JP2665740B2 - Fluid bearing device - Google Patents

Fluid bearing device

Info

Publication number
JP2665740B2
JP2665740B2 JP62062735A JP6273587A JP2665740B2 JP 2665740 B2 JP2665740 B2 JP 2665740B2 JP 62062735 A JP62062735 A JP 62062735A JP 6273587 A JP6273587 A JP 6273587A JP 2665740 B2 JP2665740 B2 JP 2665740B2
Authority
JP
Japan
Prior art keywords
guide
magnetic
moving body
magnetic force
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62062735A
Other languages
Japanese (ja)
Other versions
JPS63232912A (en
Inventor
茂夫 崎野
真人 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62062735A priority Critical patent/JP2665740B2/en
Publication of JPS63232912A publication Critical patent/JPS63232912A/en
Application granted granted Critical
Publication of JP2665740B2 publication Critical patent/JP2665740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0662Details of hydrostatic bearings independent of fluid supply or direction of load
    • F16C32/067Details of hydrostatic bearings independent of fluid supply or direction of load of bearings adjustable for aligning, positioning, wear or play
    • F16C32/0674Details of hydrostatic bearings independent of fluid supply or direction of load of bearings adjustable for aligning, positioning, wear or play by means of pre-load on the fluid bearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/262Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members with means to adjust the distance between the relatively slidable members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • F16C29/025Hydrostatic or aerostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/12Arrangements for adjusting play
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2370/00Apparatus relating to physics, e.g. instruments

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Units (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【発明の詳細な説明】 [発明の分野] 本発明は半導体露光装置用X−Yステージ、あるいは
工作機械、測定器などに用いられる流体軸受からなる静
圧案内装置の高剛性化、高精度化に関するものである。 [従来の技術] 軸受面に加圧流体を供給しその静圧力により軸受部材
同志を非接触で支持した流体軸受を用いた高精度の静圧
案内装置が従来から用いられている。 このような静圧案内装置において、移動体の軸受面と
案内面とを相互に吸引させる磁気手段により予圧を付与
し装置の高剛性化、高精度化、薄型化を図った静圧案内
軸受が特開昭61−290231号公報に記載されている。この
従来の静圧案内軸受は、移動体の軸受面側と案内面側の
各々に永久磁石と磁性体または電磁石と磁性体を対向さ
せて固定した構造であった。しかしながら、このような
従来の技術においては、磁石および磁性体がともに移動
体および案内部材の各々に対し固定された構造であるた
め、磁力の調整ができず軸受交換時または部品交換時等
に適正な予圧に調整することが困難となり、また磁石の
特性のバラつきによって移動体が受ける力が変化し姿勢
変動が生ずる場合があった。また電磁石を用いた場合に
は熱が発生して案内部材が変形し精度の低下を来す場合
があった。 [発明の目的] 本発明は前記従来技術の欠点に鑑みなされたものであ
って、軸受面に予圧を付与するための磁力手段の磁力を
調整可能として磁石の特性のバラつきにかかわらず常に
適正な予圧を付与して安定した姿勢を保ち、電磁石によ
る熱等を発生することなく、高剛性、高精度でかつ薄型
化を図った流体軸受装置の提供を目的とする。 [発明の構成] この目的を達成するため本発明では、ガイドに沿って
移動する移動体を前記ガイドに対して支持する流体軸受
装置において、前記ガイドを磁性体からなる定盤で構成
し、前記ガイドと前記移動体の対向部に設けられ前記ガ
イドに対して前記移動体を加圧流体により浮上させる流
体軸受と、前記移動体に対し前記ガイドの方向に進退可
能に設けられた永久磁石の前記磁性体に対する磁気吸引
力を前記移動体と前記ガイド間に与圧として作用させる
磁力手段と、前記磁性体と前記磁力手段の間隔を調整す
ることにより前記流体軸受からの加圧流体によって前記
ガイドに対して浮上している前記移動体の姿勢を調整す
る姿勢調整手段を有することを特徴とする。 前記磁力手段は、例えば、前記永久磁石に対して設け
られたヨークを有し、前記定盤に対して前記ヨークを対
向させている。あるいは前記永久磁石を前記定盤に対し
て対向させている。前記姿勢調整手段は、例えば、前記
磁性体と前記磁力手段の間隔を調整する方向に前記磁力
手段を移動させるための調整ネジを有する。あるいは、
前記磁性体と前記磁力手段の間隔を調整する方向に前記
磁力手段を移動させるための圧電素子を有する。前記移
動体は、例えば、前記ガイドの上方に浮上して支持さ
れ、前記磁力手段は前記移動体の下面に設けられると共
に、その側面にも設けられている。 [実施例] 第1図は本発明の第1の実施例の構成図であり、
(a)図は側面図、(b)図は(a)図のX−X矢視図
であり移動体の底面を示す図である。1は非磁性体から
なる移動体(テーブル)、2は静圧軸受、3は永久磁
石、4はヨーク、5は非磁性体からなる取付板であり永
久磁石3およびヨーク4が取付けられる。6は姿勢調整
手段となる間隔調整ネジ、8は磁性体からなるガイドで
ある。ガイド8は上面を案内面とする定盤である。永久
磁石3およびヨーク4により移動体1とガイド8とを相
互に吸引するための磁力手段が構成される。矢印Bは磁
界の方向を示す。 上記構成において静圧軸受2に加圧流体を給気するこ
とによりテーブル1は浮上する。この際磁石の予圧が無
い状態では軸受の特性のバラつきによりテーブル1に傾
きが生じる。 磁石による予圧の力は、磁石3、エアーギャップ(ヨ
ーク4とガイド8の間の隙間)、ガイド8の磁気抵抗を
それぞれR1,R2,R3とし、また磁石の長さをl、磁石面積
をS、空気の透磁率をμ、磁界をH、磁束密度をBと
すると、Hl=BA(R1+R2+R3)の関係式よりB,Hが定ま
り、吸引力fはf=B2S/2μで表わすことができる。 したがって予圧力Fは自重をWとするとF=f+Wで
表わされ、この値はエアーギャップを変えることにより
可変である。したがってテーブル1に発生した傾きはエ
アーギャップを調整することにより修正できる。 第1の実施例においては、静圧軸受2に予圧を付与す
るための磁力手段は永久磁石3とその両側のヨーク4に
より構成され、ヨーク4が磁性体からなるガイド8に対
面している。このような磁力手段の部分詳細図を第2図
に示し、またその分解斜視図を第3図に示す。取付板5
に装着した調整ネジ6の操作によりヨーク4とガイド8
との間の隙間が調整され一定な姿勢を得るために最適な
予圧力を付与することができる。 予圧力の計算例を第4図に示す。この計算例は、磁石
の長さl=20mm、面積A=200mm2、ヨーク面積S=300m
m2として計算した結果である。 第5図に本発明の第2の実施例を示す。この実施例で
は前述の第1の実施例の隙間調整用の調整ネジ6に代え
て圧電素子9が設けられている。このような圧電素子9
を設けることにより、テーブル1の移動中に、テーブル
の姿勢を検知手段(図示しない)により検出しこの検知
出力に応じて圧電素子9に電圧を印加してテーブル1の
姿勢を補正することができる。その他の構成、作用、効
果は第1の実施例と同様である。 第6図に本発明の第3の実施例を示す。この実施例で
は永久磁石3を2分割しその中間部にヨーク4を設けて
両側の永久磁石3同士を磁気的に連結している。したが
って、この例では永久磁石4がガイド8に対面してい
る。また、静圧軸受2は両永久磁石3間に設けられ、磁
力手段とともに一体的にユニット化されて移動体1に装
着されている。その他の構成、作用、効果は前記第2の
実施例と同様である。このような構成により、静圧軸受
および磁力手段を一体的にユニットとして交換すること
ができる。 第7図は本発明の第4の実施例を示す。この実施例で
は磁力手段からなる予圧ユニットAを構造体11の下面の
みではなく4方向の側面にも設けている。このような構
成により構造体11はZ方向(上下方向)に予圧を受けて
拘束されるだけでなくx,y方向(左右前後方向)にも予
圧を受けて拘束されるため、Z方向、ローリング、ピッ
チングといった姿勢制御に加え、x,y方向、ヨーイング
の姿勢制御も可能になる。第8図はこの予圧ユニットA
の拡大図である。この例では磁力調整のために隙間を調
整するための圧電素子9は変位拡大機構10を介してヨー
ク4に連結されている。このような構成により、サーボ
マウント12により支えられた定盤等の大型な大変位構造
体11に対し6軸の姿勢制御、振動制御が可能となる。 [発明の効果] 以上説明したように、本発明においては、位置制御す
べき移動体を流体軸受により浮上させてガイド上に支持
し、永久磁石を用いた予圧機構により移動体とガイドと
を相互に吸引させて予圧を付与し、さらに永久磁石また
はヨークとガイド面間の間隔を調整して移動体の姿勢の
調整を可能としているため、永久磁石の磁力のバラつき
等にかかわらず常に一定の姿勢を保つことができ、高精
度、高剛性の機能を高めかつ装置の薄型、軽量化が達成
される。また、流体軸受のクリアランスを調整すること
により空気粘性等による振動減衰が十分得られる。また
予圧調整が可能なため軸受の汎用性が増し軸受交換時等
に軸受の選択、調整作業等が不要になるとともに、軸受
特性が変化してもギャップ調整により一定の姿勢を保つ
ことができる。 なお、ガイド側に永久磁石を設け、移動体側に磁性体
を装着してもよい。
Description: FIELD OF THE INVENTION The present invention relates to an XY stage for a semiconductor exposure apparatus or a static pressure guide device comprising a fluid bearing used for a machine tool, a measuring instrument, and the like, which has higher rigidity and higher accuracy. It is about. 2. Description of the Related Art A high-precision static pressure guide device using a fluid bearing in which a pressurized fluid is supplied to a bearing surface and the bearing members are supported in a non-contact manner by the static pressure is conventionally used. In such a static pressure guide device, a static pressure guide bearing in which a preload is applied by magnetic means for mutually attracting the bearing surface and the guide surface of the moving body to achieve high rigidity, high accuracy, and thinness of the device has been developed. It is described in JP-A-61-290231. This conventional hydrostatic guide bearing has a structure in which a permanent magnet and a magnetic material or an electromagnet and a magnetic material are opposed to each other on the bearing surface side and the guide surface side of the moving body. However, in such a conventional technique, since the magnet and the magnetic body are both fixed to the moving body and the guide member, the magnetic force cannot be adjusted and the magnet and the magnetic body cannot be properly adjusted at the time of bearing replacement or part replacement. In some cases, it is difficult to adjust the preload to an appropriate value, and the variation in the characteristics of the magnet may change the force applied to the moving body, causing a change in posture. Further, when an electromagnet is used, heat is generated, and the guide member may be deformed, resulting in lower accuracy. [Object of the Invention] The present invention has been made in view of the above-mentioned drawbacks of the prior art, and is capable of adjusting the magnetic force of a magnetic force means for applying a preload to a bearing surface so as to always maintain an appropriate magnetic force regardless of variations in magnet characteristics. It is an object of the present invention to provide a fluid bearing device which maintains a stable posture by applying a preload, has high rigidity, high accuracy, and is thin without generating heat or the like by an electromagnet. [Constitution of the Invention] In order to achieve this object, according to the present invention, in a fluid dynamic bearing device that supports a moving body that moves along a guide with respect to the guide, the guide is constituted by a surface plate made of a magnetic material, A fluid bearing provided at an opposing portion of the guide and the moving body to float the moving body with respect to the guide by a pressurized fluid; and a permanent magnet provided so as to be able to advance and retreat in the guide direction with respect to the moving body. Magnetic force means for applying a magnetic attraction force to a magnetic body as a pressurization between the moving body and the guide, and adjusting the distance between the magnetic body and the magnetic force means to the guide by pressurized fluid from the fluid bearing. On the other hand, there is provided a posture adjusting means for adjusting a posture of the moving body floating. The magnetic force means has, for example, a yoke provided for the permanent magnet, and makes the yoke face the surface plate. Alternatively, the permanent magnet is opposed to the surface plate. The attitude adjusting means has, for example, an adjusting screw for moving the magnetic force means in a direction for adjusting a distance between the magnetic body and the magnetic force means. Or,
There is a piezoelectric element for moving the magnetic force means in a direction for adjusting the distance between the magnetic body and the magnetic force means. The moving body is supported, for example, by floating above the guide, and the magnetic force means is provided on a lower surface of the moving body and also on a side surface thereof. Embodiment FIG. 1 is a configuration diagram of a first embodiment of the present invention.
(A) is a side view, and (b) is a view taken along the line XX in (a) of FIG. 1 is a moving body (table) made of a non-magnetic material, 2 is a hydrostatic bearing, 3 is a permanent magnet, 4 is a yoke, and 5 is a mounting plate made of a non-magnetic material, to which the permanent magnet 3 and the yoke 4 are mounted. Reference numeral 6 denotes an interval adjusting screw serving as an attitude adjusting means, and reference numeral 8 denotes a guide made of a magnetic material. The guide 8 is a surface plate having an upper surface as a guide surface. The permanent magnet 3 and the yoke 4 constitute magnetic force means for mutually attracting the moving body 1 and the guide 8. Arrow B indicates the direction of the magnetic field. In the above configuration, the table 1 floats by supplying pressurized fluid to the hydrostatic bearing 2. At this time, if there is no preload of the magnet, the table 1 is tilted due to variation in the characteristics of the bearing. Force of the preload by the magnet, the magnet 3, (the gap between the yoke 4 and the guide 8) air gap, a magnetic resistance of the guide 8 and R 1, R 2, R 3, respectively, also the length of the magnet l, magnet Assuming that the area is S, the magnetic permeability of air is μ 0 , the magnetic field is H, and the magnetic flux density is B, B and H are determined by the relational expression of Hl = BA (R 1 + R 2 + R 3 ), and the attractive force f is f = It may be represented by B 2 S / 2μ 0. Therefore, the preload F is represented by F = f + W where W is its own weight, and this value is variable by changing the air gap. Therefore, the inclination generated in the table 1 can be corrected by adjusting the air gap. In the first embodiment, the magnetic force means for applying a preload to the hydrostatic bearing 2 is constituted by the permanent magnet 3 and the yokes 4 on both sides thereof, and the yoke 4 faces the guide 8 made of a magnetic material. FIG. 2 is a partial detailed view of such magnetic force means, and FIG. 3 is an exploded perspective view thereof. Mounting plate 5
The yoke 4 and the guide 8 are operated by operating the adjustment screw 6 mounted on the
The optimal preload can be applied in order to obtain a constant posture by adjusting the gap between the preload. FIG. 4 shows a calculation example of the preload. In this calculation example, the magnet length l = 20 mm, the area A = 200 mm 2 , and the yoke area S = 300 m
the result of calculation as m 2. FIG. 5 shows a second embodiment of the present invention. In this embodiment, a piezoelectric element 9 is provided instead of the gap adjusting screw 6 of the first embodiment. Such a piezoelectric element 9
Is provided, while the table 1 is moving, the attitude of the table can be detected by the detecting means (not shown), and a voltage can be applied to the piezoelectric element 9 in accordance with the detection output to correct the attitude of the table 1. . Other configurations, operations, and effects are the same as those of the first embodiment. FIG. 6 shows a third embodiment of the present invention. In this embodiment, the permanent magnet 3 is divided into two parts, and a yoke 4 is provided at an intermediate part thereof, and the permanent magnets 3 on both sides are magnetically connected to each other. Therefore, in this example, the permanent magnet 4 faces the guide 8. Further, the static pressure bearing 2 is provided between the two permanent magnets 3, is unitized integrally with the magnetic force means, and is mounted on the moving body 1. Other configurations, operations, and effects are the same as those of the second embodiment. With such a configuration, the hydrostatic bearing and the magnetic means can be integrally replaced as a unit. FIG. 7 shows a fourth embodiment of the present invention. In this embodiment, the preload unit A composed of magnetic means is provided not only on the lower surface of the structure 11 but also on the side surfaces in four directions. With such a configuration, the structure 11 is not only restrained by receiving a preload in the Z direction (vertical direction), but also restrained by receiving a preload in the x, y directions (left, right, front and rear directions). In addition to attitude control such as pitching and pitching, attitude control of the x, y directions and yawing can be performed. FIG. 8 shows this preload unit A
FIG. In this example, a piezoelectric element 9 for adjusting a gap for adjusting a magnetic force is connected to a yoke 4 via a displacement enlarging mechanism 10. With such a configuration, six-axis attitude control and vibration control can be performed on a large large displacement structure 11 such as a surface plate supported by the servo mount 12. [Effects of the Invention] As described above, in the present invention, a moving body to be position-controlled is floated by a fluid bearing and supported on a guide, and the moving body and the guide are mutually moved by a preload mechanism using a permanent magnet. To apply a preload and adjust the distance between the permanent magnet or yoke and the guide surface to adjust the posture of the moving body. , The functions of high precision and high rigidity are enhanced, and the device is made thinner and lighter. Further, by adjusting the clearance of the fluid bearing, sufficient vibration damping due to air viscosity or the like can be obtained. In addition, since the preload can be adjusted, the versatility of the bearing is increased, so that it is not necessary to select and adjust the bearing at the time of bearing replacement or the like, and a constant posture can be maintained by adjusting the gap even if the bearing characteristics change. Note that a permanent magnet may be provided on the guide side, and a magnetic body may be mounted on the moving body side.

【図面の簡単な説明】 第1図(a)は本発明実施例の側面図、第1図(b)は
第1図(a)のX−X矢視図、第2図は本発明に係る磁
力手段の斜視図、第3図は第2図の磁力手段の分解図、
第4図はギャップと磁気吸引力との関係の計算結果のグ
ラフ、第5図および第6図は各々本発明の各別の実施例
の側面図、第7図は本発明のさらに別の実施例の斜視
図、第8図は第7図の実施例の部分詳細図である。 1:移動体、 2:静圧軸受、 3:永久磁石、 4:ヨーク、 6:隙間調整ネジ、 8:ガイド、 9:圧電素子。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) is a side view of an embodiment of the present invention, FIG. 1 (b) is a view taken on line XX of FIG. 1 (a), and FIG. FIG. 3 is a perspective view of the magnetic force means, FIG. 3 is an exploded view of the magnetic force means of FIG. 2,
FIG. 4 is a graph of the calculation result of the relationship between the gap and the magnetic attraction force, FIGS. 5 and 6 are side views of different embodiments of the present invention, and FIG. 7 is still another embodiment of the present invention. FIG. 8 is a partial detailed view of the embodiment of FIG. 7, and FIG. 1: moving body, 2: hydrostatic bearing, 3: permanent magnet, 4: yoke, 6: clearance adjusting screw, 8: guide, 9: piezoelectric element.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−290231(JP,A) 特開 昭61−25742(JP,A) 特開 昭60−150950(JP,A) 特開 昭60−14620(JP,A) 実開 昭61−151838(JP,U) 実開 昭62−34219(JP,U)   ────────────────────────────────────────────────── ─── Continuation of front page    (56) References JP-A-61-290231 (JP, A)                 JP-A-61-25742 (JP, A)                 JP-A-60-150950 (JP, A)                 JP-A-60-14620 (JP, A)                 Shokai 61-151838 (JP, U)                 62-34219 (JP, U)

Claims (1)

(57)【特許請求の範囲】 1.ガイドに沿って移動する移動体を前記ガイドに対し
て支持する流体軸受装置において、前記ガイドを磁性体
からなる定盤で構成し、前記ガイドと前記移動体の対向
部に設けられ前記ガイドに対して前記移動体を加圧流体
により浮上させる流体軸受と、前記移動体に対し前記ガ
イドの方向に進退可能に設けられた永久磁石の前記磁性
体に対する磁気吸引力を前記移動体と前記ガイド間に与
圧として作用させる磁力手段と、前記磁性体と前記磁力
手段の間隔を調整することにより前記流体軸受からの加
圧流体によって前記ガイドに対して浮上している前記移
動体の姿勢を調整する姿勢調整手段を有することを特徴
とする流体軸受装置。 2.前記磁力手段は前記永久磁石に対して設けられたヨ
ークを有し、前記定盤に対して前記ヨークを対向させて
いることを特徴とする特許請求の範囲第1項記載の流体
軸受装置。 3.前記磁力手段は前記永久磁石を前記定盤に対して対
向させていることを特徴とする特許請求の範囲第1項記
載の流体軸受装置。 4.前記姿勢調整手段は前記磁性体と前記磁力手段の間
隔を調整する方向に前記磁力手段を移動させるための調
整ネジを有することを特徴とする特許請求の範囲第1項
記載の流体軸受装置。 5.前記姿勢調整手段は前記磁性体と前記磁力手段の間
隔を調整する方向に前記磁力手段を移動させるための圧
電素子を有することを特徴とする特許請求の範囲第1項
記載の流体軸受装置。 6.前記移動体は前記ガイドの上方に浮上して支持さ
れ、前記磁力手段は前記移動体の下面に設けられると共
に、その側面にも設けられていることを特徴とする特許
請求の範囲第1項記載の流体軸受装置。
(57) [Claims] In a fluid bearing device that supports a moving body that moves along a guide with respect to the guide, the guide is configured by a surface plate made of a magnetic material, and is provided at a facing portion between the guide and the moving body. A fluid bearing for causing the moving body to float with the pressurized fluid, and a magnetic attraction force for the magnetic body of a permanent magnet provided to be able to advance and retreat in the direction of the guide with respect to the moving body, between the moving body and the guide. A magnetic force unit acting as a pressurizing force, and a posture of adjusting the posture of the moving body floating on the guide by the pressurized fluid from the fluid bearing by adjusting an interval between the magnetic body and the magnetic force unit. A hydrodynamic bearing device comprising adjusting means. 2. 2. The hydrodynamic bearing device according to claim 1, wherein said magnetic force means has a yoke provided for said permanent magnet, and said yoke is opposed to said surface plate. 3. 2. The hydrodynamic bearing device according to claim 1, wherein said magnetic force means causes said permanent magnet to face said surface plate. 4. 2. The hydrodynamic bearing device according to claim 1, wherein said attitude adjusting means has an adjusting screw for moving said magnetic force means in a direction for adjusting a distance between said magnetic body and said magnetic force means. 5. 2. The hydrodynamic bearing device according to claim 1, wherein said attitude adjusting means has a piezoelectric element for moving said magnetic force means in a direction for adjusting a distance between said magnetic body and said magnetic force means. 6. 2. The moving body according to claim 1, wherein the moving body is supported by being floated above the guide, and the magnetic force means is provided on a lower surface of the moving body and also on a side surface thereof. Hydrodynamic bearing device.
JP62062735A 1987-03-19 1987-03-19 Fluid bearing device Expired - Lifetime JP2665740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62062735A JP2665740B2 (en) 1987-03-19 1987-03-19 Fluid bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62062735A JP2665740B2 (en) 1987-03-19 1987-03-19 Fluid bearing device

Publications (2)

Publication Number Publication Date
JPS63232912A JPS63232912A (en) 1988-09-28
JP2665740B2 true JP2665740B2 (en) 1997-10-22

Family

ID=13208930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62062735A Expired - Lifetime JP2665740B2 (en) 1987-03-19 1987-03-19 Fluid bearing device

Country Status (1)

Country Link
JP (1) JP2665740B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228358A (en) * 1990-02-21 1993-07-20 Canon Kabushiki Kaisha Motion guiding device
JPH08229759A (en) * 1995-02-24 1996-09-10 Canon Inc Positioning device, and device and method of manufacturing device
US6559456B1 (en) 1998-10-23 2003-05-06 Canon Kabushiki Kaisha Charged particle beam exposure method and apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6014620A (en) * 1983-07-01 1985-01-25 Canon Inc Static pressure bearing
JPS60150950A (en) * 1984-01-20 1985-08-08 Hitachi Ltd Guiding device
JPS60172025U (en) * 1984-04-25 1985-11-14 セイコー精機株式会社 table guide mechanism
JPS6125742A (en) * 1984-07-11 1986-02-04 Ntn Toyo Bearing Co Ltd Guide device
JPS61290231A (en) * 1985-06-19 1986-12-20 Nippon Seiko Kk Static pressure guide bearing

Also Published As

Publication number Publication date
JPS63232912A (en) 1988-09-28

Similar Documents

Publication Publication Date Title
JP3640971B2 (en) Positioning device having a force actuator device for compensating for the movement of the center of gravity
EP0502578B1 (en) Optical lithographic device having a machine frame with force compensation
US5294854A (en) Bearing for use in high resolution precision control device
JP3976783B2 (en) Positioning device having article table not subject to vibration
US5939852A (en) Stage feeding device
JPH0863231A (en) Target moving device, positioning device, and movable stage device
JPH095463A (en) Stage device
US6538348B2 (en) Stage device capable of moving an object to be positioned precisely to a target position
EP0443831A2 (en) Motion guiding device
JP3481540B2 (en) Stage equipment
JP2665740B2 (en) Fluid bearing device
JP2008546965A (en) Constant pressure bearing transfer device with magnetic preload and motion error correction function
JP3145355B2 (en) Travel guidance device
JP2865369B2 (en) Magnetic suction gas floating type pad
JPH01188241A (en) Shift guiding device
US6621241B2 (en) System and method for reducing oscillating tool-induced reaction forces
JPS63231028A (en) Vibration damping device
JP2980078B2 (en) Travel guide device
JP2005169523A (en) Table positioning device
JP2921750B2 (en) Travel guide device
JPH05215133A (en) Static pressure fluid bearing and positioning control device thereof
KR100430494B1 (en) Positioning apparatus having an object table without the influence of vibration and lithographic apparatus provided with the positioning apparatus
JPH11231079A (en) Stage device and exposure device
JP4287781B2 (en) Positioning device having a reference frame for a measurement system
JP2652495B2 (en) air pad

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term