JP2667878C - - Google Patents

Info

Publication number
JP2667878C
JP2667878C JP2667878C JP 2667878 C JP2667878 C JP 2667878C JP 2667878 C JP2667878 C JP 2667878C
Authority
JP
Japan
Prior art keywords
fine particles
light
refractive index
resin
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Publication date

Links

Description

【発明の詳现な説明】 産業䞊の利甚分野 本発明は照明カバヌ、照明看板、グレヌゞング、各皮ディスプレむあるいは透
過型スクリヌン等光の拡散を目的ずした郚材に奜適な光拡散性プラスチックに関
するものである。 埓来の技術 埓来、照明カバヌ、ディスプレヌ甚スクリヌン等の光拡散性材料ずしおは、無
機たたは有機の透明埮粒子をアクリル暹脂、スチレン暹脂等の透明プラスチック
に分散された材料、あるいは透明プラスチックの衚面を䜕らかの方法で租面化し
た材料等が知られおおり、これらを䜵甚するこずを公知である。近幎特にリアプ
ロゞェクションテレビ甚のスクリヌン等の高床の性胜を芁求される光拡散性プラ
スチックの必芁性の増倧に䌎ないより高性胜の材料を求めお倚くの努力がなされ
おきた。これら光拡散性材料に望たれる性胜は、できるだけ広い範囲に、均䞀
に、しかも明るく、光を拡散させる事である。しかし光源からでる光の量は䞀
定であるので、これらずの芁求は互いに盞反する芁求である。したがっお実
際には必芁に応じお、拡散材の濃床を倉える等の方法で、最も奜たしい茝床ず広 がりずなるように遞択しお甚いおいる。透明プラスチックに光拡散材を分散させ
お光拡散性材料を埗る方法においお、奜適な光拡散材ず透明プラスチックの組み
合わせを埗るための指暙ずしおは、䞻ずしお光拡散材埮粒子の粒埄および光拡散
材埮粒子ず透明プラスチックの屈折率差が甚いられおきた。たずえば特公昭
−号公報には基䜓透明暹脂ずの屈折率差が〜であり、
平均盎埄が〜Όである架橋埮粒子を光拡散材ずする方法が述べられおお
り、たた特開昭−号公報には基䜓暹脂よりも〜だ
け倧きい屈折率を有する粒埄Ό以䞋の結晶粉を配合する方法が蚘茉されおお
り、さらにたた特開昭−号公報においおは屈折率差が
〜で粒埄が〜Ό、特開昭−号公報では屈折率差
〜で粒埄が〜Όのものが提案されおいるほか、特開昭
−号公報の劂く、粒埄が〜Όで屈折率が基䜓暹脂よりも
〜倧きい埮粒子ず粒埄が〜Όで屈折率が〜小さい埮
粒子を䜵甚する方法も蚘茉されおいる。その他特公昭−号公報た
たは特開昭−号公報においおは基䜓暹脂よりも屈折率が
〜小さく平均粒埄が〜Όの埮粒子を分散する方法も提案されおい
る。その他、具䜓的蚘述のある基䜓暹脂および光拡散材の組み合わせは極めお倚
岐にのがり、すべおを蚘述するこずは困難であるが、たずえばメタクリル暹脂
屈折率を基䜓暹脂ずする堎合においお結晶性シリカ屈折率
、無定圢シリカ屈折率、炭酞カルシりム屈折率、
氎酞化アルミニりム屈折率、ガラスビヌズ−屈折率
、ガラス球屈折率、フッ化カルシりム屈折率
、フッ化リチりム屈折率、硫酞バリりム屈折率、ア
ルミナ粉末屈折率の他屈折率は䞍明であるが酞化マグネシりム、酞化
チタン、タルクや架橋ポリマヌ等が甚いられおおり、ポリスチレン暹脂屈折率
、ポリ塩化ビニル暹脂屈折率たたはポリカヌボネヌト暹
脂屈折率を基䜓暹脂ずする堎合においおも皮々の無機埮粒子が甚い
られおいる。このように埓来開瀺されおきた技術を敎理しおみるず、屈折率差、
粒埄に぀いお倚くの方法が提案されおいるものの、それらは非垞に広い範囲のも
の が、たちたちに提案されおおり、どのような組合せが奜たしいのか、刀断に苊し
むのが珟状である。事実近幎のリアプロゞェクションテレビ甚のスクリヌン等に
関したすたす高たる芁求に察しおは、これら既存の技術では、未だ䞍十分である
こずが远詊隓の結果刀明した。 発明が解決しようずする課題 本発明は、このように雑然ずした技術の流れの䞭で、すぐれた光拡散性胜を有
する、すなわち最倧茝床oができるだけ倧きく、か぀半倀角茝床がた
で䜎䞋する角床のできるだけ倧きい、しかも透過光が赀味を垯びるこずのない
光拡散材料を提䟛するこずを目的ずするものである。 課題を解決するための手段 本発明は、屈折率からなるプラスチック䞭に、䞋蚘匏、および匏
II ≊−−−≊  ≊ II を満足する平均粒子埄ミクロン、屈折率を有し、か぀内郚に空孔を有
する粒子の党埮粒子䞭に占める割合が重量以䞋である透明球状無機埮粒子を
分散させるこずにより、たた透明埮粒子のうち非球状の粒子が党透明埮粒子䞭に
占める割合を重量以䞋ずするこずにより奜たしく達成される。実質的に透
明なプラスチックずしおメタクリル暹脂たたはメチルメタクリレヌト以䞋
ず蚘すずスチレンの共重合暹脂を甚いる堎合、埮粒子ずしおおよび倚
官胜性メタアクリヌト、あるいは、スチレンおよび倚官胜性メタ
アクリレヌトを構成成分ずする架橋共重合䜓埮粒子を甚いるこずによっお䞊蚘目
的を達成するこずができる。 䜜甚 本発明者等は基䜓透明暹脂ず透明埮粒子の屈折率差、透明埮粒子の粒埄ず拡散
性胜の関係を総合的に怜蚎しお、本発明に到達した。すなわち、本発明においお
は、基䜓透明暹脂の屈折率ず透明埮粒子の屈折率の絶察差−
が以䞊、以䞋であるこずが必芁である。本発明者らは基䜓暹
脂ず透明埮粒子の屈折率差および透明埮粒子の粒子埄を倉えた平板を皮々䜜成し
、 平板の埌方より平行光線を入射し、前方に出おくる光の茝床の角床分垃を枬定し
、平板面における照床ず各々の茝床からゲむンを次匏により蚈算した。 茝床フヌトランバヌト照床フヌトキャンドル VI ゲむンは拡散板の正面においお最高倀を瀺し、拡散板の法線ずなす角が倧きく
なるに぀れお、第図に瀺すように、埐々に倀が小さくなる。ケむンの最高倀を
ピヌクゲむンず呌びoで衚わすこずずし、ゲむンがビヌクケむンのにな
る角床を半倀角ず呌びαで衚わすこずずするず、本発明の目的はoおよびαを
いずれも倧きくするこずにある。ただし、䞀般には光拡散板は単なる平板状で甚
いられるずは限らず、皮々のレンズ圢状を賊䞎したり、衚面凊理等の別の光拡散
性賊䞎手段ずの䜵甚により目的を達成するこずが倚く、o、α等はそれらの皮
類、皋床によっおも倉動するので、本発明の目的の性胜はこのような枬定手段に
よるoおよびαの倀で衚珟するこずは適圓ではない。しかしながら、このよう
にしお平板状の光拡散板で枬定したoおよびαの倧きい組み合わせを採甚する
ず、他の圢状においおも優れた性胜を瀺すこずが、実隓的に確認できるので、本
発明者らは、光拡散材による光拡散性胜を比范評䟡しやすい平板による方法を䞻
ずしお採甚した。䞀定の基板暹脂ず光拡散材の組み合わせにおいお、光拡散材の
濃床を倉えるず、第図のように濃床の増加に䌎぀おoは枛少し、αは増倧す
る。そこで良奜な光拡散材を遞択する手段ずしお、光拡散材の濃床を倉えお、䞀
定のoが埗られる濃床を遞定し、その濃床における半倀角αが倧きいものが奜
たしい光拡散性プラスチックであるず考えた。実隓の結果、屈折率差が
以䞊以䞋の堎合に䞀定のoにおいおαが著しく高い光拡散性プラスチ
ックを埗るこずを芋い出した。さらに本発明においおは光拡散性透明埮粒子の平
均粒子埄がΌ以䞊Ό未満であるこずが必芁である。その平均粒子埄が
この範囲倖の堎合には䞀定のoにおけるαが小さくなる。ずくに平均粒子埄が
Όに達しない堎合には埮粒子濃床が䜎い時、盎進方向の限られた立䜓角に進
行する光が倚く、しかもこの光が赀味を垯びおいる。埮粒子濃床を増しおゆくず
、盎進性の赀味を垯びた光は䜎枛されるが、oが非垞に䜎い倀ずなるたでこの
異 垞な光はなくならない。この光は人間の目で芳察する時いわゆるスケずしお認識
される。 人間の目は通垞芖野角分床で芋分けるこずが可胜であり、こ
のスケの珟象を光孊枬定機噚茝床蚈によっお枬定するには人間の目が芋分け
るのず同皋床の芖野角を有する機噚を䜿甚するこずが必芁である。埓来、文献等
で茝床の角床分垃のデヌタずスケずの間に盞関性がないものが芋受けられるが、
それは人間の目ず茝床蚈ずの芖野角の差によるず思われる。珟圚垂販の茝床蚈の
芖野角は床、床、床、床等があり、いずれも床に比べ
お倧きい。芖野角ができるだけ小さく、か぀安定した枬定ができるこずを考慮し
、本発明者等は芖野角が°のミノルタ瀟補のミノルタ茝床蚈°
を甚いお枬定を行った。その結果、スケの珟象に察応しお極めおせたい角床範
囲に集䞭した匷い光を枬定するこずができ、oずαの倀にある皋床反映される
こずがわか぀た。埮粒子の平均粒子埄がΌを䞋たわるず、スケを防止するた
めには最倧茝床が極めお䜎くなるたで光拡散材の濃床を増す必芁があり、スケが
なく、か぀ゲむンの倧きい光拡散板を埗るには適圓ではない。平均粒子埄が
Ό以䞊になるず、䜿甚する埮粒子の濃床が倧きくなりすぎるため、経枈䞊、生
産技術䞊、䞍利ずなるばかりでなく、本発明の範囲内の粒埄の堎合に比べお半倀
角が小さくなる。 平均粒子埄には皮々の定矩があるが、本発明にいう平均粒子埄ずは、重量メゞ
アン埄すなわち重量环積曲線においお环積重量分率がずなる粒子埄でもっ
お衚わす。粒床分垃を枬定するには、コヌルタヌカりンタヌ法、沈降法、顕埮鏡
写真たたは電子顕埮鏡写真による蚈数法等の方法があり、いずれの方法でもよい
。 本発明においお、光拡散性埮粒子の圢状に関する因子は非垞に重芁な事項であ
る。すなわち光拡散性埮粒子は、埮粒子䞭に占める䞭空状埮粒子の割合か重量
以䞋、奜たしくは実質的に䞭空状埮粒子を含たずか぀実質的に球状の埮粒子で
あるこずが必芁である。䞀般によく知られおいる球状の埮粒子ずしおガラスビヌ
ズがあるが、本発明者らの怜蚎したずころによるず、前述の劂き屈折率差および
粒埄範囲を適甚するこずにより、ガラスビヌズを甚いおも性胜を向䞊させるこず
ができるが同様の粒埄および屈折率を有する埌述の劂き架橋プラスチックビヌズ に比べお、性胜が劣るこずが刀明した。たた䞭空郚を実質的に含たない埮粒子ず
しお皮々の砎砕無機粉があり、これらも前蚘諞条件を満たす範囲で甚いるこずに
より、優れた光拡散性プラスチックずするこずができるが球状の圢状を有する埮
粒子の方が、このような䞍定圢の埮粒子に比べお、同䞀のピヌクケむンoを䞎
える濃床の拡散板においお半倀角αが倧きくなるので、さらに奜たしい。ガラス
ビヌズ等の堎合には砎砕状埮粒子ず球状埮粒子が混圚しおいるのが䞀般であり、
たた䞭空ビヌズの比率を枛少させる目的で、通垞のガラスビヌズに砎砕状埮粒子
を混入しお性胜を向䞊させる方法も可胜であり、事実有効であるが、奜たしくは
䞊述の劂く球状埮粒子の比率が高い方が奜たしい。非球状埮粒子は奜たしくは
以䞋、さらに奜たしくは以䞋、最も奜たしくは実質的に含たないのが
よい。 䞊蚘の屈折率差、粒埄、圢状の諞条件を満足するには透明埮粒子ずしお、ポリ
マヌ、殊に架橋ポリマヌを甚いるのが有利であり奜たしい。架橋重合䜓埮粒子の
堎合にはそのポリマヌ組成により屈折率を調敎するこずが可胜であり、適切な重
合方法により、実質的に䞭空郚を含たず、か぀実質的に球状の埮粒子を埗るこず
ができる。䞀般に光拡散性プラスチックは、光拡散性埮粒子ず基板暹脂を溶融混
緎しお抌し出し、あるいはプレス法により、たたは堎合によっおは光拡散性埮粒
子を重合性モノマヌたたは郚分重合した重合性モノマヌシラップ䞭に分散させお
重合する方法によっお䜜られる。したが぀お光拡散性埮粒子は光拡散性プラスチ
ックを䜜る工皋䞭においお、溶融、溶解等により奜たしくない圢状に倉化しない
こずが必芁である。そのためには、ポリマヌの分子量を十分高くしおおく方法も
可胜であるが、より奜たしくは適床な架橋を䞎えおおくのがよい。 光拡散性プラスチックの基䜓暹脂ずしおは、透明で光線透過率の高い暹脂すな
わちメタクリル暹脂、ポリスチレン暹脂、ポリカヌボネヌト暹脂の他゚ポキシ暹
脂、ポリ塩化ビニル暹脂等が䜿甚される。䞭でもメタクリル暹脂は、耐久性およ
び物性が優れおいるので奜たしい暹脂である。通垞メタクリル暹脂は耐熱性、成
型性、耐久性等を改良する目的での他にアルキルアクリレヌトを共重合し
たり、滑剀、玫倖線吞収剀を添加したりするが、ここでいうメタクリル暹脂はそ
のようなを䞻䜓ずする暹脂党般をいう。基䜓暹脂をメタクリル暹脂ずする 堎合、ずスチレンおよび倚官胜性メタアクリレヌトを構成成分ずする
架橋暹脂である埮粒子を光拡散剀ずするのが奜適である。通垞のメタクリル暹脂
は屈折率が前埌であるので、光拡散剀埮粒子の屈折率は〜
皋床であるこずが奜たしい。もちろん基䜓暹脂であるメタクリル暹脂の皮類
によっお若干高いたたは䜎い屈折率であっおもよい。倚官胜性メタアクリレ
ヌトずは䞀分子䞭に二個以䞊のアクリル基たたはメタクリル基を有する化合物で
あり、たずえば゚チレングリコヌルゞメタアクリレヌト、ゞ゚チレングリコ
ヌルゞメタアクリレヌト、テトラ゚チレングリコヌルゞメタアクリレヌ
ト、ノナ゚チレングリコヌルゞメタアクリレヌト等のポリ゚チレングリ
コヌルゞメタアクリレヌト、プロピレングリコヌルゞメタアクリレヌト
、−ブチレングリコヌルゞメタアクリレヌト、テトラメチレングリコ
ヌルゞメタアクリレヌト、ヘキサメチレンゞメタアクリレヌト、ネオペ
ンチルグリコヌルゞメタアクリレヌト等のグリコヌルゞメタアクリレヌ
トの他トリメチロヌルプロパントリメタアクリレヌト、ペンタ゚リスリトヌ
ルテトラメタアクリレヌト等の倚䟡アルコヌルの倚䟡メタアクリレヌト
等がある。これら倚官胜性メタアクリレヌトは透明埮粒子が光拡散性ブラス
チックの補造過皋においおその埮粒子の圢状を損なうのを防止する圹割を担うも
のであり、透明埮粒子を構成する党モノマヌの〜の範囲で適宜遞択さ
れる。 基䜓暹脂ずしおスチレンずの共重合䜓を甚いるず屈折率が高くなるため
、レンズずしおの効果が高たり、有利ずなる堎合がある。このような堎合にも、
前蚘のメタクリル暹脂に甚いた透明埮粒子に類䌌の架橋共重合䜓を甚いるこずが
望たしい。ただし、スチレン−暹脂の屈折率に応じお適圓な屈折率に調敎
すればよい。以䞊述べたポリマヌビヌズは、懞濁重合法により合成する事ができ
る。䟋えば、ポリビニルアルコヌルを分散剀ずし、モノマヌをディスパヌザヌ等
により、埮现に分散した埌、重合、濟過、掗浄、也燥するこずにより、補造する
こずができる。 実斜䟋 以䞋、実斜䟋を挙げお本発明をさらに具䜓的に説明する。 参考䟋 郚、スチレン郚、゚チレングリコヌルゞメタクリレヌト郚
、ラりロむルパヌオキサむド郚をポリビニルアルコヌル((æ ª)クラレ補
−)含む氎郚ず混合し、ラボディスパヌザヌにより分
散を行なった。この液を撹拌しながら窒玠雰囲気で℃で分、℃で
分加熱した。埗られた分散液を濟過および氎による繰りかえし掗浄を行ない最
埌にメタノヌルで掗浄埌、也燥した。 このようにしお埗られた架橋埮粒子の粒床分垃を粒床分垃蚈セむシン䌁業補
ミクロンフォトサむザ−−で枬定したずころ、重量メゞアン埄
はΌであった。この際の比重は別途同䞀組成の重合物を䜜぀お枬定
した倀を甚いた。屈折率は顕埮鏡によりベッケ線の移動挙動を
芋る方法で枬定し、.であ぀た。 たたこのビヌズは実質的にすべお球状でか぀䞭空粒子を含んでいなかった。 この架橋ビヌズを甚い、以䞋の方法により、皮々の重量分率でビヌズを含有す
る、厚さのメタクリル暹脂板を䜜぀た。 アクリル酞゚チル重量郚、郚の混合液䞭にアクリル
酞゚チルを共重合したアクリル暹脂ビヌズ協和ガス化孊工業補−
屈折率重量郚を溶解しお、アクリル暹脂シラップを
䜜぀た。このシラップに前蚘の架橋ビヌズを必芁量、凝集しないように泚意しな
がら、分散させた。この䞭にアゟビスむ゜ブチロニトリル重量郚を溶解
せしめ、ガスケットを装着した枚のガラス板䞭に入れ、脱気した埌、℃で
時間、さらに℃で時間加熱しお重合した。なお板厚はずなるよ
うに調敎した。重合終了埌ガラス板より埮粒子ビヌズ入りアクリル板を取り出し
た。このようにしお埗られた埮粒子含有アクリル暹脂板光拡散板にコリメヌ
トされたハロゲンランプの光を埌方より入射した。光拡散板からの前方
に、茝床蚈ミノルタ茝床蚈°を蚭眮し、茝床を枬定した。茝床
蚈の䜍眮をずらし、角床を倉えお、同䞀郚分を枬定する操䜜をくりかえし、茝床
の角床分垃を枬定した。䞀方、別途光拡散板の䜍眮の照床を照床蚈により枬定し
おおき、茝床ず照床の比から匏VIによりゲむンを蚈算した。正面のゲむンを o、ケむンがoのずなる時の角床をαずしお、各濃床の倀を衚に瀺す
。 この結果を瞊軞をo、暪軞をαずする䞡察数グラフにプロットするず、第
図のようになる。この図よりoがずなる濃床ににおいおはαは°ず
なる。この倀は埌述の比范䟋に瀺される倀に比べお倧きな倀であり、この光拡散
板は䞀定のピヌクゲむンずした時の拡散半倀角の倧きいすぐれた材料である。参考䟋〜 および比范䟋、 参考䟋ず同様にしお、第衚に瀺すような各皮の埮粒子ならびに基䜓暹脂を
甚いお光拡散性プラスチックを䜜成し、光拡散性胜を枬定した。枬定結果も第
衚に瀺す。 実斜䟋 比范䟋においお甚いたものず同䞀のガラスビヌズ−東芝バロテ
ィヌニ瀟補を−テトラブロモニ゚タンずモノクロルベンれンの
混合液からなる比重の液䞭に浞挬し遠心分離したずころ、ガラスビヌ
ズが液の䞊局に浮䞊するものず䞋郚に沈降するものに分離した。各々の盞を分離
、掗浄、也燥し、ペり化メチレンず四塩化炭玠の混合液からなる屈折率が玄
の液䞭に入れ、光孊顕埮鏡にお芳察したずころ、沈降郚分のガラスビヌズ
は液ずビヌズの境界がうすくすき透っお芋えたが、浮䞊郚分のガラスビヌズは芯
の郚分が黒くくっきりず芳察され、別途䞭空ビヌズに぀いお同様に芳察した堎合
ず䌌おいた。このようにしお埗た浮䞊郚分のビヌズの重量は分離前のビヌズの重
量のであった。この方法で埗た沈降郚分のガラスビヌズを光拡散剀ずし
お甚い参考䟋ず同様の方法によっお埗た光拡散板の結果を第衚に瀺す。比范
䟋の堎合に比べピヌクグむンがずなる時のαが倧きく光拡散剀ずしおの性
胜が向䞊しおいた。 発明の効果 本発明により、正面の茝床が高く、か぀拡散半倀角の倧きな光拡散性プラスチ
ックを埗るこずが可胜ずなった。
Description: TECHNICAL FIELD The present invention relates to a light-diffusing plastic suitable for a member for the purpose of diffusing light, such as a lighting cover, a lighting sign, a glazing, various displays or a transmission screen. is there. (Prior art) Conventionally, as a light diffusing material such as a lighting cover or a display screen, a material in which inorganic or organic transparent fine particles are dispersed in a transparent plastic such as an acrylic resin or a styrene resin, or a transparent plastic surface is used. Materials and the like that have been rented by some method are known, and it is known to use them in combination. In recent years, many efforts have been made for higher performance materials, especially as the need for light-diffusing plastics, which require high performance such as screens for rear projection televisions, increases. The desired performance of these light-diffusing materials is to diffuse light uniformly and brightly over as wide a range as possible. However, since the amount of light emitted from the light source is constant, these requirements are mutually contradictory requirements. Therefore, in practice, it is selected and used so as to obtain the most preferable luminance and spread by a method such as changing the concentration of the diffusion material as necessary. In a method of obtaining a light diffusing material by dispersing a light diffusing material in a transparent plastic, as an index for obtaining a suitable combination of the light diffusing material and the transparent plastic, the particle diameter of the light diffusing material fine particles and the light diffusing material fine particles are mainly used. And the difference in the refractive index of transparent plastic has been used. For example,
In the publication No. -10515, the difference in refractive index from the base transparent resin is 0.05 to 0.3,
A method of using crosslinked fine particles having an average diameter of 0.5 to 5 Ό as a light diffusing material is described, and Japanese Patent Application Laid-Open No. 48-43333 discloses a refraction that is 0.05 to 0.5 larger than a base resin. A method of blending a crystal powder having a refractive index of 10 Όm or less is described. Further, JP-A-60-139758 discloses that a difference in refractive index is 0.02.
A particle size of 10 to 50 ÎŒm and a particle size of 4 to 10 ÎŒm are proposed in JP-A-60-184559. 61
As disclosed in Japanese Patent No. 4762, the particle size is 4 to 50 ÎŒm and the refractive index is 0.02
A method is also described in which fine particles having a particle size of 4 to 50 ÎŒm and a refractive index of 0.02 to 0.1 are used in combination with fine particles having a particle size of 0.1 to 0.1. In addition, JP-B-60-21662 or JP-A-62-174261 discloses that the refractive index is 0.0
A method of dispersing fine particles having a small average particle diameter of 1 to 10 ÎŒm and 1 to 10 ÎŒm has also been proposed. In addition, the combinations of the base resin and the light diffusing material with specific descriptions are extremely diverse, and it is difficult to describe all of them. For example, methacrylic resin (
When the base resin has a refractive index of 1.492), crystalline silica (refractive index 1.5
4) amorphous silica (refractive index 1.46), calcium carbonate (refractive index 1.58),
Aluminum hydroxide (refractive index 1.57), glass beads GB-210 (refractive index 1
. 521), glass spheres (refractive index 1.46), calcium fluoride (refractive index 1.43)
), Lithium fluoride (refractive index: 1.39), barium sulfate (refractive index: 1.64), alumina powder (refractive index: 1.7), other refractive indexes are unknown, but magnesium oxide, titanium oxide, talc and crosslinked Even when a polymer or the like is used and a base resin is a polystyrene resin (refractive index: 1.59), polyvinyl chloride resin (refractive index: 1.55) or polycarbonate resin (refractive index: 1.59), various inorganic materials are used. Fine particles are used. As described above, when the technologies that have been disclosed in the past are arranged, the refractive index difference,
Although many methods have been proposed for the particle size, a very wide range has been proposed, and it is currently difficult to determine which combination is preferred. In fact, additional tests have shown that these existing technologies are still inadequate against the ever increasing demands for screens and the like for rear projection televisions in recent years. (Problems to be Solved by the Invention) The present invention has excellent light diffusion performance in such a cluttered technical flow, that is, the maximum luminance Go is as large as possible, and the half-value angle (luminance is 1). It is an object of the present invention to provide a light-diffusing material which has as large an angle as possible (down to / 2), and in which transmitted light does not have a reddish tint. (Means for Solving the Problems) In the present invention, the following formulas (I) and (
II) 0.02 ≩ −Np−Ns− ≩ 0.04 (I) Average particle diameter d (micron) satisfying 7 ≩ d <30 (II), refractive index Np, and voids inside By dispersing the transparent spherical inorganic fine particles in which the ratio of the particles having the total fine particles to the total fine particles is 3% by weight or less, the ratio of the non-spherical particles in the transparent fine particles to the total transparent fine particles is 10% by weight or less. This is preferably achieved. As a substantially transparent plastic, methacrylic resin or methyl methacrylate (hereinafter MM)
A) and a styrene copolymer resin, MMA and polyfunctional (meth) acrylate or fine particles of MMA, styrene and polyfunctional (meth) are used as fine particles.
The above object can be achieved by using crosslinked copolymer fine particles containing acrylate as a component. (Action) The present inventors have comprehensively studied the relationship between the refractive index difference between the base transparent resin and the transparent fine particles, the particle size of the transparent fine particles, and the diffusion performance, and have reached the present invention. That is, in the present invention, the absolute difference | Np−Ns between the refractive index Ns of the base transparent resin and the refractive index Np of the transparent fine particles.
| Is 0.02 or more and 0.04 or less. The present inventors have prepared various flat plates in which the refractive index difference between the base resin and the transparent fine particles and the particle size of the transparent fine particles are changed, and a parallel light is incident from the rear of the flat plate, and the angular distribution of the brightness of the light emitted forward. Was measured, and a gain G was calculated from the illuminance on the flat plate surface and each luminance by the following equation. G = Luminance (Foot Lambert) / Illuminance (Foot Candle) (VI) The gain shows the highest value in front of the diffuser, and as the angle between the diffuser and the normal increases, as shown in FIG. Becomes smaller. The highest value of cane and be represented by the peak gain and called G o, the gain is to be represented by α is referred to as half-value angle angle becomes 1/2 of Bikukein, object of the present invention is larger both the Go and α Is to do. However, in general, the light diffusion plate is not always used in the form of a simple flat plate, and often achieves its purpose by giving various lens shapes or by using another light diffusion imparting means such as surface treatment. , G o , α, etc. also vary depending on their type and degree, and it is not appropriate to express the objective performance of the present invention by the values of G o and α by such measuring means. However, when a large combination of Go and α measured with a flat light diffusing plate is employed in this way, it can be experimentally confirmed that excellent performance can be obtained in other shapes. Mainly adopted a flat plate method in which the light diffusion performance of the light diffusion material can be easily compared and evaluated. In combination with certain substrate resin and the light diffusing material, changing the concentration of the light diffusion material, accompanied connexion G o increasing concentration as in the second view is reduced, alpha increases. Therefore, as a means for selecting a good light diffusing material, the concentration of the light diffusing material is changed to select a concentration at which a constant Go is obtained, and a material having a large half-value angle α at that concentration is a preferable light diffusing plastic. I thought. As a result of the experiment, the refractive index difference was 0.02
It has been found that when the ratio is 0.04 or less, a light-diffusing plastic having an extremely high α at a certain Go is obtained. Furthermore, in the present invention, it is necessary that the average particle diameter of the light diffusing transparent fine particles is 7 ÎŒm or more and less than 30 ÎŒm. Α is reduced at a certain G o If the mean particle diameter is outside this range. In particular, when the average particle diameter does not reach 7 ÎŒm, when the concentration of fine particles is low, a large amount of light travels at a limited solid angle in the straight traveling direction, and this light is reddish. When Yuku gaining particle concentration, but the light reddish straightness is reduced, G o is the abnormal light does not go away until the very low value. This light is perceived as so-called scale when observed by human eyes. The human eye can usually be distinguished at a viewing angle of 1 minute (= 1/60 degrees), and measuring this invisibility phenomenon with an optical measuring device (luminance meter) is comparable to that of the human eye. It is necessary to use a device having a viewing angle of. Conventionally, there is no correlation between the data of the angular distribution of luminance and the scale in literatures, etc.,
This is probably due to the difference in viewing angle between the human eye and the luminance meter. At present, the viewing angles of commercially available luminance meters are 2, 1, 1/3, 0.2 degrees, etc., all of which are larger than 1/60 degrees. Considering that the viewing angle is as small as possible and that stable measurement can be performed, the inventors of the present invention have used a Minolta luminance meter nt1 / 3 ° manufactured by Minolta with a viewing angle of 1/3 °.
The measurement was performed using P. As a result, it was possible to measure intense light concentrated in an extremely narrow angle range in response to the phenomenon of invisibility, and it was found that it was reflected to some extent on the values of Go and α. When the average particle diameter of the fine particles is less than 7 Όm, it is necessary to increase the concentration of the light diffusing material until the maximum luminance becomes extremely low in order to prevent skein, and to obtain a light diffusion plate having no skein and a large gain. Not suitable for Average particle size is 30
If the particle size is more than Όm, the concentration of the fine particles used becomes too large, which is not only economically disadvantageous from the viewpoint of production technology, but also reduces the half-value angle as compared with the case of a particle size within the range of the present invention. There are various definitions for the average particle diameter. The average particle diameter in the present invention is represented by a weight median diameter, that is, a particle diameter at which the cumulative weight fraction becomes 50% in a weight cumulative curve. Methods for measuring the particle size distribution include a Coulter counter method, a sedimentation method, a counting method using a micrograph or an electron micrograph, and the like, and any method may be used. In the present invention, factors relating to the shape of the light diffusing fine particles are very important. That is, the light-diffusing fine particles need to have a ratio of the hollow fine particles in the fine particles of 3% by weight or less, preferably substantially spherical fine particles which do not substantially contain the hollow fine particles. Although glass beads are generally well-known spherical fine particles, the present inventors have studied that, by applying the above-described refractive index difference and particle size range, the performance can be improved even when glass beads are used. Was found to be inferior to that of crosslinked plastic beads having the same particle diameter and refractive index as described below. In addition, there are various crushed inorganic powders as fine particles substantially containing no hollow portion, and by using these in a range that satisfies the above conditions, an excellent light diffusing plastic can be obtained, but fine particles having a spherical shape can be obtained. who is, as compared with such amorphous particles, the half value angle α increases in the diffusion plate at a concentration giving the same peak Kane G o, more preferably. In the case of glass beads, etc., it is common that crushed fine particles and spherical fine particles are mixed,
Further, for the purpose of reducing the ratio of hollow beads, it is also possible to improve the performance by mixing crushed fine particles into ordinary glass beads, and it is actually effective, but preferably the ratio of spherical fine particles is high as described above. Is more preferred. Non-spherical fine particles are preferably 3
0% or less, more preferably 10% or less, and most preferably substantially not contained. In order to satisfy the above-mentioned conditions of the difference in refractive index, particle diameter and shape, it is advantageous and preferable to use a polymer, particularly a crosslinked polymer, as the transparent fine particles. In the case of crosslinked polymer fine particles, the refractive index can be adjusted by the polymer composition, and by an appropriate polymerization method, substantially no hollow portion can be obtained, and substantially spherical fine particles can be obtained. . In general, light-diffusing plastics are prepared by melting and kneading light-diffusing fine particles and a substrate resin and extruding, or by pressing, or, in some cases, dispersing the light-diffusing fine particles in a polymerizable monomer or partially polymerized polymerizable monomer syrup. It is made by a method of polymerizing. Therefore, it is necessary that the light diffusing fine particles do not change into an undesired shape due to melting, melting, etc. during the process of producing the light diffusing plastic. For this purpose, it is possible to use a method in which the molecular weight of the polymer is sufficiently high, but it is more preferable to provide appropriate crosslinking. As the base resin of the light diffusing plastic, a transparent resin having a high light transmittance, that is, methacryl resin, polystyrene resin, polycarbonate resin, epoxy resin, polyvinyl chloride resin and the like are used. Among them, methacrylic resin is a preferable resin because of its excellent durability and physical properties. Normally, methacrylic resin copolymerizes an alkyl acrylate in addition to MMA for the purpose of improving heat resistance, moldability, durability, and the like, or adds a lubricant and an ultraviolet absorber. MMA refers to all resins mainly composed of MMA. When the base resin is a methacrylic resin, it is preferable to use fine particles which are cross-linked resins containing MMA, styrene and polyfunctional (meth) acrylate as constituents. Since ordinary methacrylic resin has a refractive index of about 1.49, the refractive index of the light diffusing agent fine particles is 1.51 to 1.
It is preferably about 53. Of course, the refractive index may be slightly higher or lower depending on the type of methacrylic resin as the base resin . The polyfunctional (meth) acrylate is a compound having two or more acryl groups or methacryl groups in one molecule, for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate. ) Acrylates, (poly) ethylene glycol di (meth) acrylates such as nonaethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, tetramethylene glycol di (meth) acrylate. A) acrylate, hexamethylene di (meth) acrylate, glycol di (meth) acrylate such as neopentyl glycol di (meth) acrylate, as well as trimethylolpropane tri (meth) acrylate, pentaerythr There Toll tetra (meth) polyhydric polyalcohols such as acrylates (meth) acrylate. These polyfunctional (meth) acrylates serve to prevent the transparent fine particles from impairing the shape of the fine particles in the process of producing the light-diffusing plastic, and 2% to 60% of the total monomers constituting the transparent fine particles. % Is appropriately selected. When a copolymer of styrene and MMA is used as the base resin, the refractive index is increased, and the effect as a lens is enhanced, which may be advantageous. In such a case,
It is desirable to use a crosslinked copolymer similar to the transparent fine particles used for the methacrylic resin. However, an appropriate refractive index may be adjusted according to the refractive index of the styrene-MMA resin. The polymer beads described above can be synthesized by a suspension polymerization method. For example, it can be produced by dispersing a monomer finely with a disperser or the like using polyvinyl alcohol as a dispersant, and then polymerizing, filtering, washing and drying. EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. Reference Example 1 34 parts of MMA, 16 parts of styrene, 50 parts of ethylene glycol dimethacrylate, and 0.2 part of lauroyl peroxide were mixed with polyvinyl alcohol (Kuraray Co., Ltd.)
VA-420) was mixed with 300 parts of water containing 0.4%, and dispersed with a laboratory disperser. This solution was stirred at 70 ° C. for 20 minutes in a nitrogen atmosphere and at 95 ° C. for 5 minutes.
Heated for 0 minutes. The resulting dispersion was filtered and washed repeatedly with water, and finally washed with methanol and dried. When the particle size distribution of the crosslinked fine particles thus obtained was measured with a particle size distribution meter (Microphotosizer-SKA-5000, manufactured by Seishin Enterprise), the weight median diameter was 10.58 ÎŒm. As the specific gravity at this time, a value (1.1891) measured separately by preparing a polymer having the same composition was used. The refractive index was measured by a method of observing the movement behavior of the Becke line under a microscope, and was found to be 1.5174. Also, the beads were substantially all spherical and free of hollow particles. Using these crosslinked beads, methacrylic resin plates having a thickness of 1 mm and containing beads at various weight fractions were prepared by the following method. Acrylic resin beads obtained by copolymerizing 8.5% of ethyl acrylate in a mixture of 11.9 parts by weight of ethyl acrylate and 128.1 parts of MMA (F-1 manufactured by Kyowa Gas Chemical Industry Co., Ltd.)
(000B refractive index 1.4920) 60 parts by weight were dissolved to prepare an acrylic resin syrup. The required amount of the crosslinked beads was dispersed in this syrup while taking care not to aggregate. 0.02 parts by weight of azobisisobutyronitrile was dissolved therein, put into two glass plates equipped with gaskets, degassed, and heated at 80 ° C. for 2 hours and further at 120 ° C. for 2 hours. Polymerized. The thickness was adjusted so as to be 1 mm. After the completion of the polymerization, an acrylic plate containing fine particle beads was taken out from the glass plate. The collimated light of the halogen lamp was incident on the fine-particle-containing acrylic resin plate (light diffusion plate) thus obtained from the rear. A luminance meter (Minolta luminance meter nt1 / 3 ° P) was installed 1.5 m ahead of the light diffusion plate, and the luminance was measured. The position of the luminance meter was shifted, the angle was changed, and the operation of measuring the same portion was repeated, and the angular distribution of luminance was measured. On the other hand, the illuminance at the position of the light diffusing plate was separately measured by an illuminometer, and the gain was calculated from the ratio of the luminance to the illuminance by the equation (VI). As gain G o of the front, the angle at which Kane is 1/2 of the G o alpha, indicating the value of each concentration shown in Table 1. When this result is plotted on a log-logarithmic graph in which the vertical axis is G o and the horizontal axis is α,
It looks like the figure. From this figure, α is 7.8 ° at the concentration where Go is 20. This value is larger than the value shown in a comparative example described later, and this light diffusion plate is an excellent material having a large diffusion half-value angle at a constant peak gain. In the same manner as in Reference Examples 2 to 4 and Comparative Examples 1 and 2, a light-diffusing plastic was produced using various fine particles and a base resin as shown in Table 2, and the light-diffusing performance was measured. Second measurement result
It is shown in the table. Example 1 The same glass beads GB-210 (manufactured by Toshiba Barotini) used in Comparative Example 1 were prepared from a mixture of 1,1,2,2-tetrabromoniethane and monochlorobenzene with a specific gravity of 2.424. When the glass beads were immersed in the liquid and centrifuged, the glass beads were separated into those that floated on the upper layer and those that settled on the lower part. Each phase is separated, washed and dried, and a mixture of methylene iodide and carbon tetrachloride having a refractive index of about 1.
When placed in the liquid of No. 521 and observed with an optical microscope, the glass beads in the sedimentation part were seen through the boundary between the liquid and the beads, while the glass beads in the floating part were clearly observed with the core part black and clear. This was similar to the case where the hollow beads were separately observed in the same manner. The weight of the beads at the floating portion thus obtained was 4.7% of the weight of the beads before separation. Table 2 shows the results of the light diffusing plate obtained by the same method as in Reference Example 1 using the glass beads in the settled portion obtained by this method as a light diffusing agent. Compared with the case of Comparative Example 1, α at the time when the peak quin was 20 was large, and the performance as a light diffusing agent was improved. (Effects of the Invention) According to the present invention, it has become possible to obtain a light-diffusing plastic having a high front luminance and a large diffusion half-value angle.

【図面の簡単な説明】 第図は、参考䟋における各架橋ビヌズ濃床でのゲむンの角床分垃を衚わす
図であり、瞊軞は察数目盛、暪軞は等間隔目盛で瀺しおいる。第図は、実斜䟋
、参考䟋〜および比范䟋〜のピヌクゲむンず半倀角を瀺すグラフであ
り、瞊軞、暪軞ずもに察数目盛で瀺しおいる。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the angular distribution of the gain at each crosslinked bead concentration in Reference Example 1 , where the vertical axis is a logarithmic scale and the horizontal axis is an equally spaced scale. FIG. 2 is a graph showing the peak gain and the half-value angle of Example 1 , Reference Examples 1 to 4 and Comparative Examples 1 and 2, and both the vertical and horizontal axes are shown on a logarithmic scale.

Claims (1)

【特蚱請求の範囲】 【請求項】 屈折率からなる透明なプラスチック䞭に、䞋蚘匏、
および匏II ≊−≊  ≊ II を満足する屈折率および平均粒子埄Όを有し、か぀内郚に空孔を有
するものの割合が重量以䞋であるような、透明な球状の無機埮粒子を分散さ
せおなる光拡散性プラスチック。 【請求項】 埮粒子のうち、非球状埮粒子の党埮粒子䞭に占める割合が
重量以䞋であるこずを特城ずする特蚱請求の範囲第項蚘茉の光拡散性プラス
チック。
[Claim 1] In a transparent plastic having a refractive index Ns, the following formula (I):
And (II) 0.02 ≩ | Np−Ns | ≩ 0.04 (I) having a refractive index Np and an average particle diameter d (ÎŒm) satisfying 7 ≩ d <30 (II). A light-diffusing plastic obtained by dispersing transparent spherical inorganic fine particles such that the proportion of voids is 3% by weight or less. 2. The ratio of non-spherical fine particles to all fine particles among fine particles is 10%.
2. The light diffusing property according to claim 1, wherein the light diffusing property is not more than% by weight.
Chick.

Family

ID=

Similar Documents

Publication Publication Date Title
CN101484746B (en) White reflection film
JP4002320B2 (en) Silica composite resin particles and production method thereof
EP2051112A2 (en) Light diffusing articles
JP2667878B2 (en) Light diffusing plastic
US5004785A (en) Light-diffusing methacrylic resin and process for production thereof
JPH07214684A (en) Light diffusible methacrylic resin panel
JP2007501425A (en) Diffusion plate for LCD application, its manufacturing method and its use
EP1233040B1 (en) Fresnel lens base sheet
JP5401553B2 (en) Single hollow particle for light diffusion
JP2667876B2 (en) Light diffusing plastic
JP3478973B2 (en) Light diffusion sheet
JP3507713B2 (en) Light diffusing resin composition
JPH1067829A (en) Microparticle suitable for light-diffusing plastic
JP2003335956A (en) Light-diffusing resin composition
JP2007153959A (en) Resin composition for light-diffusing plate and light-diffusing plate
JPH04279668A (en) Light diffusing resin
JP4263113B2 (en) Composite resin particles and method for producing the same, light diffusing resin composition, light diffusing material, and backlight unit for liquid crystal display
JP5576752B2 (en) Single hollow particle and method for producing the same
JPH1067828A (en) Microparticle suitable for light-diffusing plastic
JPH1160966A (en) Light diffusing resin composition
JP2011094119A (en) Light diffusible composite resin particle, method for producing the same, light diffusible resin composition, and illumination cover
JP2667878C (en)
JP2006084927A (en) Light diffusing agent and its manufacturing method
JPH05302006A (en) Light-diffusing methacrylate resin
US4963624A (en) Process for producing light-diffusing methacrylic resin article