JP2666135B2 - Intake system for fuel injection engine - Google Patents

Intake system for fuel injection engine

Info

Publication number
JP2666135B2
JP2666135B2 JP61166730A JP16673086A JP2666135B2 JP 2666135 B2 JP2666135 B2 JP 2666135B2 JP 61166730 A JP61166730 A JP 61166730A JP 16673086 A JP16673086 A JP 16673086A JP 2666135 B2 JP2666135 B2 JP 2666135B2
Authority
JP
Japan
Prior art keywords
intake
fuel
combustion chamber
port
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61166730A
Other languages
Japanese (ja)
Other versions
JPS6325369A (en
Inventor
秀明 永坂
量一 松芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP61166730A priority Critical patent/JP2666135B2/en
Publication of JPS6325369A publication Critical patent/JPS6325369A/en
Application granted granted Critical
Publication of JP2666135B2 publication Critical patent/JP2666135B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • F02F1/4221Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder particularly for three or more inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/18DOHC [Double overhead camshaft]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F2001/244Arrangement of valve stems in cylinder heads
    • F02F2001/245Arrangement of valve stems in cylinder heads the valve stems being orientated at an angle with the cylinder axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は燃料噴射式エンジンの改良に関するもの
で、3個の吸気弁を介して燃焼室に連なる吸気ポート
に、2個の噴射口を有する燃料噴射ノズルを設け、均質
な混合気を生成するガソリンエンジンの改良に関する。 〔従来の技術〕 近年、エンジンの比出力を増すべく、気筒毎に3個の
吸気弁を備えた多弁形エンジンが競技用車両用に市販さ
れはじめている。この種のエンジンは吸気弁の開口時間
面積を増大できるために、吸気の充填効率を高め高出力
を得ることができることが知られている。 〔発明が解決しようとする課題〕 しかるに、この種のエンジンでは吸気ポートの断面形
状が円形から遠ざかるためか、燃料噴射装置を用いる場
合、噴射ノズルから噴出される燃料を各吸気弁毎の吸気
ポートに均等に供給するのが困難であり、これが著しく
アンバランスになるときは、各吸気弁を通して供給され
る混合気の空燃比が相違して燃焼の安定を欠く不具合が
あった。 〔課題を解決するための手段〕 そこで、本願の発明者らは、あらゆる方面からの検討
と実験を行ってきた結果、最近開発された2個の噴射口
を持つ燃料噴射ノズル(例えば、特開昭60−113065号公
報)を利用し、上記不具合を解消することを見出した。
すなわち、この発明はシリンダヘッドに3個の吸気弁を
介して燃焼室に連なる吸気ポートを形成し、吸気ポート
を吸気弁の近傍で隔壁によってカム軸方向に分岐させる
と共に、この吸気ポートにカム軸方向に並設された2個
の噴射口を有する燃料噴射ノズルを設け、その噴射口を
近接する隔壁に向けて開口させた点に特徴がある。 〔作用〕 燃料噴射ノズルから噴射された燃料のうち霧化されな
い燃料粒が隔壁に当たり、燃焼室中央の点火栓に直接噴
射されることがない。また、中央の分岐路の中心を指向
する一つの噴射口から燃料の全量を噴射させる場合(従
来の構成を採る場合)に較べ、噴射された燃料の拡がる
角度が同じとすると三つの分岐路のうち両側の分岐路に
流入する燃料が増えるとともに中央の分岐路に流入する
燃料が減る。 〔実施例〕 以下、図示の実施例によってこの発明を説明すると、
図中、1はアルミニウム合金によって作られた4行程エ
ンジンのシリンダヘッドであり、その下面に燃焼室2が
形成されている。1Aはシリンダボディ、1Bはヘッドカバ
ーである。燃焼室2内は3個の吸気弁3a〜3cを介して下
向き通風形の吸気通路4と、2個の排気弁5を介して排
気通路6とが接続されている。7は吸気弁3a〜3cと排気
弁5とを開閉駆動する動弁機構、7aは吸気カム軸、7bは
排気カム軸である。前記吸気弁3a〜3cのうち中央に位置
する吸気弁3bは、第2図に示すように、両側に位置する
吸気弁3a,3cより大径に形成されている。5aは燃焼室2
を冷却するための水ジャケット、5bは燃焼室2の中央に
設けられた点火栓である。 吸気通路4はシリンダヘッド1に形成されたポート8
から吸気管9、絞り弁10、ベルマウス11およびエアクリ
ーナ12によって大気中に開口する一連の通路として形成
されている。 13は吸気管9に設けた燃料噴射ノズルである。なお、
この燃料噴射ノズル13は従来公知のように約2Kg/cm2
加圧された燃料通路のガソリンを各気筒の吸気行程中に
所定時間のみ開弁する電磁弁によって計量して噴出させ
るものである。そして、この燃料噴射ノズル13は、第1
図に示すように、クランク軸方向に見て前記吸気管9、
絞り弁10、ベルマウス11、エアクリーナ12およびエンジ
ンの上部とによって略囲まれた空間S内に配置されてい
る。 シリンダヘッド1に形成されたポート8は、第2図で
示すように、シリンダヘッド側面に開く開口部8aから2
個の隔壁1a,1aによりカム軸方向に並設された中央のや
ゝ短い分岐路1bと、その両側に配されたやゝ長い分岐路
1cとの3個に分岐され、その下流端はそれぞれ前記3個
の吸気弁3a〜3cを介して燃焼室2内へ通じている。 また、このポート8は、第2図に示すように、吸気流
の上流側端部の中心Cpがシリンダ中心Ccに対して吸気弁
3c側(第2図において右側)へDだけオフセットされて
おり、上流側端部から下流側に向かうにしたがって次第
に幅拡になるように形成されている。詳述すると、吸気
弁3cに連なる方のポート8の内壁8bは、第2図に示す平
面視において上流側端部からカム軸とは略直交する方向
に延びている。また、吸気弁3aに連なる方のポート8の
内壁8cは、吸気流の下流側へ向かうにしたがって内壁8b
から次第に離間するように傾斜されている。そして、こ
のポート8に設けられた前記隔壁1a,1aは、前記内壁8b,
8cに略沿うようにそれぞれ僅かに傾斜して形成されてお
り、両隔壁1a,1aのうち第2図中に左側に示す隔壁1aは
右側の隔壁1aより吸気の流れ方向に僅かに長く形成され
ている。これらの隔壁1a,1aの長さは、各隔壁1aの上流
端と後述する燃料噴射ノズル13の噴射口15との距離が略
等しくなるように設定されている。 すなわち、吸気行程では、ポート8内の3つの分岐路
1b,1c,1cのうち第2図において右側に位置する分岐路1c
および中央の分岐路1bへはポート8の上流側から直線的
に吸気が流入し、左側に位置する分岐路1cへは流れ方向
がカム軸方向に変えられて流入する。そして、ポート8
の上流側端部は上述したようにシリンダ軸心に対して右
側へオフセットされている関係から、燃焼室2の第2図
における右半部に、右側の分岐路1cおよび中央の分岐路
1bから比較的速い流速をもって吸気が流入することにな
る。このため、吸気行程では燃焼室2内に第2図におい
て時計回りの吸気の旋回流が生じることになる。この旋
回流を以下においてスワールという。 なお、このときには、左右の分岐路1c,1cから吸気が
流入する関係から、燃焼室2にはカム軸方向と平行な軸
線回り(図1において時計回り)に旋回する縦方向の旋
回流も生じることになる。この旋回流を以下においてタ
ンブルという。このタンブルが燃焼室2内に生じるの
は、図1に示すように、左右の分岐路1c,1cと中央の分
岐路1bとではシリンダ軸線に対する傾斜角度や、燃焼室
2に連なる湾曲部分の曲率が異なることに起因してい
る。 すなわち、シリンダ軸線に対する傾斜角度は左右の分
岐路1c,1cの方が中央の分岐路1bより大きくなってお
り、前記湾曲部分の曲率は、左右の分岐路1c,1cの方が
分岐路1bより緩やかになっている。このため、分岐路1c
を通る吸気は、慣性があるために前記湾曲部分の外周側
となる孔壁面に沿って多く流れて燃焼室2に斜めに流入
するようになると共に、その大部分が吸気弁3cの弁体に
当たって流れ方向が図1中の排気弁5側へ変えられるよ
うになる。このように流れ向きの変えられた吸気がシリ
ンダの周壁を伝ってシリンダ軸方向へ流れ、図1におい
て時計回りの旋回流が生じる。 一方、中央の分岐路1bを通る吸気は、左右の分岐路1
c,1cを通る吸気より流れ方向がシリンダの下方を向くよ
うに燃焼室2に流れ込み、吸気弁3bの弁体に当たって図
1中の排気弁5とは反対側へ流される。この分岐路1bか
ら燃焼室2に流入した吸気は図1において反時計回りに
旋回するようになるが、燃焼室2では前記時計回りの旋
回流となる吸気の流量が多いため、上述したように燃焼
室2にタンブルが生じることになる。 前記燃料噴射ノズル13は、各分岐路1b,1cの配列方向
に並設された2個の噴射口15,15を有し、その噴射口15,
15を近接する隔壁1a,1aに向けて開口させてある。さら
に詳述すると、燃料噴射ノズル13は前記ポート8の上流
側の中心Cp線上に位置づけられ、両噴射口15,15から噴
射される燃料の噴射範囲の中心が中央の吸気弁3bに向け
られている。また、前記2個の噴射口15,15と前記隔壁1
a,1aとの距離A,Bは略等しくなっている。噴射口15と隔
壁1a,1aとの関係をこのようにすると、燃料噴射ノズル1
3の噴射口15,15から噴射された燃料のうち霧化されない
燃料粒が隔壁1aに当たり、燃焼室中央の点火栓5bに直接
噴射されることがなくなる。また、中央の分岐路の中心
を指向する一つの噴射口から燃料の全量を噴射させる場
合に較べ、噴射された燃料の拡がる角度が同じとすると
三つの分岐路のうち両側の分岐路1c,1cに流入する燃料
が増えるとともに中央の分岐路1bに流入する燃料が減
る。 次にこの実施例の作動を説明すると、まず、エンジン
が運転されているとき、3個の吸気弁3a〜3cが同時に開
弁すると、燃焼室2内の吸気負圧が吸気通路4内へ波及
して、エアクリーナ12から大気が吸入され、絞り弁10で
計量されて吸気管9で燃料噴射ノズル13から噴出する燃
料が混合され、混合気となって燃焼室2内へ吸入され
る。このとき、燃焼室2内には上述したようにスワール
およびタンブルが生じることになる。 このとき、燃料噴射ノズル13から噴射された燃料のう
ち霧化されない燃料粒が隔壁1aに当たり、燃焼室中央の
点火栓5bに直接噴射されることがないので、燃焼室2の
中央部(点火栓5bの周辺)の混合気が他の部位より濃く
なることがない。また、中央の分岐路の中心を指向する
一つの噴射口から燃料の全量を噴射させる場合に較べ、
噴射された燃料の拡がる角度が同じとすると三つの分岐
路のうち両側の分岐路1c,1cに流入する燃料を増やすこ
とができるとともに中央の分岐路1bに流入する燃料を減
らすことができるから、燃焼室2の外周部に流入する混
合気が従来に較べて濃くなるとともに中央部に流入する
混合気が従来に較べて薄くなる。 したがって、混合気を燃焼室2内の全域にわたって空
燃比が略均等になるように供給できるから燃焼が安定す
る。 〔発明の効果〕 以上説明したように本発明に係る燃料噴射式エンジン
の吸気装置は、シリンダヘッドに3個の吸気弁を介して
燃焼室に連なる吸気ポートを形成し、吸気ポートを吸気
弁の近傍で隔壁によってカム軸方向に分岐させると共
に、この吸気ポートにカム軸方向に並設された2個の噴
射口を有する燃料噴射ノズルを設け、その噴射口を近接
する隔壁に向けて開口させたため、燃料噴射ノズルから
噴射された燃料のうち霧化されない燃料粒が隔壁に当た
り、燃焼室中央の点火栓に直接噴射されることがないの
で、燃焼室の中央部の混合気が他の部位より濃くなるこ
とがない。しかも、中央の分岐路の中心を指向する一つ
の噴射口から燃料の全量を噴射させる場合に較べ、噴射
された燃料の拡がる角度が同じとすると三つの分岐路の
うち両側の分岐路に流入する燃料を増やすことができる
とともに中央の分岐路に流入する燃料を減らすことがで
きるから、燃焼室の外周部に流入する混合気が従来に較
べて濃くなるとともに中央部に流入する混合気が従来に
較べて薄くなる。 したがって、混合気を燃焼室内の全域にわたって空燃
比が略均等になるように供給できるので、失火のない安
定した燃焼が可能になる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a fuel injection engine, and has two injection ports at an intake port connected to a combustion chamber via three intake valves. The present invention relates to an improvement of a gasoline engine which is provided with a fuel injection nozzle and generates a homogeneous mixture. 2. Description of the Related Art In recent years, in order to increase the specific output of an engine, a multi-valve engine having three intake valves for each cylinder has begun to be marketed for a racing vehicle. It is known that this type of engine can increase the opening time area of the intake valve, thereby increasing the charging efficiency of the intake air and obtaining a high output. [Problems to be Solved by the Invention] However, in this type of engine, because the cross-sectional shape of the intake port is away from a circle or when using a fuel injection device, the fuel ejected from the injection nozzle is supplied to the intake port of each intake valve. When it is difficult to supply the fuel uniformly, the air-fuel ratio of the air-fuel mixture supplied through each intake valve is different and the combustion is not stable. Means for Solving the Problems Therefore, the inventors of the present application have conducted studies and experiments from all aspects, and as a result, recently developed a fuel injection nozzle having two injection ports (for example, U.S. Pat. No. 6,113,065) was found to solve the above problem.
That is, according to the present invention, an intake port connected to a combustion chamber is formed in a cylinder head through three intake valves, and the intake port is branched in the cam axis direction by a partition near the intake valve. It is characterized in that a fuel injection nozzle having two injection ports arranged side by side in the direction is provided, and the injection ports are opened toward the adjacent partition. [Operation] Of the fuel injected from the fuel injection nozzle, fuel particles that are not atomized hit the partition walls and are not directly injected into the ignition plug at the center of the combustion chamber. Also, as compared with the case where the entire amount of fuel is injected from one injection port directed toward the center of the central branch (in the case of adopting the conventional configuration), if the angle at which the injected fuel spreads is the same, the three branches are Among them, the fuel flowing into the branch roads on both sides increases, and the fuel flowing into the central branch road decreases. [Embodiments] Hereinafter, the present invention will be described with reference to the illustrated embodiments.
In the figure, reference numeral 1 denotes a cylinder head of a four-stroke engine made of an aluminum alloy, and a combustion chamber 2 is formed on a lower surface thereof. 1A is a cylinder body, 1B is a head cover. The inside of the combustion chamber 2 is connected to a downward ventilation type intake passage 4 via three intake valves 3 a to 3 c and an exhaust passage 6 via two exhaust valves 5. Reference numeral 7 denotes a valve mechanism for opening and closing the intake valves 3a to 3c and the exhaust valve 5, 7a denotes an intake camshaft, and 7b denotes an exhaust camshaft. As shown in FIG. 2, the intake valve 3b located at the center of the intake valves 3a to 3c has a larger diameter than the intake valves 3a and 3c located on both sides. 5a is combustion chamber 2
A water jacket 5b is provided for cooling the combustion chamber 2, and a spark plug 5b is provided at the center of the combustion chamber 2. The intake passage 4 has a port 8 formed in the cylinder head 1.
The intake pipe 9, the throttle valve 10, the bell mouth 11, and the air cleaner 12 form a series of passages that open to the atmosphere. Reference numeral 13 denotes a fuel injection nozzle provided in the intake pipe 9. In addition,
As is conventionally known, the fuel injection nozzle 13 measures and jets gasoline in a fuel passage pressurized to about 2 kg / cm 2 by an electromagnetic valve that opens only for a predetermined time during an intake stroke of each cylinder. . The fuel injection nozzle 13 is connected to the first
As shown in the figure, the intake pipe 9 viewed in the crankshaft direction,
The throttle valve 10, the bell mouth 11, the air cleaner 12, and the engine S are disposed in a space S substantially surrounded by the upper part of the engine. As shown in FIG. 2, the port 8 formed in the cylinder head 1 is connected to an opening 8a that opens to the side of the cylinder head.
A central short short path 1b juxtaposed in the cam axis direction by the partition walls 1a, 1a and a long short branch path arranged on both sides thereof
1c, and the downstream end thereof communicates with the combustion chamber 2 via the three intake valves 3a to 3c, respectively. As shown in FIG. 2, the port 8 is arranged such that the center Cp of the upstream end portion of the intake air flows with respect to the cylinder center Cc.
It is offset by D to the 3c side (the right side in FIG. 2), and is formed so that the width gradually increases from the upstream end toward the downstream. More specifically, the inner wall 8b of the port 8 connected to the intake valve 3c extends from the upstream end in a direction substantially orthogonal to the cam shaft in plan view shown in FIG. The inner wall 8c of the port 8, which is connected to the intake valve 3a, moves toward the downstream side of the intake flow.
It is inclined so as to be gradually separated from. The partition walls 1a, 1a provided in the port 8 are connected to the inner walls 8b,
Each of the partitions 1a, 1a is formed to be slightly longer in the flow direction of the intake air than the partition 1a on the left side in FIG. ing. The length of these partitions 1a, 1a is set such that the distance between the upstream end of each partition 1a and an injection port 15 of a fuel injection nozzle 13 described later is substantially equal. That is, in the intake stroke, three branch paths in port 8
1b, 1c, and 1c, a branch road 1c located on the right side in FIG.
The intake air linearly flows into the central branch passage 1b from the upstream side of the port 8, and flows into the branch passage 1c located on the left side with the flow direction changed in the cam shaft direction. And port 8
Since the upstream end of the combustion chamber 2 is offset to the right with respect to the cylinder axis as described above, the right branch of the combustion chamber 2 in FIG.
From 1b, the intake air flows at a relatively high flow velocity. For this reason, in the intake stroke, a swirling flow of the intake air in the clockwise direction in FIG. This swirling flow is hereinafter referred to as swirl. At this time, a vertical swirling flow swirling around an axis parallel to the camshaft direction (clockwise in FIG. 1) also occurs in the combustion chamber 2 due to the relationship that intake air flows in from the left and right branch passages 1c. Will be. This swirling flow is hereinafter referred to as tumble. As shown in FIG. 1, this tumble is generated in the combustion chamber 2 because the left and right branch passages 1c and 1c and the central branch passage 1b have an inclination angle with respect to the cylinder axis and a curvature of a curved portion connected to the combustion chamber 2. Are different. That is, the inclination angle with respect to the cylinder axis is larger in the left and right branches 1c and 1c than in the center branch 1b, and the curvature of the curved portion is greater in the left and right branches 1c and 1c than in the branch 1b. It has become moderate. For this reason, the branch road 1c
The intake air passing through a large amount flows along the hole wall surface on the outer peripheral side of the curved portion due to inertia, flows obliquely into the combustion chamber 2, and most of the air hits the valve body of the intake valve 3c. The flow direction can be changed to the exhaust valve 5 side in FIG. The intake air whose flow direction has been changed in this way flows along the peripheral wall of the cylinder in the axial direction of the cylinder, and generates a clockwise swirling flow in FIG. On the other hand, the intake air passing through the central branch 1b is
The air flows into the combustion chamber 2 such that the flow direction of the intake air passing through c and 1c is directed to the lower side of the cylinder, and the air flows into the side of the intake valve 3b opposite to the exhaust valve 5 in FIG. The intake air flowing into the combustion chamber 2 from the branch passage 1b turns counterclockwise in FIG. 1, but the combustion chamber 2 has a large flow rate of the intake air, which is the clockwise swirl flow. Tumble will occur in the combustion chamber 2. The fuel injection nozzle 13 has two injection ports 15, 15 juxtaposed in the arrangement direction of each branch path 1b, 1c.
15 is opened to the adjacent partition walls 1a, 1a. More specifically, the fuel injection nozzle 13 is positioned on the center Cp line on the upstream side of the port 8, and the center of the injection range of the fuel injected from both the injection ports 15, 15 is directed to the central intake valve 3b. I have. Further, the two injection ports 15, 15 and the partition 1
Distances A and B to a and 1a are substantially equal. When the relationship between the injection port 15 and the partition walls 1a, 1a is set in this manner, the fuel injection nozzle 1
Of the fuel injected from the third injection ports 15, 15, non-atomized fuel particles hit the partition wall 1a and are no longer directly injected into the ignition plug 5b at the center of the combustion chamber. Also, compared to the case where the whole amount of fuel is injected from one injection port directed toward the center of the central branch, if the spread angle of the injected fuel is the same, the branches 1c and 1c on both sides of the three branches are provided. And the fuel flowing into the central branch 1b decreases. Next, the operation of this embodiment will be described. First, when the three intake valves 3a to 3c are simultaneously opened while the engine is running, the negative pressure of the intake air in the combustion chamber 2 spreads into the intake passage 4. Then, the air is sucked from the air cleaner 12, the fuel measured by the throttle valve 10 and injected from the fuel injection nozzle 13 through the intake pipe 9 is mixed, and the mixed air is sucked into the combustion chamber 2. At this time, swirl and tumble are generated in the combustion chamber 2 as described above. At this time, the fuel particles that are not atomized out of the fuel injected from the fuel injection nozzle 13 hit the partition wall 1a and are not directly injected into the ignition plug 5b at the center of the combustion chamber. The mixture around 5b) does not become richer than other parts. Also, compared to the case where the entire amount of fuel is injected from one injection port directed toward the center of the central branch,
If the angle at which the injected fuel spreads is the same, it is possible to increase the amount of fuel flowing into both branches 1c and 1c of the three branches and reduce the amount of fuel flowing into the central branch 1b. The air-fuel mixture flowing into the outer peripheral portion of the combustion chamber 2 becomes richer than before, and the air-fuel mixture flowing into the central portion becomes thinner than before. Therefore, the air-fuel ratio can be supplied so that the air-fuel ratio becomes substantially uniform over the entire area in the combustion chamber 2, so that combustion is stabilized. [Effects of the Invention] As described above, the intake device for a fuel injection engine according to the present invention forms an intake port connected to a combustion chamber via three intake valves in a cylinder head, and connects the intake port to the intake valve. A fuel injection nozzle having two injection ports arranged side by side in the cam axis direction was provided at the intake port while being branched in the cam axis direction by a partition wall in the vicinity, and the injection port was opened toward the adjacent partition wall. Since the fuel particles that are not atomized among the fuel injected from the fuel injection nozzle hit the partition wall and are not directly injected into the ignition plug at the center of the combustion chamber, the mixture in the center of the combustion chamber is thicker than other parts. Never be. In addition, as compared with the case where the entire amount of fuel is injected from one injection port directed toward the center of the central branch, if the spread angle of the injected fuel is the same, the fuel flows into the branch on both sides of the three branches. Since it is possible to increase the amount of fuel and reduce the amount of fuel flowing into the central branch, the mixture flowing into the outer peripheral portion of the combustion chamber becomes richer than before and the mixture flowing into the central portion becomes lower than before. It is thinner than it is. Therefore, the air-fuel mixture can be supplied so that the air-fuel ratio is substantially uniform over the entire region in the combustion chamber, and stable combustion without misfire can be achieved.

【図面の簡単な説明】 図面はこの発明の一実施例を示すもので、第1図はエン
ジンの要部の断面図であり、第2図は一部を破断したそ
のII−II断面図である。 4……吸気通路、8……ポート、1a……隔壁、1b……や
ゝ短い分岐路、1c……やゝ長い分岐路、15……噴射口。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows an embodiment of the present invention. FIG. 1 is a sectional view of a main part of an engine, and FIG. 2 is a sectional view taken along the line II-II of FIG. is there. 4 ... intake passage, 8 ... port, 1a ... partition, 1b ... short branch, 1c ... long branch, 15 ... injection port.

Claims (1)

(57)【特許請求の範囲】 1.燃焼室中央に点火栓を有するシリンダヘッドに3個
の吸気弁を介して燃焼室に連なる吸気ポートを形成し、
吸気ポートを吸気弁の近傍で隔壁によってカム軸方向に
分岐させると共に、この吸気ポートにカム軸方向に並設
された2個の噴射口を有する燃料噴射ノズルを設け、そ
の噴射口を近接する隔壁に向けて開口させてなる燃料噴
射式エンジンの吸気装置。
(57) [Claims] Forming an intake port connected to the combustion chamber through three intake valves in a cylinder head having an ignition plug at the center of the combustion chamber;
The intake port is branched in the camshaft direction by a partition wall near the intake valve, and a fuel injection nozzle having two injection ports arranged in parallel in the camshaft direction is provided in the intake port. An intake device for a fuel-injection engine that opens toward the vehicle.
JP61166730A 1986-07-17 1986-07-17 Intake system for fuel injection engine Expired - Fee Related JP2666135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61166730A JP2666135B2 (en) 1986-07-17 1986-07-17 Intake system for fuel injection engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61166730A JP2666135B2 (en) 1986-07-17 1986-07-17 Intake system for fuel injection engine

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP5198851A Division JP2553014B2 (en) 1993-07-19 1993-07-19 Intake system for fuel injection engine
JP5198850A Division JP2553013B2 (en) 1993-07-19 1993-07-19 Intake system for fuel injection engine

Publications (2)

Publication Number Publication Date
JPS6325369A JPS6325369A (en) 1988-02-02
JP2666135B2 true JP2666135B2 (en) 1997-10-22

Family

ID=15836684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61166730A Expired - Fee Related JP2666135B2 (en) 1986-07-17 1986-07-17 Intake system for fuel injection engine

Country Status (1)

Country Link
JP (1) JP2666135B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139078U (en) * 1988-03-15 1989-09-22

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193047U (en) * 1982-06-21 1983-12-22 トヨタ自動車株式会社 Internal combustion engine fuel supply system
JPS5990717A (en) * 1982-11-17 1984-05-25 Yamaha Motor Co Ltd Intake device for 4-cycle internal-combustion engine
JPS59116570U (en) * 1983-01-28 1984-08-06 トヨタ自動車株式会社 Fuel injection valve device for electronically controlled fuel injection engine

Also Published As

Publication number Publication date
JPS6325369A (en) 1988-02-02

Similar Documents

Publication Publication Date Title
US6155229A (en) Charge motion control valve in upper intake manifold
JPH057555B2 (en)
JP2666135B2 (en) Intake system for fuel injection engine
JP2553013B2 (en) Intake system for fuel injection engine
JPH0263092B2 (en)
JPH09317476A (en) Cylinder fuel injection type engine
JP2553014B2 (en) Intake system for fuel injection engine
JP3094215B2 (en) Engine intake system
JPH0413415Y2 (en)
JP3778318B2 (en) 2-cycle internal combustion engine
JP2576905B2 (en) Intake device for 4-cycle internal combustion engine
JP2523564Y2 (en) Intake device for internal combustion engine
JPH0217689B2 (en)
JP2976601B2 (en) Intake system for fuel injection type internal combustion engine
JPH0439412Y2 (en)
JPS5852367Y2 (en) Fuel injection engine intake system
JPH048295Y2 (en)
JPH0861190A (en) Fuel injection type engine
JPH08270450A (en) Cylinder injection type engine
JPH0252090B2 (en)
JPS6020574B2 (en) Exhaust gas recirculation device for multi-cylinder internal combustion engines
JPS6116224A (en) Engine with fuel injection device
JP2756157B2 (en) 4 cycle engine
US5033424A (en) Dual tract induction
JPH0236905Y2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees