JP2669279B2 - Blast furnace operation method - Google Patents

Blast furnace operation method

Info

Publication number
JP2669279B2
JP2669279B2 JP30931392A JP30931392A JP2669279B2 JP 2669279 B2 JP2669279 B2 JP 2669279B2 JP 30931392 A JP30931392 A JP 30931392A JP 30931392 A JP30931392 A JP 30931392A JP 2669279 B2 JP2669279 B2 JP 2669279B2
Authority
JP
Japan
Prior art keywords
furnace
erosion
shape
refractory
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30931392A
Other languages
Japanese (ja)
Other versions
JPH06136420A (en
Inventor
興一 栗田
喜保 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30931392A priority Critical patent/JP2669279B2/en
Publication of JPH06136420A publication Critical patent/JPH06136420A/en
Application granted granted Critical
Publication of JP2669279B2 publication Critical patent/JP2669279B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、高炉の炉底耐火物の
侵食形状ならびに炉底耐火物上に生成した炉内溶融物の
凝固層形状を3次元的に推定し、その結果に基いて損耗
防止対策を講じることによって高炉の寿命を延長できる
高炉の操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention three-dimensionally estimates the erosion shape of the furnace bottom refractory of a blast furnace and the solidified layer shape of the in-furnace melt generated on the furnace bottom refractory, and based on the results. The present invention relates to a blast furnace operating method capable of extending the life of a blast furnace by taking measures to prevent wear.

【0002】[0002]

【従来の技術】最近の低経済成長の状況下においては、
従来の高生産性を追求した高炉の苛酷な操業条件や、巻
替えによる大型化に替わり、安定操業を行いつつ高炉寿
命を延長して銑鉄単価を切り下げることが重要課題とな
ってきている。通常高炉の寿命は、羽口から上部につい
てはステーブの取替え等の技術があるため、休風中に修
理が可能で延長できるが、炉底の湯溜り部については、
溶銑が存在して容易に修理することができないため、炉
底耐火物の損耗によって決定されていた。
2. Description of the Related Art In recent low economic growth situations,
In place of the conventional severe operating conditions of blast furnaces pursuing high productivity and the increase in size by winding, it has become an important issue to extend the life of the blast furnace and reduce the unit cost of pig iron while maintaining stable operation. Normally, the life of a blast furnace can be extended and repaired while the wind is down because there is technology such as the replacement of staves from the tuyere to the upper part, but for the hot water pool at the bottom of the furnace,
It was determined by the wear of the bottom refractory because the hot metal was present and could not be easily repaired.

【0003】したがって、高炉の安定操業と寿命延長の
ためには、高炉操業中の炉底耐火物の侵食状況を常時把
握し、侵食箇所の損耗防止対策を迅速かつ的確に取るこ
とが重要である。また、同時に侵食箇所の損耗防止対策
により耐火物侵食面上に生成、消滅を繰返す炉内溶融物
の凝固層の分布状況を把握し、耐火物保護対策の定量化
を図ると共に、凝固層厚や層厚分布の制御を行うことも
重要である。
[0003] Therefore, in order to operate the blast furnace stably and prolong its life, it is important to always keep track of the erosion state of the refractory of the furnace bottom during the operation of the blast furnace and to take quick and accurate measures to prevent wear of the eroded portion. . At the same time, the distribution of the solidified layer of the molten material in the furnace, which repeatedly forms and disappears on the refractory eroded surface by measures to prevent wear of the eroded area, is grasped, and while quantifying protective measures for the refractory, It is also important to control the layer thickness distribution.

【0004】すなわち、耐火物侵食面上に生成、消滅を
繰返す凝固層は、耐火物保護の面からは炉底耐火物の侵
食面全域に亘って厚く生成している方が望ましいが、出
銑口レベル以上に凝固層が生長すると炉底が冷え込み状
態となり易く出銑滓作業の妨げとなる。また、凝固層が
炉底中心で局部的に大きく生長した場合は、溶銑滓の流
路が小さくなって通液抵抗が増加し、一回の出銑滓作業
で排出できる溶銑滓の量が減少し、溶融物が炉床に残り
気味となるので、炉内全体の通気性が悪化したり、装入
物の荷下りが悪くなる。上記したとおり、安定した出銑
滓作業と炉底耐火物の有効な保護を両立させるには、炉
底部凝固層の消長を制御できる技術を確立し、最適な凝
固層厚や分布を定量化し、最適条件で高炉操業を行うこ
とが必要である。したがって、高炉炉底耐火物の侵食形
状ならびに炉底耐火物上に生成した炉内溶融物の凝固層
形状を予測することが重要となる。
That is, from the viewpoint of protection of refractories, it is desirable that the solidified layer that repeatedly forms and disappears on the eroded surface of the refractory is formed thickly over the entire eroded surface of the furnace bottom refractory. When the solidified layer grows above the mouth level, the bottom of the furnace is likely to be in a cold state, which hinders tapping work. If the solidified layer grows locally at the center of the furnace bottom, the flow path of the molten iron slag becomes smaller and the flow resistance increases, and the amount of molten iron slag that can be discharged in one tapping operation decreases. However, since the melt tends to remain in the hearth, the air permeability of the entire furnace is deteriorated and the unloading of the charged material is deteriorated. As mentioned above, in order to achieve both stable tapping work and effective protection of the furnace bottom refractories, we established a technology that can control the fate of the furnace bottom solidified layer, quantified the optimal solidified layer thickness and distribution, It is necessary to operate the blast furnace under optimum conditions. Therefore, it is important to predict the erosion shape of the blast furnace bottom refractory and the solidified layer shape of the in-furnace melt formed on the bottom refractory.

【0005】従来、高炉炉底の温度を基に炉底耐火物の
侵食形状ならびに炉底耐火物上に生成した炉内溶融物の
凝固層形状を予測する方法としては、炉底耐火物内また
は炉底耐火物の外表面に配設した複数の温度センサーに
よる炉底温度測定結果に基づき、高炉の操業推移を通し
た最高温度への到達を検出し、最高温度から境界要素法
を用いて炉底について、炉の縦軸を対称軸とする軸対称
体として伝熱解析により炉底耐火物の侵食形状を予測
し、ついで最高温度よりも炉底温度が低い範囲での複数
の温度センサーによる炉底温度の測定を継続し、継続し
て測定した温度と予測した炉底耐火物の侵食形状とを基
に境界要素法を用いて炉底につき、炉の縦軸を対称軸と
する軸対称体として伝熱解析を行い、侵食された炉底耐
火物上に生成した炉内溶融物の凝固層形状を予測し、そ
の後高炉の操業推移を通した最高温度が検出されたなら
ば、再び最高温度から境界要素法を用いて炉底につい
て、炉の縦軸を対称軸とする軸対称体として伝熱解析に
より炉底耐火物の侵食形状を予測し、ついで最高温度よ
りも炉底温度が低い範囲での複数の温度センサーによる
炉底温度の測定を継続し、継続して測定した温度と予測
した炉底耐火物の侵食形状とを基に境界要素法を用いて
炉底につき、炉の縦軸を対称軸とする軸対称体として伝
熱解析を行い、侵食された炉底耐火物上に生成した炉内
溶融物の凝固層形状を予測することを繰り返し、予測し
た炉内溶融物の凝固層形状を基に、その厚みおよび分布
を、炉底冷却条件を含む高炉操業条件の選択によって制
御し、予測した炉底耐火物の侵食成長を阻止する操業方
法(特公昭61−37327号公報)が提案されてい
る。
Conventionally, as a method of predicting the erosion shape of the furnace bottom refractory and the solidified layer shape of the in-furnace melt formed on the furnace bottom refractory based on the temperature of the blast furnace hearth, Based on the results of bottom temperature measurement by multiple temperature sensors installed on the outer surface of the bottom refractory, the furnace reaches the maximum temperature over the course of the operation of the blast furnace, and uses the boundary element method from the maximum temperature. As for the bottom, the erosion shape of the refractory of the furnace bottom is predicted by heat transfer analysis as an axisymmetric body with the longitudinal axis of the furnace as the axis of symmetry, and then the furnace with multiple temperature sensors in the range where the furnace temperature is lower than the maximum temperature An axisymmetric body with the longitudinal axis of the furnace as the axis of symmetry for the furnace bottom using the boundary element method based on the continuously measured temperature and the predicted erosion shape of the furnace bottom refractory, continuing the measurement of the bottom temperature Heat transfer analysis was performed as a furnace, and the furnace generated on the eroded bottom refractory Predict the solidification layer shape of the melt, and then, if the highest temperature is detected through the operation transition of the blast furnace, use the boundary element method again from the highest temperature for the hearth, and set the vertical axis of the furnace as the axis of symmetry. Predict the erosion shape of the bottom refractory by heat transfer analysis as an axially symmetric body, then continue measuring the bottom temperature with multiple temperature sensors in the range where the bottom temperature is lower than the maximum temperature, and continue to measure Heat transfer analysis was performed using the boundary element method based on the estimated temperature and the estimated erosion shape of the bottom refractory, and a heat transfer analysis was performed as an axisymmetric body with the longitudinal axis of the furnace as the axis of symmetry. By repeatedly predicting the solidification layer shape of the furnace melt generated on the refractory, based on the predicted solidification layer shape of the furnace melt, the thickness and distribution were calculated based on the blast furnace operating conditions including the furnace bottom cooling conditions. Control of the predicted bottom erosion growth of the bottom refractory Operation method of stopping (JP-B 61-37327 JP) have been proposed.

【0006】[0006]

【発明が解決しようとする課題】上記特公昭61−37
327号公報に開示の方法は、炉の縦軸を対称軸とする
軸対称体として境界要素法を用いた伝熱解析により炉底
耐火物の侵食形状ならびに侵食された炉底耐火物上に生
成した炉内溶融物の凝固層形状を予測するものである。
このため、炉の円周方向の炉底耐火物の侵食形状ならび
に侵食された炉底耐火物上に生成した炉内溶融物の凝固
層形状については、平均値でしか求められていなかっ
た。しかし、高炉炉底には、出銑口は多い場合4方位に
ついており、溶銑は出銑口に向かって流れるため、溶銑
の流動は軸対称ではない。このため、図13に示すとお
り、高炉21炉底の侵食22は、軸23対称に進行する
ものではなく、(b)図に示すように出銑口24のある
方位とない方位とでは侵食22の程度が異なる。また、
ある方位では、局部的に炉底耐火物の侵食が進行するこ
とがあり、この局部的な炉底耐火物の侵食が実炉の寿命
律速となる。したがって、高炉炉底耐火物の侵食状況を
常時監視し、侵食防止対策を講じることが必要である。
SUMMARY OF THE INVENTION The above Japanese Patent Publication No. 61-37
The method disclosed in Japanese Patent Publication No. 327 discloses an erosion shape of a furnace bottom refractory and heat generation on an eroded furnace bottom refractory by a heat transfer analysis using a boundary element method as an axisymmetric body having a longitudinal axis of the furnace as a symmetric axis. This is to predict the shape of the solidified layer of the melt in the furnace.
For this reason, the eroded shape of the furnace bottom refractory in the circumferential direction of the furnace and the solidified layer shape of the in-furnace melt generated on the eroded furnace bottom refractory were determined only by average values. However, when there are many taps on the bottom of the blast furnace, there are four directions, and the hot metal flows toward the taps, so the flow of the hot metal is not axisymmetric. Therefore, as shown in FIG. 13, the erosion 22 at the bottom of the blast furnace 21 does not proceed symmetrically with respect to the axis 23, and as shown in FIG. Of different degrees. Also,
In a certain direction, the erosion of the hearth refractory may progress locally, and the erosion of the hearth refractory locally determines the life of the actual furnace. Therefore, it is necessary to constantly monitor the erosion condition of the blast furnace bottom refractory and take measures to prevent erosion.

【0007】伝熱解析においては、軸対称として回転軸
断面上にある複数ヶ所の測温値の平均または最高温度と
同じ温度を与える図14(a)図に示す2次元モデル
、回転軸断面上にある複数ヶ所の測温値の分布温度を
与える図14(b)図に示す3次元モデルとでは、侵食
ラインに差が生じる。すなわち、図14(b)図に示す
3次元モデルでの耐火物残存厚さaは、図14(a)図
に示す軸対称2次元モデルでの耐火物残存厚さbより少
なくなるので、高炉の炉底耐火物の侵食に対する対策
は、3次元モデルでの侵食ライン推定結果を用いて立て
る必要がある。しかしながら、3次元モデルでの伝熱解
析は、軸対称2次元モデルでの伝熱解析に比較して飛躍
的に難しくなるため、従来実施されていなかった。その
理由は、要素が三角形要素から四面体要素へ、または四
角形要素から六面体要素へ変わること、また、節点数が
2(軸対称)からn3(3次元)へ増加し(ただし、n
は1辺の節点数) 、計算時間、計算負荷が飛躍的に増
加すること、さらに、計算プログラムも線積分から面積
分へ、面積分から体積積分へと複雑化すること、さらに
また、表示方法も3次元グラフィックスが必要となるた
めである。
[0007] heat transfer in the thermal analysis, the two-dimensional model shown in FIG. 14 (a) diagram giving the same temperature as the average or maximum temperature of the temperature measurement values of locations in the rotary shaft on the section as an axis of symmetry, rotating shaft There is a difference in the erosion line from the three-dimensional model shown in FIG. 14B, which gives the distribution temperature of the temperature measurement values at a plurality of points on the cross section. That is, the refractory residual thickness a in the three-dimensional model shown in FIG. 14B is smaller than the refractory residual thickness b in the axisymmetric two-dimensional model shown in FIG. Measures against the erosion of the furnace bottom refractory must be made by using the erosion line estimation results in the three-dimensional model. However , the heat transfer analysis using the three- dimensional model has been not performed conventionally because it becomes significantly more difficult than the heat transfer analysis using the axisymmetric two-dimensional model. The reason is that the element changes from a triangular element to a tetrahedral element or from a rectangular element to a hexahedral element, and the number of nodes increases from n 2 (axial symmetry) to n 3 (three-dimensional) (where n
Is the number of nodes on one side), the calculation time and calculation load are dramatically increased, and the calculation program is also complicated from line integration to area integration, from area integration to volume integration, and the display method is also This is because three-dimensional graphics are required.

【0008】この発明の目的は、高炉の炉底耐火物の円
周方向における侵食状況の不均一を検出し、その検出結
果に基いて円周方向方位別に炉底耐火物の損耗を防止す
ると共に、侵食された炉底耐火物上に炉内溶融物の凝固
層を生長させて炉床の寿命を延長できる高炉の操業方法
を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to detect unevenness in the erosion state of a furnace bottom refractory in a blast furnace in the circumferential direction, and based on the detection result, prevent wear of the furnace bottom refractory for each circumferential direction. An object of the present invention is to provide a method for operating a blast furnace that can extend the life of the hearth by growing a solidified layer of the molten material in the furnace on the eroded bottom refractory material.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく種々試験研究を重ねた。その結果、高炉炉
底耐火物内の温度分布に基いて有限要素法(以下FEM
という)、境界要素法(以下BEMという)、または有
限差分法(以下FDMという)を用いて3次元モデルで
の伝熱解析を行い、炉底耐火物の侵食形状、目地差し形
状および凝固層形状を3次元的に求めることによって、
炉底耐火物の円周方向における侵食状況ならびに侵食さ
れた炉底耐火物上に生成した炉内溶融物の凝固層形状を
正確に予測できること、また、予測した炉底耐火物の円
周方向における侵食形状ならびに侵食された炉底耐火物
上に生成した炉内溶融物の凝固層形状に基いて、損耗防
止対策を集中的に実施することによって、高炉寿命を大
幅に延長できることを究明し、この発明に到達した。
Means for Solving the Problems The present inventors have conducted various tests and studies to achieve the above object. As a result, the finite element method (hereinafter referred to as FEM)
), Boundary element method (hereinafter BEM), or finite difference method (hereinafter FDM) to conduct a heat transfer analysis using a three-dimensional model to determine the eroded shape, joint shape and solidified layer shape of the refractory of the furnace bottom. By three-dimensionally obtaining
It is possible to accurately predict the state of erosion of the bottom refractory in the circumferential direction and the shape of the solidified layer of the melt in the furnace generated on the eroded bottom refractory. Based on the eroded shape and the solidified layer shape of the in-furnace melt generated on the eroded bottom refractory, we intensively implemented wear prevention measures to find out that the life of the blast furnace can be extended significantly. The invention has been reached.

【0010】すなわちこの発明は、高炉の炉底部分の温
度に基いて炉底耐火物の侵食状況ならびに侵食された炉
底耐火物上に生成した炉内溶融物の凝固層形状を監視し
つつ操業を行う高炉の操業方法において、炉底耐火物内
および/または炉底耐火物の外表面に3次元的に複数ヶ
所配設した測温センサーにより測定した炉底温度分布に
基づき、有限要素法、境界要素法または有限差分法を用
いて3次元の伝熱解析を行い、炉底耐火物の侵食形状を
求め、過去最深の侵食形状と比較して侵食が進行してい
る領域を更新し、前記炉底温度分布を基に有限要素法、
境界要素法または有限差分法を用いて3次元の伝熱解析
を行い、炉底耐火物の目地差し面形状を求めて先に求め
た目地差し面形状と比較して進行した目地差し面領域を
更新すると共に、目地差し面形状と過去最深の侵食形状
と比較し、過去最深の侵食面と炉内側の目地差し面との
間を凝固層とすることを繰返し、定常的または非定常的
に炉底耐火物の侵食形状ならびに侵食された炉底耐火物
上に生成した炉内溶融物の凝固層形状を推定し、局部的
に侵食している部分には局部的侵食防止対策を、全体的
に侵食している場合には、全体的な侵食防止対策を講じ
るのである。
That is, the present invention operates while monitoring the state of erosion of a bottom refractory based on the temperature of a bottom portion of a blast furnace and the shape of a solidified layer of a melt in the furnace generated on the eroded bottom refractory. In the blast furnace operating method, a finite element method, based on a bottom temperature distribution measured by a three-dimensionally arranged temperature measuring sensor in and / or on the outer surface of the bottom refractory, Perform a three-dimensional heat transfer analysis using the boundary element method or the finite difference method, find the erosion shape of the hearth refractory, update the area where erosion is progressing compared to the deepest erosion shape in the past, Finite element method based on the bottom temperature distribution,
Perform a three-dimensional heat transfer analysis using the boundary element method or the finite difference method, find the joint shape of the hearth refractory, and compare the joint shape area that has progressed with the joint shape previously determined. In addition to updating the joint surface and the deepest eroded shape in the past, the solidification layer between the deepest eroded surface in the past and the jointed surface inside the furnace was repeated. Estimate the erosion shape of the bottom refractory and the solidified layer shape of the melt in the furnace generated on the eroded bottom refractory, and take measures to prevent local erosion for the locally eroded parts. If so, take overall erosion control measures.

【0011】[0011]

【作用】この発明においては、炉底耐火物内および/ま
たは炉底耐火物の外表面に3次元的に複数ヶ所配設した
測温センサーによる炉底温度に基き、FEM、BEMま
たはFDMを用いて3次元の伝熱解析を行い、炉底耐火
物の侵食形状、目地差し形状ならびに侵食された炉底耐
火物上に生成した炉内溶融物の凝固層形状を3次元的に
求めるから、炉底耐火物の円周方向における損耗不均一
を検出することができる。そして、局部的に損耗が進行
している部分には、その直上の羽口からの送風を停止し
たり、または羽口からTi鉱石粉を吹き込む等の局部的
侵食防止対策を講じることにより損耗を防止する。ま
た、目地差しが進行している方位では、鉄皮とれんが間
のスタンプ材の間隙を埋めると同時に、鉄皮水冷を強化
する等の目地差し進行防止対策を講じることにより目地
差し進行が防止され、高炉寿命を大幅に延長することが
できる。
According to the present invention, the FEM, BEM or FDM is used based on the bottom temperature of the furnace bottom refractory and / or the temperature of a plurality of three-dimensionally arranged temperature sensors on the outer surface of the furnace bottom refractory. Heat transfer analysis to determine the erosion shape, joint shape, and solidified layer shape of the furnace melt generated on the eroded bottom refractory in three dimensions. It is possible to detect uneven wear in the circumferential direction of the bottom refractory. In the part where the wear is progressing locally, the wear can be reduced by stopping the ventilation from the tuyere immediately above it or by taking local erosion prevention measures such as blowing Ti ore powder from the tuyere. To prevent. In addition, in the direction where the jointing is progressing, the jointing progress is prevented by filling the gap between the stamp material between the steel bar and the brick and taking measures to prevent the joint penetration such as strengthening the steel water cooling. The blast furnace life can be greatly extended.

【0012】実施例 実施例1 以下にこの発明の詳細を実施の一例を示す図1ないし図
7に基いて説明する。図1は高炉炉底への測温センサー
としての熱電対の設置位置を示す炉底断面図、図2は高
炉炉底高さ方向の熱電対の設置位置を示すもので、
(a)図は図1のレベルA〜Dの熱電対の設置位置図、
(b)図は図1のレベルE、Fの熱電対の設置位置図、
(c)図は図1のレベルGの熱電対の設置位置図、図3
は高炉炉底の状態を示す縦断面図、図4は炉底床面の設
定方法の説明図、図5はれんが侵食ライン推定法の説明
図、図6は炉底凝固層の決定方法の説明図、図7は高炉
炉底の熱伝導度分布図である。
Embodiment 1 The details of the present invention will be described below with reference to FIGS. 1 to 7 showing an embodiment. Fig. 1 is a sectional view of the bottom of the blast furnace showing the installation position of a thermocouple as a temperature measuring sensor on the bottom of the furnace, and Fig. 2 shows the installation position of the thermocouple in the height direction of the blast furnace bottom.
(A) The figure shows the installation position of the thermocouples of levels A to D in FIG.
(B) The figure shows the installation positions of the thermocouples at levels E and F in FIG.
(C) The figure shows the installation position of the level G thermocouple in FIG. 1, and FIG.
Is a longitudinal sectional view showing the state of the blast furnace bottom, FIG. 4 is an explanatory view of a method of setting a furnace floor, FIG. 5 is an explanatory view of a method for estimating a brick erosion line, and FIG. 6 is a method of determining a solidified layer of a furnace bottom. FIG. 7 and FIG. 7 are thermal conductivity distribution diagrams of the blast furnace bottom.

【0013】図1および図2に示すとおり、高炉1の炉
底の底盤2部分には、通常4〜6方位以上、高さ方向で
2段以上で熱電対3が設置され、れんが4の温度測定を
実施し、側壁5部分では、4方位以上でれんが内ならび
にれんが背面に熱電対3を設置し、温度の測定を実施し
ている。この測温点数が多いほど炉底耐火物損耗形状、
目地差し形状、凝固層形状を3次元的に正確に求めるこ
とができる。図3に示すとおり、高炉1の炉床は、健全
れんが6の上部に目地差し領域7が、炉底の側壁5との
境界部の目地差し領域7の上に凝固層8が形成される。
なお、9は溶銑+コークス塊を示す。先ず、炉床の目地
差し面の3次元形状を仮定し、目地差し等温面を銑鉄凝
固温度の1150℃とおく、さらに、底盤2および側壁
5の境界条件をその冷却条件に応じて設定する。例え
ば、底盤2の水冷を20℃で総括熱伝達係数を25Kc
al/m2・hr・℃、側壁5の水冷を20℃で総括熱
伝達係数を200Kcal/m2・hr・℃のように与
える。上記の条件下でれんが内の温度分布を3次元的に
FEM、BEMまたはFDMを用いて伝熱解析を行い、
れんが測温点での計算温度と実測温度とを比較し、実測
温度の方が計算温度より低ければ、目地差し面を***さ
せ、逆に実測温度の方が計算温度より高ければ、目地差
し面をさらに進行させる。
As shown in FIGS. 1 and 2, a thermocouple 3 is installed on the bottom 2 of the hearth of the blast furnace 1 usually in four to six directions or more and in two or more stages in the height direction. The measurement is performed, and the temperature is measured by installing thermocouples 3 in the bricks in the four directions or more in the side wall 5 and on the back surface of the brick. The larger the number of temperature measurement points, the more the shape of the hearth refractory wear,
It is possible to accurately obtain the joint shape and the solidified layer shape three-dimensionally. As shown in FIG. 3, in the hearth of the blast furnace 1, a joint region 7 is formed above the sound brick 6, and a solidified layer 8 is formed on the joint region 7 at the boundary with the side wall 5 of the furnace bottom.
In addition, 9 shows a hot metal + coke lump. First, assuming the three-dimensional shape of the joint surface of the hearth, the joint isothermal surface is set to 1150 ° C., which is the pig iron solidification temperature, and the boundary conditions of the bottom plate 2 and the side wall 5 are set according to the cooling conditions. For example, the bottom plate 2 is water-cooled at 20 ° C and the overall heat transfer coefficient is 25 Kc.
Al / m 2 · hr · ° C, and water cooling of the side wall 5 is given at 20 ° C so that the overall heat transfer coefficient is 200 Kcal / m 2 · hr · ° C. Under the above conditions, the temperature distribution inside the brick is three-dimensionally analyzed by heat transfer using FEM, BEM or FDM.
The calculated temperature at the brick measuring point is compared with the measured temperature.If the measured temperature is lower than the calculated temperature, the joint surface is raised.If the measured temperature is higher than the calculated temperature, the joint surface is raised. To proceed further.

【0014】上記目地差し面の***および目地差し面の
進行方法は、図4に示すとおり、炉底半径にほぼ等しい
高さhまで計算領域に設定し、炉心10の高さhの所に
原点Oを置き、原点Oから炉底れんがの各測温点11に
向かって放射状に直線を引き、この直線と初めに仮定し
た目地差し面12との交点をPとする。そして前記れん
がの各測温点11での計算温度が実測温度より低けれ
ば、その温度差(ΔT)に相当するだけ目地差し面12
を原点Oに対してΔxだけ移動させ、この点をP’とす
る。ただし、Δxは図5に示すとおり、Δx=ΔT(O
P間距離/1350)により与える。逆に前記れんがの
各測温点11での計算温度が実測温度より高ければ、そ
の温度差(ΔT)に相当するだけ目地差し面12を原点
Oから離れる方向にΔxだけ移動させる。このようにし
て目地差し面12を実測温度と計算温度との差に応じて
移動させ、目地差し面形状を決定する。
As shown in FIG. 4, the elevation of the joint surface and the advance method of the joint surface are set in the calculation area up to a height h substantially equal to the furnace bottom radius, and the origin is set at the height h of the core 10. O is placed, and a straight line is drawn radially from the origin O toward each of the temperature measurement points 11 of the hearth brick, and the intersection point of this straight line and the joint surface 12 initially assumed is P. If the calculated temperature at each temperature measuring point 11 of the brick is lower than the measured temperature, the joint joint surface 12 is equivalent to the temperature difference (ΔT).
Is moved by Δx with respect to the origin O, and this point is designated as P ′. Here, Δx is, as shown in FIG. 5, Δx = ΔT (O
P distance / 1350). Conversely, if the calculated temperature at each temperature measuring point 11 of the brick is higher than the actually measured temperature, the jointing surface 12 is moved by Δx in a direction away from the origin O by an amount corresponding to the temperature difference (ΔT). In this way, the joint joint surface 12 is moved according to the difference between the measured temperature and the calculated temperature, and the joint joint surface shape is determined.

【0015】このように更新した目地差し面12形状を
初期値として、前記底盤2および側壁5の境界条件をそ
の冷却条件、底盤2の水冷が20℃で総括熱伝達係数2
5Kcal/m2・hr・℃、側壁5の水冷が20℃で
総括熱伝達係数を200Kcal/m2・hr・℃を与
え、れんが内の温度分布を3次元的にFEM、BEMま
たはFDMを用いて伝熱解析して求める。そして前記方
法により目地差し面12を***または目地差し面12を
進行させることを繰り返し、計算温度と実測温度との差
を小さくし、この差が全ての測温点である一定値以下と
なった時点で収束したこととする。なお、れんが測温位
置は、離散的に分布しているので、その測温位置によっ
て推定される目地差し面上の点も離散的である。したが
って、点から面を補完するためには、3次元のスプライ
ン関数を用いる。
With the shape of the joint surface 12 thus updated as an initial value, the boundary condition of the bottom plate 2 and the side wall 5 is the cooling condition, and the water cooling of the bottom plate 2 is 20 ° C. and the overall heat transfer coefficient 2
5Kcal / m 2 · hr · ℃ , water cooling of the side walls 5 are given 200Kcal / m 2 · hr · ℃ the overall heat transfer coefficient at 20 ° C., FEM the temperature distribution in the brick three-dimensionally, the BEM or FDM using Heat transfer analysis. Then, the joint surface 12 is raised or the joint surface 12 is advanced by the above-described method, and the difference between the calculated temperature and the actually measured temperature is reduced, and the difference becomes equal to or less than a certain value which is all the temperature measurement points. It is assumed that it has converged at the time. Since the brick temperature measuring positions are discretely distributed, the points on the joint surface estimated by the temperature measuring positions are also discrete. Therefore, a three-dimensional spline function is used to complement the surface from points.

【0016】収束後の目地差し面12が先に求めた目地
差し面12より侵食の進行した位置にあれば、目地差し
が進行したものと見なし、その目地差し面12をCRT
画面に表示し、高炉操業者に速報する。また、逆に収束
後の目地差し12面が先に求めた目地差し面12より隆
起した位置にあれば、先に求めた目地差し面12をCR
T画面に表示し、高炉操業者に速報する。上記操作によ
り目地差し面12が決定すれば、凝固層形状を決定する
ことができる。すなわち、図6に示すとおり、過去最深
のれんが侵食面13aより***した決定した目地差し面
12との間を凝固層8とするのである。なお、12aは
過去最深の目地差し面を示す。
If the joint surface 12 after convergence is located at a position where erosion has progressed from the joint surface 12 previously obtained, it is regarded that the joint has advanced, and the joint surface 12 is regarded as a CRT.
Display it on the screen and notify the blast furnace operator. On the contrary, if the joint surface 12 after convergence is located at a position higher than the previously calculated joint surface 12, the previously calculated joint surface 12 is CR.
Display on the T screen and notify the blast furnace operator immediately. If the joint surface 12 is determined by the above operation, the solidified layer shape can be determined. That is, as shown in FIG. 6, the solidification layer 8 is formed between the deepest brick in the past and the determined joint-joint surface 12 that is raised from the erosion surface 13a. Note that reference numeral 12a denotes the deepest jointed surface in the past.

【0017】れんが侵食面13は、目地差し面12より
一般に高い等温面(約1350℃)で規定される。れん
が侵食面13の推定は、上記目地差し面12の推定と同
様に、先ずれんが侵食面13を仮定し、この面上で温度
を与え(1350℃)れんが内温度分布を3次元的にF
EM、BEMまたはFDMを用いて伝熱解析を行う。こ
の場合の底盤2および側壁5の境界条件は、目地差し面
12の推定に用いた境界条件と同じである。そしてれん
が侵食面13のれんが測温点での計算温度と実測温度と
を比較し、そして前記方法によりれんが侵食面を***ま
たはれんが侵食面を進行させる操作を繰り返すことによ
って、計算温度と実測温度との差を小さくし、この差が
全ての測温点である一定値以下となった時点で収束した
こととする。このれんが侵食面13の収束方法は、前記
目地差し面12の推定アルゴリズムと同様である。
The brick erosion surface 13 is defined as an isothermal surface (about 1350 ° C.) generally higher than the joint joint surface 12. Estimation of the brick erosion surface 13 is similar to the estimation of the joint insertion surface 12, assuming the tip erosion surface 13 and giving a temperature on this surface (1350 ° C.) to obtain a three-dimensional distribution of the inside temperature distribution of the brick.
Conduct heat transfer analysis using EM, BEM or FDM. The boundary conditions of the bottom plate 2 and the side wall 5 in this case are the same as the boundary conditions used for the estimation of the joint surface 12. Then, the calculated temperature at the brick erosion surface 13 is compared with the measured temperature at the brick temperature measurement point and the measured temperature, and the operation of raising the brick erosion surface or advancing the brick erosion surface by the above method is repeated to calculate the calculated temperature and the measured temperature. It is assumed that the difference is reduced, and the difference converges when all the temperature measurement points are equal to or less than a certain value. The method for converging the brick erosion surface 13 is the same as the estimation algorithm for the joint surface 12.

【0018】そして推定された収束後のれんが侵食面1
3が過去最深のれんが侵食面13aとを比較し、過去最
深のれんが侵食面13aより侵食の進行した位置にあれ
ば、れんが侵食面13が進行したものと見なし、そのれ
んが侵食面13をCRT画面に表示し、高炉操業者に速
報する。また、逆に収束後のれんが侵食面13が過去最
深のれんが侵食面13aより***した位置にあれば、過
去最深のれんが侵食面13aをCRT画面に表示し、高
炉操業者に速報する。
Then, the estimated erosion surface 1 of the brick after convergence is estimated.
3 compares the deepest brick erosion surface 13a in the past, and if the deepest brick erosion surface 13a is in a position where erosion has progressed from the erosion surface 13a, it is considered that the brick erosion surface 13 has progressed, and the brick erosion surface 13 is displayed on the CRT screen. It will be displayed on the screen and will be notified to the blast furnace operator. Conversely, if the converged brick erosion surface 13 is located at a position higher than the deepest brick erosion surface 13a in the past, the deepest brick erosion surface 13a in the past is displayed on the CRT screen and the blast furnace operator is notified immediately.

【0019】なお、3次元のFEM、BEMまたはFD
Mの温度計算において、過去最深の目地差し面12aよ
り炉外側で目地差し温度より低い領域では、建設時に測
定したれんがの熱伝導度を用いる。その領域より炉内側
で、過去最深のれんが侵食面13aより炉外側の領域の
うち、れんが侵食温度より低い領域を変質れんが層(建
設時のれんがに溶銑が浸透した層)と考える。変質れん
が層の熱伝導度は、建設時のれんがの熱伝導度と銑鉄の
熱伝導度との間の値を用いる。なお、れんが材質によっ
て溶銑の浸透度合いが異なるが、シャモットれんがでは
20Kcal/m・hr・℃とする。過去最深のれんが
侵食面より炉内側は、銑鉄凝固層と考え、熱伝導度も実
炉の実績から12Kcal/m・hr・℃とした。上記
による熱伝導度λの分布図の一例を図7に示す。なお、
図7中の熱伝導度λの単位は、Kcal/m・hr・℃
である。上記により求めた炉底の侵食面、凝固層の付着
状態、れんが変質、目地差し状態および温度分布は、3
次元的にCRT画面によりグラフ表示し、高炉操業者に
速報する。
In addition, three-dimensional FEM, BEM or FD
In the calculation of the temperature of M, the thermal conductivity of the brick measured at the time of construction is used in the region outside the furnace and below the joint temperature of the deepest joint surface 12a in the past. A region lower than the brick erosion temperature in a region inside the furnace inside the furnace and outside the deepest brick erosion surface 13a in the past is considered to be an altered brick layer (a layer in which molten iron penetrated into the brick during construction). As the thermal conductivity of the altered brick layer, a value between the thermal conductivity of the brick at the time of construction and the thermal conductivity of pig iron is used. The degree of penetration of hot metal differs depending on the material of the brick, but for chamotte brick, it is 20 Kcal / m · hr · ° C. The inside of the furnace from the deepest erosion surface of bricks in the past was considered to be a pig iron solidified layer, and the thermal conductivity was set to 12 Kcal / m · hr · ° C based on the actual furnace results. FIG. 7 shows an example of a distribution diagram of the thermal conductivity λ according to the above. In addition,
The unit of thermal conductivity λ in FIG. 7 is Kcal / m · hr · ° C.
It is. The erosion surface of the furnace bottom, the adhered state of the solidified layer, the alteration of bricks, the joint condition and the temperature distribution obtained above are 3
Dimensionally displayed on a CRT screen as a graph to notify the blast furnace operator in advance.

【0020】上記3次元的にCRT画面によりグラフ表
示された結果から、局部的に炉底が侵食されていること
が判明すれば、高炉操業者は、局部侵食方位の冷却強
化、局部侵食方位へのモルタル圧入(出銑口へのマッド
の圧入も含む)、局部侵食方位の羽口への送風量の減
少、局部侵食方位の羽口へのTi粉鉱石の吹き込み、局
部侵食方位へのTi鉱石の装入、底盤の冷却強化、出銑
口回りの損耗の場合は、出銑口深さの増加等の対策を実
施する。
If the bottom of the furnace is found to be locally eroded from the results of the three-dimensional graphical display on the CRT screen, the blast furnace operator can enhance the cooling of the local erosion direction and move to the local erosion direction. Mortar injection (including the injection of mud into the taphole), reduction of the amount of air blown to the tuyere with local erosion direction, injection of Ti powder ore into the tuyere with local erosion direction, Ti ore into local erosion direction In case of the charging of, the strengthening of the cooling of the bottom plate, and the wear around the taphole, measures such as increasing the taphole depth will be implemented.

【0021】実施例2 前記実施例1の方法によって図8に示すとおり、No.
1出銑口14およびNo.2出銑口15の近傍の耐火物
溶損が激しいことが判明したので、No.1出銑口14
およびNo.2出銑口15からボタ16を圧入し、出銑
口深さを確保した。その結果、図9に示すとおり、N
o.1出銑口14およびNo.2出銑口15近傍に銑鉄
凝固層8が形成されたことが確認された。また、図10
に示すとおり、炉底の300°方位に側壁耐火物損耗が
激しい部分17があることが判明した。そこで炉底側壁
の300°方位の鉄皮内面にスタンプ圧入を実施したと
ころ、図11に示すとおり、炉底の300°方位の側壁
の熱伝導度が上昇し、炉内に凝固層8が形成されたこと
が確認された。さらに炉底の300°方位の側壁耐火物
損耗が激しい部分17に羽口からTi粉鉱石を吹き込ん
だところ、図12に示すとおり、凝固層8の表面にTi
2凝固層18が生成していることが確認された。
Example 2 As shown in FIG.
No. 1 tap hole 14 and No. 1 It was found that refractory erosion near the taphole 15 was severe. 1 taphole 14
And No. (2) Bottom 16 was press-fitted from taphole 15 to secure the taphole depth. As a result, as shown in FIG.
o. No. 1 tap hole 14 and No. 1 2 It was confirmed that the pig iron solidified layer 8 was formed in the vicinity of the taphole 15. FIG.
As shown in (3), it was found that there was a portion 17 where the side wall refractory wear was severe in the 300 ° azimuth of the furnace bottom. Then, when a stamp was pressed into the inner wall of the 300 ° azimuth steel wall of the furnace bottom side wall, as shown in FIG. 11, the thermal conductivity of the 300 ° azimuth side wall of the furnace bottom increased, and a solidified layer 8 was formed in the furnace. It was confirmed that it was done. Furthermore, when Ti powder ore was blown from the tuyere into the portion 17 where the wear of the refractory on the side wall of the furnace bottom at 300 ° was severe, as shown in FIG.
It was confirmed that the O 2 solidified layer 18 was formed.

【0022】[0022]

【発明の効果】以上述べたとおり、この発明方法によれ
ば、高炉炉底耐火物の円周方向における損耗を検知し、
円周方向方位別に諸対策を講じることによって、損耗を
防止すると共に凝固層を発生させ、従来の高炉の寿命の
最高13年を、20年と大幅に延長することができ、高
炉巻替えのための設備投資を著しく軽減することができ
る。
As described above, according to the method of the present invention, wear in the circumferential direction of the blast furnace bottom refractory is detected,
By taking various measures in the circumferential direction, it is possible to prevent wear and generate a solidified layer, and the life of the conventional blast furnace can be greatly extended from 13 years to 20 years. The capital investment of can be significantly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高炉炉底への熱電対の設置位置を示す炉底断面
図である。
FIG. 1 is a furnace bottom sectional view showing the installation position of a thermocouple on a blast furnace furnace bottom.

【図2】高炉炉底高さ方向の熱電対の設置位置を示すも
ので、(a)図は図1のレベルA〜Dの熱電対の設置位
置図、(b)図は図1のレベルE、Fの熱電対の設置位
置図、(c)図は図1のレベルGの熱電対の設置位置図
である。
2A and 2B show the installation positions of thermocouples in the height direction of the blast furnace bottom, where FIG. 2A is a installation position diagram of thermocouples of levels A to D in FIG. 1, and FIG. 2B is a level of FIG. The installation positions of the thermocouples E and F are shown in (c). The installation positions of the thermocouples at level G in FIG. 1 are shown.

【図3】高炉炉底の状態を示す縦断面図である。FIG. 3 is a vertical cross-sectional view showing the state of the bottom of the blast furnace.

【図4】炉底床面の設定方法の説明図である。FIG. 4 is an explanatory diagram of a method of setting the floor surface of the hearth bottom.

【図5】れんが侵食ライン推定法の説明図である。FIG. 5 is an explanatory diagram of a brick erosion line estimation method.

【図6】炉底凝固層の決定方法の説明図である。FIG. 6 is an explanatory diagram of a method for determining a bottom solidified layer of a furnace.

【図7】高炉炉底の熱伝導度分布図である。FIG. 7 is a thermal conductivity distribution diagram of the bottom of the blast furnace.

【図8】実施例2における出銑口近傍の耐火物の損耗説
明図である。
FIG. 8 is an explanatory diagram of wear of a refractory near a taphole in Embodiment 2.

【図9】同じく出銑口からボタを圧入後の凝固層形成説
明図である。
FIG. 9 is an explanatory view showing formation of a solidified layer after press-fitting a slag from a tap hole.

【図10】同じく炉底の300°方位の側壁耐火物の損
耗説明図である。
FIG. 10 is an explanatory diagram of wear of a side wall refractory of the furnace bottom in the direction of 300 °.

【図11】同じく炉底の300°方位の鉄皮内面にスタ
ンプ圧入実施後の凝固層形成説明図である。
FIG. 11 is an explanatory view of the formation of a solidified layer after the stamping is performed on the inner surface of the iron shell of the furnace bottom in the 300 ° direction.

【図12】同じく炉底の300°方位の側壁耐火物の損
耗部に羽口からTi粉鉱石を吹き込み後の凝固層形成説
明図である。
FIG. 12 is an explanatory view of solidified layer formation after blowing Ti powder ore from a tuyere into a worn portion of a side wall refractory in the 300 ° azimuth direction of the furnace bottom.

【図13】高炉炉底の侵食状況を示すもので、(a)図
は縦断面図、(b)図は(a)図のA−A断面図であ
る。
13A and 13B show the erosion state of the bottom of the blast furnace, where FIG. 13A is a vertical sectional view and FIG. 13B is a sectional view taken along the line AA of FIG. 13A.

【図14】軸対称と3次元との侵食ライン推定結果の差
異を示すもの、(a)図は軸対称の侵食ライン推定結果
説明図、(b)図は3次元の侵食ライン推定結果説明図
である。
14A and 14B show the difference between the estimated results of the erosion line estimation for the axial symmetry and the three-dimensional one. FIG. 14A is an explanatory diagram of the estimation result of the axisymmetric erosion line, and FIG. It is.

【符号の説明】[Explanation of symbols]

1、21 高炉 2 底盤 3 熱電対 4 れんが 5 側壁 6 健全れんが 7 目地差し領域 8 凝固層 9 溶銑+コークス塊 10 炉心 11 測温点 12 目地差し面 13 れんが侵食面 14 No.1出銑口 15 No.2出銑口 16 ボタ 17 側壁耐火物損耗が激しい部分 18 TiO2凝固層 22 侵食 23 軸 24 出銑口1, 21 Blast furnace 2 Bottom floor 3 Thermocouple 4 Brick 5 Side wall 6 Sound brick 7 Joint filling area 8 Solidified layer 9 Hot metal + coke lump 10 Core 11 Temperature measuring point 12 Joint filling surface 13 Brick erosion surface 14 No. 1 tap hole 15 No. 2 tap hole 16 button 17 side wall where refractory wear is severe 18 TiO 2 solidified layer 22 erosion 23 shaft 24 tap hole

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高炉の炉底部分の温度に基いて炉底耐火
物の侵食状況ならびに侵食された炉底耐火物上に生成し
た炉内溶融物の凝固層形状を監視しつつ操業を行う高炉
の操業方法において、炉底耐火物内および/または炉底
耐火物の外表面に3次元的に複数ヶ所配設した測温セン
サーにより測定した炉底温度分布に基づき、有限要素
法、境界要素法または有限差分法を用いて3次元の伝熱
解析を行い、炉底耐火物の侵食形状を求め、過去最深の
侵食形状と比較して侵食が進行している領域を更新し、
前記炉底温度分布を基に有限要素法、境界要素法または
有限差分法を用いて3次元の伝熱解析を行い、炉底耐火
物の目地差し面形状を求めて先に求めた目地差し面形状
と比較して進行した目地差し面領域を更新すると共に、
目地差し面形状と過去最深の侵食形状と比較し、過去最
深の侵食面と炉内側の目地差し面との間を凝固層とする
ことを繰返し、定常的または非定常的に炉底耐火物の侵
食形状ならびに侵食された炉底耐火物上に生成した炉内
溶融物の凝固層形状を推定し、局部的に侵食している部
分には局部的侵食防止対策を、全体的に侵食している場
合には、全体的な侵食防止対策を講じることを特徴とす
る高炉の操業方法。
1. A blast furnace which operates while monitoring the state of erosion of the bottom refractory based on the temperature of the bottom of the blast furnace and the shape of the solidified layer of the melt in the furnace generated on the eroded bottom refractory. Operating method, the finite element method and the boundary element method are used on the basis of the bottom temperature distribution measured by three-dimensionally arranged temperature measuring sensors inside and / or on the outer surface of the bottom refractory. Alternatively, perform a three-dimensional heat transfer analysis using the finite difference method, find the erosion shape of the bottom refractory, update the area where erosion is progressing compared with the deepest erosion shape in the past,
Based on the furnace bottom temperature distribution, a three-dimensional heat transfer analysis is performed by using the finite element method, the boundary element method, or the finite difference method, and the joint surface of the hearth refractory is determined to obtain the joint surface. While updating the jointing plane area that has progressed compared to the shape,
By comparing the joint surface shape with the deepest eroded shape in the past and repeatedly forming a solidified layer between the deepest eroded surface in the past and the joint surface inside the furnace, the furnace bottom refractory Estimates the eroded shape and the solidified layer shape of the melt in the furnace generated on the eroded bottom refractory. In some cases, a method of operating a blast furnace characterized by taking overall erosion control measures.
JP30931392A 1992-10-22 1992-10-22 Blast furnace operation method Expired - Lifetime JP2669279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30931392A JP2669279B2 (en) 1992-10-22 1992-10-22 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30931392A JP2669279B2 (en) 1992-10-22 1992-10-22 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH06136420A JPH06136420A (en) 1994-05-17
JP2669279B2 true JP2669279B2 (en) 1997-10-27

Family

ID=17991514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30931392A Expired - Lifetime JP2669279B2 (en) 1992-10-22 1992-10-22 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP2669279B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106500850A (en) * 2016-12-28 2017-03-15 中冶京诚工程技术有限公司 Converter bottom outer wall temperature monitoring device
KR102133088B1 (en) * 2018-08-27 2020-07-10 현대제철 주식회사 Rh degassing appatarus
EP4372301A3 (en) * 2018-10-22 2024-07-10 ArcelorMittal Method for monitoring the wear of a refractory lining of a blast furnace
CN111854668B (en) * 2020-08-25 2024-07-12 中冶赛迪工程技术股份有限公司 Blast furnace lining thickness calculating device and method based on distributed optical fiber temperature measurement
CN114139412A (en) * 2021-10-28 2022-03-04 中冶南方工程技术有限公司 Furnace hearth erosion evaluation method, electronic equipment and storage medium

Also Published As

Publication number Publication date
JPH06136420A (en) 1994-05-17

Similar Documents

Publication Publication Date Title
US5975754A (en) Method for monitoring the wear and extending the life of blast furnace refractory lining
JP2669279B2 (en) Blast furnace operation method
JP6669024B2 (en) Method of estimating hot metal flow velocity in blast furnace and operating method of blast furnace
CN106687606B (en) Blast furnace cooling fin with integrated wear detecting system
JPH0967607A (en) Method for monitoring furnace bottom of blast furnace
JP2002266011A (en) Method for estimating furnace condition in blast furnace
JP5854200B2 (en) Blast furnace operation method
TWI612303B (en) Status monitoring system for fire-resistant material in furnace and monitoring method thereof
US6375346B1 (en) Method for detecting the spalling of a layer of buildup of a refractory lining in a metallurgical furnace
JP3385831B2 (en) Estimation method of hearth erosion line and hearth structure
JP4497004B2 (en) Monitoring and pressure control method for converter bottom blowing tuyere
Chang et al. Real-Time Hearth Liquid Level Monitoring Systems to Optimize Tapping Strategies in Blast Furnaces
CN217111212U (en) Device for preventing molten iron of high-titanium slag closed electric furnace from penetrating into furnace
JPS6026801B2 (en) How to control shaft furnace operation
CN114395651A (en) Intelligent management method and system for furnace hearth
JP2002060821A (en) Structure for furnace wall in blast furnace and method for operating blast furnace
JP2008223121A (en) Method for repairing furnace wall surface at upper part of blast furnace shaft
JPH10280020A (en) Operation of smelting reduction
JP4038153B2 (en) Blast furnace bottom cooling method
JPS6137327B2 (en)
JP3512042B2 (en) Cooling method of blast furnace refractory
JPH10298619A (en) Operation of blast furnace
JPH06212215A (en) Method for controlling temperature of refractory brick at furnace bottom
JPS62238308A (en) Temperature measuring method for bottom part of blast furnace
JP2008223120A (en) Method for evaluating furnace wall surface state at upper part of blast furnace shaft