に支障をきたす問題
があった。さらにまた、この変調器には、時間的に出力
がドリフトするなどの点で安定性の難点があった。 これに対し、GaAsやInPなどの化合物半導体結晶に
は、安定性に優れ、しかも他の光デバイスとのモノリシ
ック集積化を実現できる利点があり、その研究が進めら
れているが、高速変調特性にやや難点があった。 この欠点を克服するために、GaAs/Al GaAs系の量子井
戸構造を採用して、上記バルク結晶よりも効率よく高速
に光変調を行うことが、Appl.Phys.Lett.Vol.44,p.16
(1984)において提案され、良好な結果が得られてい
る。しかし、この場合には光伝送に適した長波長帯1.3
〜1.6μmでは動作できないという欠点があった。 この問題を解決するために、我々は先にIn1-x1-y1Ga
x1Aly1As/In1-x2-y2Gax2Aly2As(ただし0≦y1<y2,0≦
x2)において特願昭60−13933号,特願昭61−31782号を
提案し、逆方向電圧に応じて吸収係数を変化させ、入力
光の強度を信号電圧に応じて変調する方法を提案した。 この方法では、高速かつ光の消光比も比較的良好な結
果が得られたが、その構成上、Alを用いており、Alは化
学的に活性であり、逆方向電界が活性層に不均一にかか
りやすく、電界による吸収係数のピークシフト(Quantu
m Confined Stark Effect;QCSEと呼ばれる)が小さいた
め、量子井戸構造採用による特徴が生かしにくい欠点が
あった。 一方、最近の結晶成長技術の進歩により、InPもMOCVD
或いはガスソースMBE等の成長方法でヘテロ界面の急峻
なものが得られるようになり、InPを障壁層とし、In
0.53Ga0.47Asを量子井戸とする量子井戸構造で良好な量
子サイズ効果が報告されるようになった。しかし、この
材料系では光ファイバの極低伝送損失領域である波長1.
55μmの光に効率よく動作させるには、量子井戸層の厚
さを70Å前後にしなければならず、この厚さでは上記電
界による吸収ピークシフト(QCSE)が小さいという欠点
があった。 このため電界によるシフトを大きくするには、量子井
戸の厚さを厚くしなければならないが、(後述するよう
にシフト量は厚さの4乗に比例する)一方、量子井戸の
厚さを厚くすると量子サイズ効果が弱くなり、例えば量
子井戸層の厚さが100Åの場合、吸収ピーク位置は波長
1.62μm程度となり、それに合う光源或いは光検出器に
適当なものがなく、光伝送上有用とはなりがたいという
問題があった。また、上記量子井戸の厚さが薄い場合、
電界効果が小さいため、所望の特性を得るには大きな電
圧(通常十数Vから数十V)を印加する必要があるが、
高速で高電圧を発生できるパルス発生器は少なく、この
ことも実用上問題であった。 さらに、In0.53Ga0.47As/InP量子井戸光変調器には、
井戸層と障壁層の間の価電子帯端の大きなエネルギー差
が、正孔のInP障壁層を乗り越える速度を制限している
ため、入力光が実用上使用される1mW程度まで大きくな
ると、InGaAsP井戸層に正孔が蓄積されて動作速度が遅
くなるという問題があった。 [発明が解決しようとする問題点] 本発明は上述した従来の欠点を解消し、小さい駆動電
圧で大きく変調或いはスイッチし、しかも入力光の強度
が強くても動作速度が落ちない高効率な光変調器、光ス
イッチを提供することを目的とする。 [問題点を解決するための手段] このような目的を達成するために本発明は、InP基板
と、n型のIn1-x1Gax1Asy1P1-y1(0≦x1≦1,0≦y1≦
1)からなる第1のクラッド層と、In1-x2Gax2Asy2P
1-y2(0<x2<1,0<y2<1)からなる量子井戸層とIn
1-x3Gax3Asy3P1-y3(x2>x3,y2>y3)からなり前記量子
井戸層より広い禁制帯幅を有する障壁層とが交互に積層
された多重量子井戸構造の形態の活性層と、p型のIn
1-x4Gax4Asy4P1-y4(0≦x4≦1,0≦y4≦1)からなる第
2のクラッド層と、前記活性層と前記第2のクラッド層
との間に設けられたp型のIn1-x5Gax5Asy5P1-y5(x4<x
5,y4<y5)からなるスペーサ層とを具えるように、量子
井戸型光変調器を構成したことを特徴とする。 さらに本発明の実施態様の一つは、前記量子井戸層の
厚さを70Å以上かつ150Å以下とすることを特徴とす
る。 [作 用] 第2図は量子井戸の吸収スペクトル特性を示す図であ
って、横軸は波長、縦軸は吸収係数を示す。λは吸収
端を示す。図示するように、吸収係数のピークは、電界
の印加によってシフトする。第3図は3元InGaAs量子井
戸幅と吸収端波長および吸収端エネルギとの関係を示す
図である。障壁層にInPを用い、量子井戸層にInP基板と
格子整合するInGaAsを用いた場合、波長1.55μmの入射
光に対して、効率よく動作させるには吸収端波長1.50μ
mが適当であることが本発明者らの研究で明らかとなっ
ており、その波長を与える量子井戸幅は計算によれば約
70Åとなる。一方、電界印加による吸収端の長波長側へ
のシフト量は第4図に示すように量子井戸幅の4乗に比
例している。従って吸収端が1.50μm付近にあるかぎ
り、量子井戸幅は厚い方がこの計算ではシフト量は大き
く、吸収係数の変化も大きくなり、変調器或いはスイッ
チとして望ましいことになる。しかし井戸幅があまり厚
くなると量子井戸としての効果が薄れ、量子サイズ効果
はなくなり、通常のバルクとの違いはなくなっている。
この厚さのめやすは励起子のボーア半径程度であり、15
0Å以下が望ましい。 本発明においては4元量子井戸層を用いて光伝送上有
用な波長域で電界効果の大きな、高効率、低駆動電力高
速の光変調器が可能である。その場合印加電圧も数Vで
済み、容易に入手可能な高速パルス発生器で使用でき
る。また、光を量子井戸構造に平行に入射して光の吸収
長を垂直入射に比べ長くとれるため、光変調、光スイッ
チを高速かつ効率よく行うことができる。 また、InPとInGaAsの組み合わせでは、ヘテロ界面で
のエネルギーギャップの差ΔEgは伝導帯および価電子帯
で40:60の比に分けられ、質量の重い正孔に対して大き
なバリヤが存在し、素子特性に正孔のパイルアップに伴
う不具合が生じるが、4元InGaAsPの量子井戸や4元InG
aAsPの障壁層を用いるとヘテロ界面でのエネルギーギャ
ップの差ΔEgは小さくなり、質量の重い正孔のパイルア
ップが生じないため、高光入力に対しても高速動作が可
能になる。 そして4元のスペーサ層を挿入することは、高光入力
に対して一層高速な動作を可能にする。 [実施例] 以下に図面を参照して本発明の実施例を説明する。 第1図は、本発明の参考例としてのスペーサ層を備え
ていない量子井戸型変調器の斜視図であって、21はInP
結晶基板、22は基板21上に配置したn−InPクラッド
層、23は厚さ100ÅのIn0.55Ga0.45As0.970.03量子井
戸層でその吸収端を1.50μmに保つ。24は厚さ150ÅのI
nP障壁層で、量子井戸層23と障壁層24とを交互に20周期
積層した。26はp−InPからなる第2クラッド層で、そ
の上部はストライプ状をなしている。第2クラッド層26
は0.4μm厚で、さらに高さ1.6μm,幅6μmのストライ
プを形成して装荷クラッドとしてある。27はストライプ
上に形成された厚さ0.15μmのp−InGaAsキャップ層,2
8および29は電極である。 本参考例は光を多重量子井戸(MQW)層構造に平行に
入射して光の吸収長を長くとれるようにするとともに、
p形およびn形クラッド層で挟まれた活性層に電界を加
えて光の吸収係数を変え、光の変調器あるいはスイッチ
として動作させるものである。 多重量子井戸層の厚さは0.5μmとなるが、残留不純
物量を1015cm-3以下と低くすることができるので、0バ
イアスでも充分に空乏層を生じさせることができる。ま
た上述したような装荷クラッド構成としたので、横モー
ド単一化が可能である。本参考例は、活性層を構成する
量子井戸構造の量子井戸をInP基板と格子整合しているI
nGaAsP 4元構成とし、その厚さを3元InGaAsに比べ厚く
するとともに、量子井戸としてのエネルギを上昇せしめ
て、その吸収端エネルギを波長1.50μm前後に設定でき
るようにしてある。すなわち、量子井戸を3元構成とす
るとInPとの格子整合の条件から必然的にその混晶比が
決ってしまい、従ってそのエネルギーが一意的に決って
しまうために、例えば波長1.50μm前後に動作できるよ
うにするにはその厚さは70Å程度と薄くなり、電界印加
による吸収端の長波長側へのシフトが小さい。しかし本
参考例によれば量子井戸を4元構成として動作波長域を
変えることなく、量子井戸の厚さを3元構成より厚くし
て、電界効果を大きくすることができ、3元量子井戸を
用いた場合に比較して、電界強度100KV/cmに対して吸収
ピークシフト量を約4倍大きくできる。 第5図に本発明の第1の実施例を示す。第1図と同一
部分は同一参照番号を付す。本実施例は、図示するよう
に量子井戸構造活性層とクラッド層との間に、クラッド
層と同導電型の厚さ0.4μmのIn0.73Ga0.27As0.64
0.36からなるスペーサ層25を設けたものである。 一般に、InPとInGaAsとの間のエネルギギャップ差
(バンドオフセットと呼ばれる)は伝導帯と価電子帯と
の間で分配され、その比は40:60と価電子帯への分配が
大きいことが知られている。このため、例えば3元層に
おいて光を吸収して電子と正孔が生成された場合、電子
に比べ正孔はバリアを越えて電流として流れにくく(正
孔のパイルアップ現象と呼ばれる)、高速応答特性にお
いて不具合を生じ光検出器等への応用上問題となってい
た。本発明においては量子井戸層に4元層を用いている
ため、3元の量子井戸に比べInPとの価電子帯のバンド
オフセットは小さく、上記の問題は緩和されているが、
4元のスペーサ層を挿入してより一層改良している。 また、障壁層にInPの代わりに4元In0.84Ga0.16As
0.320.68(フォトルミネッセンス波長で1.1μm)を
用いれば量子井戸とのバンドオフセットは小さくなり、
上記の問題はより一層緩和される。 第6図に本発明の第2の実施例を示す。本実施例は本
発明を光方向性結合器へ応用した例であり、第1図と同
様の個所には同一符号を付す。本実施例においては、In
P層25上に、それぞれ、層26,27および29より成る2本の
互いに平行なストリップ装荷構造31および32を配設す
る。ここで、第1の装荷部分に逆方向電圧を印加するこ
とによって、第1の装荷部分31の下に形成られた量子井
戸構造部分に入射された光を第2の装荷部分32に結合さ
せ、移動することが可能である。 第6図の構造は、外部より電圧を印加する点は第1の
構造と同様であるが、装荷構造31と32とにおいて各構成
量子井戸の屈折率の電界による相対的変化を利用する点
が異なる。一般に物質に電界を加えると電気光学効果に
よって屈折率は変化するが、量子井戸構造ではバルク結
晶に比べてかかる変化が大きいことが予想されている
(例えばElectronics Letters Vol.21 No.13 pp.579−5
80,H.Yamamoto等)。 メサストライプ31と32の間隔Sを導波光の波長オーダ
にまで近接して形成し、一方のメサストライプ31の下方
に形成される導波路にのみ電圧を印加した場合、電界に
よる屈折率の変化に伴ってそれぞれの導波路の伝播定数
に差が生じ、両導波路間においてパワー結合量が変化す
る。これは電気光学効果によって電圧を印加された導波
路の伝播定数が変化するためである。この原理を利用し
て一方の導波路の出力光の強度を電圧で制御することが
可能となり、電圧の印加条件によって、メサストライプ
32の側に入射させた光がメサストライプ31の側から出射
するようにすることが可能となる。すなわち、光の透過
する位置を変えることができる。 電界印加による吸収端波長シフトはKrames−Krnig
の関係から屈折率変化と結びついており、従って本発明
により電界による大きな屈折率変化が得られるため、高
速,高効率な光方向性結合器が作製できる。 本発明の光変調器における各層の組成は第1のクラッ
ド層がIn1-x1Gax1Asy1P1-y1、量子井戸層がIn1-x2Gax2A
sy2P1-y2、障壁層がIn1-x3Gax3Asy3P1-y3、第2クラッ
ド層がIn1-x4Gax4Asy4P1-y4、キャップ層がIn1-x5Gax5A
sおよびスペーサ層がIn1-x6Gax6Asy6P1-y6で表わされ、
それぞれ 0≦x1≦1,0≦y1≦1 0<x2<1,0<y2<1 x2>x3,y2>y3 0≦x4≦1,0≦y4≦1 0≦x5<1 0≦x6≦1,0≦y6≦1 の範囲内で選択可能である。電極29に窓を設け、光を活
性層と直角方向から入射することも可能である。 また、本実施例では、一方の導波出力光の強度を電圧
で制御することが可能となるので、光変調、光スイッチ
等の機能素子として動作させることが可能である。その
場合の印加電圧も数Vで済み、容易に入手可能な高速パ
ルス発生器で使用できる。 [発明の効果] 以上説明したように本発明においては4元量子井戸層
とスペーサ層を用いて光伝送上有用な波長域で電界効果
の大きな、高効率、低駆動電力高速の光変調器が可能で
ある。その場合印加電圧も数Vで済み、容易に入手可能
な高速パルス発生器で使用できる。また、光を量子井戸
構造に平行に入射して光の吸収長を垂直入射に比べ長く
とれるため、光変調、光スイッチを高速かつ効率よく行
うことができる。 このように本発明は、低電圧でかつ高速で光の変調を
行うことができるため、超大容量(1Gb/s以上)でかつ
長距離の光ファイバ伝送における外部変調器として利用
したり、高速光スイッチとして用いたり、或いは短い素
子長で低電圧で駆動する方向性結合としての利用、光マ
トリックスとしての利用等、光情報処理への応用が可能
である。
TECHNICAL FIELD The present invention relates to a quantum well type optical switch / modulator having a quantum structure for modulating or switching light in the wavelength region of 1.3 to 1.6 μm at high speed and low voltage. It is. [Prior Art] In optical communication, a direct modulation method is used in which an injection current itself for driving a semiconductor laser is changed by an information signal to change the information into the intensity of light. In this method, when transmitting through an optical fiber at a high speed over several Gb / s over a long distance, the spectral width of the laser light spreads,
The spread of the group delay is almost determined by this. For this reason, if high-speed transmission, non-repeater long-distance transmission, or coherent optical communication utilizing the optical properties is attempted, such as optical communication using the 1.55 μm band, which is the low-loss area of optical fiber, the performance of high-performance external A modulator is essential. Conventionally, a bulk crystal of LiNbO 3 has been mainly used as such an external modulator or an optical switch, and a high frequency modulation of 20 GHz has also been realized. However, this element utilizes the electro-optic effect (change in the refractive index due to the electric field), and since this effect changes the modulation depth in inverse proportion to the wavelength used, when used in the above long wavelength band, A high voltage is required to obtain the same modulation depth with the same device size. On the other hand, in order to drive at a low voltage without degrading the modulation depth, the sample must be lengthened, and there is a problem that the sample capacity increases and hinders high-speed operation. Furthermore, this modulator has a problem of stability in that the output drifts with time. On the other hand, compound semiconductor crystals such as GaAs and InP have the advantages of excellent stability and the ability to achieve monolithic integration with other optical devices. There were some difficulties. In order to overcome this drawback, it is necessary to adopt a GaAs / Al GaAs-based quantum well structure and perform optical modulation more efficiently and at a higher speed than the above bulk crystal. Appl.Phys.Lett.Vol.44, p. 16
(1984), with good results. However, in this case, the long wavelength band 1.3 suitable for optical transmission is used.
It has a drawback that it cannot operate at ~ 1.6 μm. To solve this problem, we first introduced In 1-x1-y1 Ga
x1 Al y1 As / In 1-x2-y2 Ga x2 Al y2 As (where 0 ≦ y1 <y2,0 ≦
x2), Japanese Patent Application Nos. 60-13933 and 61-31782 were proposed, and a method was proposed in which the absorption coefficient was changed according to the reverse voltage and the intensity of the input light was modulated according to the signal voltage. . With this method, high speed and relatively good light extinction ratio were obtained, but because of its constitution, Al was used, Al was chemically active, and the reverse electric field was nonuniform in the active layer. And the peak shift of the absorption coefficient due to the electric field (Quantu
m Confined Stark Effect (referred to as QCSE) is small, so there is a drawback that it is difficult to take advantage of the features of the quantum well structure. On the other hand, due to recent advances in crystal growth technology, InP has also been MOCVD
Alternatively, a steep hetero interface can be obtained by a growth method such as gas source MBE, and InP is used as a barrier layer.
Good quantum size effects have been reported in quantum well structures with 0.53 Ga 0.47 As as quantum wells. However, with this material system, the wavelength of 1.
The thickness of the quantum well layer must be around 70Å in order to operate efficiently with light of 55 μm, and this thickness has a drawback that the absorption peak shift (QCSE) due to the electric field is small. Therefore, in order to increase the shift due to the electric field, the thickness of the quantum well must be increased (the shift amount is proportional to the fourth power of the thickness, as will be described later), while increasing the thickness of the quantum well. Then, the quantum size effect becomes weaker.For example, when the thickness of the quantum well layer is 100Å, the absorption peak position is the wavelength.
It is about 1.62 μm, and there is no suitable light source or photodetector suitable for it, and there is a problem that it is hardly useful for optical transmission. When the quantum well is thin,
Since the electric field effect is small, it is necessary to apply a large voltage (usually a dozen V to several tens V) in order to obtain desired characteristics.
There are few pulse generators that can generate high voltage at high speed, which is also a practical problem. Furthermore, In 0.53 Ga 0.47 As / InP quantum well optical modulator
Since the large energy difference at the valence band edge between the well layer and the barrier layer limits the speed at which holes cross over the InP barrier layer, when the input light becomes as large as about 1 mW that is practically used, the InGaAsP well There is a problem that holes are accumulated in the layer and the operation speed is reduced. [Problems to be Solved by the Invention] The present invention solves the above-mentioned drawbacks of the prior art, achieves large modulation or switching with a small driving voltage, and is a highly efficient light that does not reduce the operating speed even when the intensity of input light is strong. It is an object to provide a modulator and an optical switch. [Means for Solving Problems] In order to achieve such an object, the present invention provides an InP substrate and an n-type In 1-x1 Ga x1 As y1 P 1-y1 (0 ≦ x1 ≦ 1,0 ≤y1≤
1) 1st clad layer and In 1-x2 Ga x2 As y2 P
1-y2 (0 <x2 <1,0 <y2 <1) quantum well layer and In
1-x3 Ga x3 As y3 P 1-y3 (x2> x3, y2> y3), and the activity in the form of multiple quantum well structure in which barrier layers having a wider band gap than the quantum well layer are alternately stacked Layer and p-type In
1-x4 Ga x4 As y4 P 1-y4 (0 ≤ x4 ≤ 1, 0 ≤ y4 ≤ 1) and a second clad layer provided between the active layer and the second clad layer p-type In 1-x5 Ga x5 As y5 P 1-y5 (x4 <x
The quantum well optical modulator is configured to include a spacer layer composed of (5, y4 <y5). Furthermore, one of the embodiments of the present invention is characterized in that the thickness of the quantum well layer is 70 Å or more and 150 Å or less. [Operation] FIG. 2 is a diagram showing absorption spectrum characteristics of a quantum well, in which the horizontal axis represents wavelength and the vertical axis represents absorption coefficient. λ g indicates the absorption edge. As shown, the peak of the absorption coefficient shifts due to the application of the electric field. FIG. 3 is a diagram showing the relationship between the ternary InGaAs quantum well width, the absorption edge wavelength, and the absorption edge energy. When InP is used for the barrier layer and InGaAs that is lattice-matched with the InP substrate is used for the quantum well layer, the absorption edge wavelength of 1.50μ is required to operate efficiently with respect to incident light of wavelength 1.55μm.
It has been clarified by the study of the present inventors that m is appropriate, and the quantum well width giving the wavelength is calculated to be about
70Å. On the other hand, the shift amount of the absorption edge to the longer wavelength side due to the application of the electric field is proportional to the fourth power of the quantum well width as shown in FIG. Therefore, as long as the absorption edge is in the vicinity of 1.50 μm, the larger the quantum well width, the larger the shift amount in this calculation and the larger the change in the absorption coefficient, which is desirable as a modulator or a switch. However, when the well width is too thick, the effect as a quantum well is weakened, the quantum size effect is lost, and there is no difference from a normal bulk.
The guideline for this thickness is about the exciton Bohr radius.
0 ° or less is desirable. In the present invention, a high-efficiency, low-drive-power, high-speed optical modulator having a large electric field effect in a wavelength range useful for optical transmission can be obtained by using a quaternary quantum well layer. In that case, the applied voltage is only a few V, and it can be used with a readily available high-speed pulse generator. In addition, since light is incident parallel to the quantum well structure and the absorption length of light can be made longer than that of vertical incidence, light modulation and optical switching can be performed quickly and efficiently. Also, in the case of the combination of InP and InGaAs, the energy gap difference ΔEg at the hetero interface is divided into the ratio of 40:60 in the conduction band and the valence band, and there is a large barrier against holes with heavy mass. A problem occurs due to the pile-up of holes in the characteristics, but the quantum well of quaternary InGaAsP and quaternary InG
When the barrier layer of aAsP is used, the energy gap difference ΔEg at the hetero interface becomes small, and pile-up of heavy holes does not occur, so high-speed operation is possible even for high light input. And inserting a quaternary spacer layer allows faster operation for high light input. Embodiment An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a quantum well modulator without a spacer layer as a reference example of the present invention, where 21 is an InP modulator.
A crystal substrate, 22 is an n-InP clad layer disposed on the substrate 21, 23 is an In 0.55 Ga 0.45 As 0.97 P 0.03 quantum well layer having a thickness of 100 Å, and its absorption edge is kept at 1.50 μm. 24 is 150 Å thick
In the nP barrier layer, quantum well layers 23 and barrier layers 24 were alternately stacked for 20 periods. Reference numeral 26 denotes a second cladding layer made of p-InP, the upper part of which is striped. Second cladding layer 26
Has a thickness of 0.4 μm, and a stripe having a height of 1.6 μm and a width of 6 μm is formed as a loading clad. 27 is a p-InGaAs cap layer having a thickness of 0.15 μm formed on the stripe, 2
8 and 29 are electrodes. This reference example allows light to be incident on the multiple quantum well (MQW) layer structure in parallel to increase the light absorption length,
An electric field is applied to the active layer sandwiched between the p-type and n-type cladding layers to change the light absorption coefficient and operate as a light modulator or switch. Although the thickness of the multi-quantum well layer is 0.5 μm, the amount of residual impurities can be reduced to 10 15 cm −3 or less, so that the depletion layer can be sufficiently generated even with 0 bias. Further, since the loading clad structure is used as described above, the transverse mode can be unified. In this reference example, the quantum well of the quantum well structure forming the active layer is lattice-matched with the InP substrate.
The nGaAsP quaternary structure is used, the thickness thereof is made thicker than that of the ternary InGaAs, and the energy as a quantum well is increased so that the absorption edge energy can be set to a wavelength of about 1.50 μm. That is, if the quantum well has a ternary structure, its mixed crystal ratio is inevitably determined from the condition of lattice matching with InP, and therefore its energy is uniquely determined. In order to be able to do so, the thickness becomes as thin as 70Å, and the shift of the absorption edge to the long wavelength side due to the application of an electric field is small. However, according to this reference example, the quantum well is made into a quaternary structure, and the thickness of the quantum well can be made thicker than that of the ternary structure without changing the operating wavelength range, so that the electric field effect can be increased and the ternary quantum well can be formed. The absorption peak shift amount can be increased by about 4 times with respect to the electric field intensity of 100 KV / cm, as compared with the case where it is used. FIG. 5 shows a first embodiment of the present invention. The same parts as those in FIG. 1 are designated by the same reference numerals. In this embodiment, as shown in the drawing, In 0.73 Ga 0.27 As 0.64 P having the same conductivity type as the cladding layer and a thickness of 0.4 μm is provided between the active layer and the cladding layer.
The spacer layer 25 made of 0.36 is provided. Generally, the energy gap difference between InP and InGaAs (called the band offset) is distributed between the conduction band and the valence band, and the ratio is 40:60, and it is known that the distribution to the valence band is large. Have been. Therefore, for example, when electrons and holes are generated by absorbing light in the ternary layer, holes are less likely to flow over the barrier as an electric current than electrons (called a hole pile-up phenomenon), and have a high-speed response. A problem was caused in the characteristics, and this was a problem in application to a photodetector or the like. In the present invention, since the quaternary layer is used for the quantum well layer, the band offset of the valence band with InP is smaller than that of the ternary quantum well, which alleviates the above problem.
It is further improved by inserting a quaternary spacer layer. In addition, quaternary In 0.84 Ga 0.16 As is used instead of InP for the barrier layer.
If 0.32 P 0.68 (1.1 μm at photoluminescence wavelength) is used, the band offset with the quantum well becomes small,
The above problems are alleviated further. FIG. 6 shows a second embodiment of the present invention. This embodiment is an example in which the present invention is applied to an optical directional coupler, and the same parts as those in FIG. 1 are denoted by the same reference numerals. In this embodiment, In
On the P-layer 25 there are arranged two parallel strip-loading structures 31 and 32 of layers 26, 27 and 29 respectively. Here, by applying a reverse voltage to the first loading portion, the light incident on the quantum well structure portion formed below the first loading portion 31 is coupled to the second loading portion 32, It is possible to move. The structure of FIG. 6 is similar to the first structure in that a voltage is applied from the outside, but in the loading structures 31 and 32, the relative change in the refractive index of each constituent quantum well due to the electric field is used. different. Generally, when an electric field is applied to a material, the refractive index changes due to the electro-optic effect, but it is expected that such a change is larger in a quantum well structure than in a bulk crystal (for example, Electronics Letters Vol.21 No.13 pp.579. −5
80, H. Yamamoto etc.). If the spacing S between the mesa stripes 31 and 32 is formed close to the wavelength order of the guided light and a voltage is applied only to the waveguide formed below one of the mesa stripes 31, the change in the refractive index due to the electric field will occur. Accordingly, a difference occurs in the propagation constant of each waveguide, and the power coupling amount changes between the two waveguides. This is because the propagation constant of the waveguide to which a voltage is applied changes due to the electro-optic effect. Utilizing this principle, it is possible to control the intensity of the output light of one of the waveguides by a voltage, and the mesa stripe can be controlled by the voltage application conditions.
It is possible to allow the light incident on the side of 32 to be emitted from the side of the mesa stripe 31. That is, the position where light is transmitted can be changed. The wavelength shift at the absorption edge due to the applied electric field is Krames-Krnig
Is related to the change in the refractive index. Therefore, a large change in the refractive index due to the electric field can be obtained by the present invention, so that a high-speed and high-efficiency optical directional coupler can be manufactured. The composition of each layer in the optical modulator of the present invention is In 1-x1 Ga x1 As y1 P 1-y1 for the first cladding layer and In 1-x2 Ga x2 A for the quantum well layer.
s y2 P 1-y2 , barrier layer is In 1-x3 Ga x3 As y3 P 1-y3 , second cladding layer is In 1-x4 Ga x4 As y4 P 1-y4 , cap layer is In 1-x5 Ga x5 A
s and the spacer layer are represented by In 1-x6 Ga x6 As y6 P 1-y6 ,
0 ≦ x1 ≦ 1,0 ≦ y1 ≦ 10 0 <x2 <1,0 <y2 <1 x2> x3, y2> y3 0 ≦ x4 ≦ 1,0 ≦ y4 ≦ 10 ≦ x5 <1 0 ≦ x6 ≦ It can be selected within the range of 1,0≤y6≤1. It is also possible to provide a window in the electrode 29 and allow light to enter from the direction perpendicular to the active layer. Further, in this embodiment, since the intensity of one of the guided output lights can be controlled by the voltage, it can be operated as a functional element such as an optical modulator and an optical switch. The applied voltage in that case is only a few V, and it can be used with a readily available high-speed pulse generator. [Effects of the Invention] As described above, according to the present invention, an optical modulator having a large electric field effect, a high efficiency, a low driving power, and a high speed is obtained by using a quaternary quantum well layer and a spacer layer in a wavelength region useful for optical transmission. It is possible. In this case, the applied voltage is only a few volts, and can be used with a readily available high-speed pulse generator. In addition, since light is incident parallel to the quantum well structure and the absorption length of light can be made longer than that of vertical incidence, light modulation and optical switching can be performed quickly and efficiently. As described above, the present invention can modulate light at a low voltage and at a high speed. Therefore, the present invention can be used as an external modulator in an ultra-large capacity (1 Gb / s or more) and long-distance optical fiber transmission, or can be used as a high-speed optical modulator. It can be applied to optical information processing such as use as a switch, use as a directional coupling driven by a low voltage with a short element length, use as an optical matrix, and the like.

【図面の簡単な説明】 第1図は本発明の参考例の斜視図、 第2図は量子井戸の吸収スペクトル線図、 第3図は量子井戸幅と吸収端の波長およびエネルギーと
の関係を示す図、 第4図は電界印加による吸収端波長のシフト量と量子井
戸層の幅との関係を示す図、 第5図は本発明の第1の実施例を示す斜視図、 第6図は本発明の第2の実施例を示す斜視図である。 21……InP基板、 22……第1クラッド層、 23……障壁層、 24……量子井戸層、 25……スペーサ層、 26……第2クラッド層、 27……キャップ層、 28……電極、 29……電極、 31,32……装荷部分。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view of a reference example of the present invention, FIG. 2 is an absorption spectrum diagram of a quantum well, and FIG. 3 shows the relationship between the quantum well width and the wavelength and energy at the absorption edge. Fig. 4 is a diagram showing the relationship between the shift amount of the absorption edge wavelength and the width of the quantum well layer due to the application of an electric field; Fig. 5 is a perspective view showing the first embodiment of the present invention; It is a perspective view which shows the 2nd Example of this invention. 21 …… InP substrate, 22 …… First cladding layer, 23 …… Barrier layer, 24 …… Quantum well layer, 25 …… Spacer layer, 26 …… Second cladding layer, 27 …… Cap layer, 28 …… Electrode, 29 …… Electrode, 31,32 …… Loading part.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野島 俊司 神奈川県厚木市森の里若宮3番1号 日 本電信電話株式会社厚木電気通信研究所 内 (56)参考文献 特開 昭62−169115(JP,A) 特開 昭62−3220(JP,A) 特開 昭62−156617(JP,A) 特開 昭59−151475(JP,A) 特開 昭60−66481(JP,A) Japanese Journal of Applied Physic s,Vol.26 No.5 pp.L 579〜L581 Appl.Phys.Lett.,V ol.50 No.25 pp.1776−1778   ────────────────────────────────────────────────── ─── Continuation of front page    (72) Inventor Shunji Nojima               3-1, Morinosato Wakamiya, Atsugi City, Kanagawa Prefecture               Telegraph and Telephone Corporation Atsugi Electro-Communications Research Laboratories               Inside                (56) References JP-A-62-169115 (JP, A)                 JP 62-3220 (JP, A)                 JP 62-156617 (JP, A)                 JP-A-59-151475 (JP, A)                 JP-A-60-66481 (JP, A)                 Japanese Journal               of Applied Physic               s, Vol. 26 No. 5 pp. L               579 ~ L581                 Appl. Phys. Lett. , V               ol. 50 No. 25 pp. 1776-1778

Claims (1)

(57)【特許請求の範囲】 1.InP基板と、 n型のIn1-x1Gax1Asy1P1-y1(0≦x1≦1,0≦y1≦1)か
らなる第1のクラッド層と、 In1-x2Gax2Asy2P1-y2(0<x2<1,0<y2<1)からなる
量子井戸層とIn1-x3Gax3Asy3P1-y3(x2>x3,y2>y3)か
らなり前記量子井戸層より広い禁制帯幅を有する障壁層
とが交互に積層された多重量子井戸構造の形態の活性層
と、 p型のIn1-x4Gax4Asy4P1-y4(0≦x4≦1,0≦y4≦1)か
らなる第2のクラッド層と、 前記活性層と前記第2のクラッド層との間に設けられた
p型のIn1-x5Gax5Asy5P1-y5(x4<x5,y4<y5)からなる
スペーサ層とを具えたことを特徴とする量子井戸型光変
調器。 2.前記量子井戸層の厚さが70Å以上かつ150Å以下で
あることを特徴とする特許請求の範囲第1項に記載の量
子井戸型光変調器。
(57) [Claims] InP substrate, first clad layer composed of n-type In 1-x1 Ga x1 As y1 P 1-y1 (0 ≦ x1 ≦ 1,0 ≦ y1 ≦ 1), In 1-x2 Ga x2 As y2 P The quantum well layer consisting of 1-y2 (0 <x2 <1,0 <y2 <1) and In 1-x3 Ga x3 As y3 P 1-y3 (x2> x3, y2> y3) An active layer in the form of a multi-quantum well structure in which barrier layers having a wide band gap are alternately stacked, and a p-type In 1-x4 Ga x4 As y4 P 1-y4 (0 ≦ x4 ≦ 1,0 ≦ y 2 ≦ 1) and a p-type In 1-x5 Ga x5 As y5 P 1-y5 (x4 <x5, which is provided between the active layer and the second cladding layer. and a spacer layer comprising y4 <y5). 2. 2. The quantum well optical modulator according to claim 1, wherein the thickness of the quantum well layer is not less than 70 [deg.] And not more than 150 [deg.].
JP62190421A 1987-07-31 1987-07-31 Quantum well type optical modulator Expired - Lifetime JP2670051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62190421A JP2670051B2 (en) 1987-07-31 1987-07-31 Quantum well type optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62190421A JP2670051B2 (en) 1987-07-31 1987-07-31 Quantum well type optical modulator

Publications (2)

Publication Number Publication Date
JPS6435525A JPS6435525A (en) 1989-02-06
JP2670051B2 true JP2670051B2 (en) 1997-10-29

Family

ID=16257856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62190421A Expired - Lifetime JP2670051B2 (en) 1987-07-31 1987-07-31 Quantum well type optical modulator

Country Status (1)

Country Link
JP (1) JP2670051B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2907890B2 (en) * 1989-10-03 1999-06-21 日本電気株式会社 Light modulator
JP4502588B2 (en) * 2003-03-27 2010-07-14 日本航空電子工業株式会社 Electroabsorption light modulator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151475A (en) * 1983-02-17 1984-08-29 Kokusai Denshin Denwa Co Ltd <Kdd> Hetero-structure avalanche-photodiode with buffer layer
JPS6066481A (en) * 1983-09-21 1985-04-16 Nec Corp Semiconductor photodetector
JPH0650366B2 (en) * 1985-06-28 1994-06-29 日本電気株式会社 Light modulator
GB8525593D0 (en) * 1985-10-17 1985-11-20 British Telecomm Electro-optic devices
JPS62169115A (en) * 1986-01-21 1987-07-25 Nec Corp Optical modulator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Appl.Phys.Lett.,Vol.50 No.25 pp.1776−1778
Japanese Journal of Applied Physics,Vol.26 No.5 pp.L579〜L581

Also Published As

Publication number Publication date
JPS6435525A (en) 1989-02-06

Similar Documents

Publication Publication Date Title
US5801872A (en) Semiconductor optical modulation device
EP0866505B1 (en) Quantum well semiconductor device
JP2606079B2 (en) Optical semiconductor device
US5191630A (en) Nonlinear optical device for controlling a signal light by a control light
US7095542B2 (en) Electroabsorption modulator having a barrier inside a quantum well
JP2536714B2 (en) Optical modulator integrated multiple quantum well semiconductor laser device
US4847573A (en) Optical modulator
US5001522A (en) Optical semiconductor device
JP2670051B2 (en) Quantum well type optical modulator
JPS61212823A (en) Optical modulator
JPH08248364A (en) Light intensity modulation element and semiconductor laser with light intensity modulation element
Sahara et al. Strongly improved frequency response at high-optical input powers from InGaAsP compensated strain MQW electroabsorption modulators
Sahara et al. Proposal for quantum-dot electroabsorption modulator
JPH07113711B2 (en) Semiconductor waveguide type optical switch
JPH0545003B2 (en)
JPH08248363A (en) Waveguide type multiple quantum well optical control element
JPH0827446B2 (en) Quantum well type optical modulator and manufacturing method thereof
JP2000305055A (en) Electric field absorption optical modulator
JPH07321414A (en) Field absorption-type multiple quantum well optical control element
JPH1062732A (en) Semiconductor quantum well optical modulator
JP4103490B2 (en) Light modulator
JP3204969B2 (en) Semiconductor laser and optical communication system
JPH06102476A (en) Semiconductor optical modulator, semiconductor photodetector and integrated light source and its production
JPH0682852A (en) Semiconductor device
JP3799628B2 (en) Semiconductor optical integrated device and method for driving semiconductor optical integrated device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080704

Year of fee payment: 11