JP2664757B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2664757B2
JP2664757B2 JP1017836A JP1783689A JP2664757B2 JP 2664757 B2 JP2664757 B2 JP 2664757B2 JP 1017836 A JP1017836 A JP 1017836A JP 1783689 A JP1783689 A JP 1783689A JP 2664757 B2 JP2664757 B2 JP 2664757B2
Authority
JP
Japan
Prior art keywords
layer
conductor strip
semiconductor
metal
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1017836A
Other languages
Japanese (ja)
Other versions
JPH02205343A (en
Inventor
ロベルタス・アドリアヌス・マリア・ウオルテルス
アレクサンダー・ヒェイスベルタス・マシアス・ヨンケルス
Original Assignee
フィリップス エレクトロニクス ネムローゼ フェンノートシャップ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by フィリップス エレクトロニクス ネムローゼ フェンノートシャップ filed Critical フィリップス エレクトロニクス ネムローゼ フェンノートシャップ
Publication of JPH02205343A publication Critical patent/JPH02205343A/en
Application granted granted Critical
Publication of JP2664757B2 publication Critical patent/JP2664757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76895Local interconnects; Local pads, as exemplified by patent document EP0896365
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/015Capping layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S438/00Semiconductor device manufacturing: process
    • Y10S438/902Capping layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体領域及びこれを囲むフィールド酸化物
領域により隣接する表面を有する半導体本体を具え、こ
の表面には導体細条が形成された金属層を設け、その後
この導電細条にシリコンの上側層を設けると共に前記表
面上の前記導体細条及び前記上側層全体に亘って酸化珪
素の分離層を堆積して半導体装置を製造する方法に関す
るものである。
Description: FIELD OF THE INVENTION The present invention comprises a semiconductor body having a surface adjacent to a semiconductor region and a field oxide region surrounding the semiconductor region, the metal having a conductor strip formed on the surface. A method of manufacturing a semiconductor device by providing a layer, then providing an upper layer of silicon on said conductive strip and depositing a separating layer of silicon oxide over said conductor strip and said upper layer on said surface. It is.

(従来の技術) 導体細条は、これが半導体領域上、及びフィールド酸
化物領域上に延在して半導体領域と接触し得るように設
けることができる。これがため、導体細条は、例えば半
導体領域に設けられる電界効果トランジスタのソース及
びドレイン領域に接触させることができる。従って導体
細条は、その上に堆積した珪素酸化物の分離層(層間絶
縁層)にあけた接点窓を経て、珪素酸化物の分離層上に
設けた金属化層に更に接触させることができる。又、導
体細条は、半導体本体の表面にも設け得る多結晶シリコ
ンの導体細条にも更に接続することができる。次いで両
導体細条を珪素酸化物の分離層によって被覆する。これ
がため、例えば半導体領域に設けた電界効果トランジス
タのソース又はドレイン領域を半導体本体に設けるべき
他の電界効果トランジスタのゲート電極に接続すること
ができる。しかし、導体細条は、これがフィールド酸化
物上にのみ、又は半導体領域上にのみ延在させるように
配列することもできる。この場合には、この導体細条を
用いて種々の相互接続を確立することもできる。
2. Description of the Related Art A conductor strip can be provided such that it extends over a semiconductor region and over a field oxide region and can contact a semiconductor region. For this reason, the conductor strip can be brought into contact with, for example, the source and drain regions of a field effect transistor provided in the semiconductor region. Therefore, the conductor strip can be further brought into contact with the metallized layer provided on the silicon oxide separation layer via the contact window opened in the silicon oxide separation layer (interlayer insulating layer) deposited thereon. . The conductor strip can also be connected to a conductor strip of polycrystalline silicon, which can also be provided on the surface of the semiconductor body. The conductor strips are then covered with a separating layer of silicon oxide. Thus, for example, the source or drain region of a field effect transistor provided in a semiconductor region can be connected to the gate electrode of another field effect transistor to be provided in a semiconductor body. However, the conductor tracks can also be arranged such that they extend only on the field oxide or only on the semiconductor regions. In this case, various interconnections can also be established using the conductor strip.

導体細条を、チタン、バナジウム、クロム、ジルコニ
ウム、ニオブ、モリブデン、ハフニウム、タンタル又は
タングステンの層で形成するようにした前述した種類の
半導体装置の製造方法はヨーロッパ特許願第190070号明
細書に記載されている。この酸化珪素の分離層は、酸化
珪素を堆積する既知の方法の1つによって半導体本体の
表面の導体細条上に堆積することができる。
A method for manufacturing a semiconductor device of the type described above in which the conductor strip is formed of a layer of titanium, vanadium, chromium, zirconium, niobium, molybdenum, hafnium, tantalum or tungsten is described in European Patent Application No. 190070. Have been. This separation layer of silicon oxide can be deposited on the conductor strip on the surface of the semiconductor body by one of the known methods of depositing silicon oxide.

(発明が解決しようとする課題) 実際には、かかる既知の方法を用いることによって種
々の問題が生ずることを確かめた。例えば、酸化珪素層
により被覆された導体細条の電気抵抗は金属細条のその
特性のために期待されている抵抗値より著しく大きい。
酸化珪素層を、良好にステップカバレージが得られる堆
積処理によって堆積する場合には特にこれらの問題が生
ずる。しかしサブミクロンの寸法の電界効果トランジス
タのような回路素子を有する半導体装置の製造中かかる
堆積処理の必要性は著しく大きくなる。
(Problems to be Solved by the Invention) Actually, it has been confirmed that various problems occur by using such a known method. For example, the electrical resistance of a conductor strip covered by a silicon oxide layer is significantly higher than expected due to its properties of a metal strip.
These problems occur particularly when the silicon oxide layer is deposited by a deposition process that provides good step coverage. However, during the manufacture of semiconductor devices having circuit elements such as field effect transistors of sub-micron dimensions, the need for such deposition processes becomes significantly greater.

本発明の目的は、半導体本体の表面上の金属導体細条
上に酸化珪素の層を堆積処理によって堆積し得ると共
に、これにより導体細条が不所望な電気特性を得ること
なる良好なステップカパレージが得られるようにした上
述した種類の半導体装置の製造方法を提供せんとするに
ある。
It is an object of the present invention to provide a method for depositing a layer of silicon oxide on a metal conductor strip on a surface of a semiconductor body by a deposition process, whereby the conductor strip obtains undesired electrical properties. It is an object of the present invention to provide a method of manufacturing a semiconductor device of the type described above, in which a laser can be obtained.

(課題を解決するための手段) この目的のため、本発明方法は、半導体領域及びこれ
を囲むフィールド酸化物領域が隣接する表面を有する半
導体本体を具え、この表面には金属層で形成された導体
細条を設けるとともにシリコンの上側層を設け、その後
半導体本体にシリコン酸化物の分離層を堆積し、これに
より酸化成分を含むシリコン含有ガス混合物を半導体本
体上に通過させながら半導体本体を加熱するようにして
半導体装置を製造するに当たり、前記導体細条には酸化
シリコン層の堆積中酸化防止材料として作用するアモル
ファスシリコンの上側層を設け、これにより半導体本体
を650℃以上の温度に加熱することを特徴とする。
SUMMARY OF THE INVENTION To this end, a method according to the invention comprises a semiconductor body having a surface adjacent to a semiconductor region and a surrounding field oxide region, the surface being formed with a metal layer. Providing a conductor strip and providing an upper layer of silicon, then depositing a separation layer of silicon oxide on the semiconductor body, thereby heating the semiconductor body while passing a silicon-containing gas mixture containing an oxidizing component over the semiconductor body; In manufacturing the semiconductor device in this manner, the conductor strip is provided with an upper layer of amorphous silicon that acts as an antioxidant during the deposition of the silicon oxide layer, thereby heating the semiconductor body to a temperature of 650 ° C. or more. It is characterized by.

本発明は、良好なステップカバレージが得られる堆積
処理によって酸化珪素層の堆積中、チタン、バナジウ
ム、クロム、ジルコニウム、ニオブ、モリブデン、ハフ
ニウム、タンタル又はタングステンの導体細条が容易に
酸化されると云う事実を確認して成したものである。か
かる処理中半導体本体は650℃以上の温度で加熱すると
共に実際上常時酸化成分を含有する珪素含有ガス混合物
を半導体本体上に流す。即ち、このガス混合物は酸素を
有する不純物又は酸化化合物がジクロロシランを含有す
るガス混合物内に存在する形態とする。かかる条件にお
いて前記金属は容易に酸化する。450℃以下の充分に低
い温度では上述したことは起らないが、これらの温度で
は良好なステップカバレージを有する酸化珪素の層は堆
積し得ない。かかる酸化によって導体細条は腐食され、
これが極めて高い抵抗値を有するか又は完全に遮断され
るようになる。
The present invention states that a conductive strip of titanium, vanadium, chromium, zirconium, niobium, molybdenum, hafnium, tantalum or tungsten is easily oxidized during the deposition of a silicon oxide layer by a deposition process that provides good step coverage. It was done after confirming the facts. During such processing, the semiconductor body is heated at a temperature of 650 ° C. or higher, and a silicon-containing gas mixture containing an oxidizing component is flowed over the semiconductor body in practice. That is, the gas mixture has a form in which impurities or oxide compounds having oxygen are present in the gas mixture containing dichlorosilane. Under such conditions, the metal is easily oxidized. At sufficiently low temperatures below 450 ° C. the above does not occur, but at these temperatures a layer of silicon oxide with good step coverage cannot be deposited. Such oxidation erodes the conductor strip,
It has a very high resistance value or becomes completely interrupted.

本発明手段によれば酸化珪素の分離層の堆積中導体細
条の酸化が防止されるようになる。
According to the means of the present invention, oxidation of the conductor strip during deposition of the silicon oxide separation layer is prevented.

酸化防止上側層は窒化珪素又は酸化珪素から製造する
ことができる。しかし上述した理由のため、これら層は
例えばプラズマ堆積処理により低温度で堆積する必要が
ある。しかし、これらの層のステップリカバレージは良
好でなくなる。
The antioxidant upper layer can be made from silicon nitride or silicon oxide. However, for the reasons described above, these layers need to be deposited at a low temperature, for example by a plasma deposition process. However, the step recovery of these layers is not good.

良好なステップカバレージを有するかかるアモルファ
スシリコンの層は、スパッタ堆積処理又はアモルファス
シリコンがモノシランを含有する蒸気から堆積される堆
積処理によって比較的低温度で容易に堆積することがで
きる。後者の場合にはこの金属層は、450℃以下の温度
で発生し得るモノシランの放電反応に対する触媒として
作用する。これらの処理は実際上前述した金属が酸化し
ない条件で実行される。又、アモルファスシリコンの上
側層は導体細条自体上に酸化珪素を堆積する間には殆ん
ど酸化されないことを確かめた。更に、この上側層は密
実で下側の金属が実際上観察し得ないことを確かめた。
Such a layer of amorphous silicon with good step coverage can be easily deposited at relatively low temperatures by a sputter deposition process or a deposition process in which amorphous silicon is deposited from a vapor containing monosilane. In the latter case, this metal layer acts as a catalyst for the monosilane discharge reaction which can occur at temperatures below 450 ° C. These treatments are carried out under conditions that do not actually oxidize the metal. It has also been found that the upper layer of amorphous silicon is hardly oxidized during the deposition of silicon oxide on the conductor strip itself. In addition, it was confirmed that the upper layer was solid and the underlying metal was virtually unobservable.

又、本発明の好適な例では前記導体細条には厚さが少
なくとも3nmのアモルファスシリコンの上側層を設ける
ようにする。更に厚さが最小のアモルファスシリコンの
層によっても下側の金属層を充分に酸化から防止するこ
とができることを確かめた。
In a preferred embodiment of the present invention, the conductor strip is provided with an upper layer of amorphous silicon having a thickness of at least 3 nm. Further, it has been confirmed that the lower metal layer can be sufficiently prevented from being oxidized even with a layer of amorphous silicon having a minimum thickness.

更に、本発明により上側層を有する導体細条を実際に
設けた方法では導体細条に上側層を設け、その表面に形
成した金属層上に酸化防止材料の層を設け、並置層の双
方を導体細条に対応させて同一パターンにエッチングし
得るようにする。金属層及び酸化防止層の双方はスパッ
タ堆積処理によって堆積することができる。これら両層
は単一製造工程中同一の機器で堆積することができる。
Further, in the method of actually providing a conductor strip having an upper layer according to the present invention, an upper layer is provided on the conductor strip, a layer of an antioxidant material is provided on a metal layer formed on the surface thereof, and both of the juxtaposed layers are provided. The same pattern can be etched corresponding to the conductor strip. Both the metal layer and the antioxidant layer can be deposited by a sputter deposition process. Both of these layers can be deposited on the same equipment during a single manufacturing process.

更に、本発明の好適な例では前記酸化防止材料の層を
先ず最初上記パターンにエッチングし、次いでこの酸化
防止材料の層のパターンをマスクしながら下側の金属層
にエッチングにより同一のパターンを形成し得るように
する。次いでこの上側層によって例えば厚さが5nmの極
めて薄いマスクを形成し、これによりこのマスクの開口
を経て液状エッチング材により下側の金属層を充分満足
に湿潤させることができる。これがため、例えば互いに
1μm以下の距離で離間された比較的幅狭の導体細条を
形成することができる。金属層は例えば過酸化水素の溶
液中でアモルファスシリコンの上側層に対して極めて選
択的にエッチングすることができる。
Further, in a preferred embodiment of the present invention, the layer of the antioxidant material is first etched into the above pattern, and then the same pattern is formed by etching the lower metal layer while masking the pattern of the antioxidant material. To be able to do it. The upper layer then forms an extremely thin mask, for example 5 nm thick, so that the lower metal layer can be sufficiently satisfactorily wetted by the liquid etchant through the openings in the mask. For this reason, for example, a relatively narrow conductor strip can be formed which is separated from each other by a distance of 1 μm or less. The metal layer can be etched very selectively with respect to the upper layer of amorphous silicon, for example in a solution of hydrogen peroxide.

又、チタン及び窒素を添加したタングステンの層に導
体細条を更に形成するのが好適である。タングステン及
びチタンの混合物に窒素を添加することにより、酸化珪
素の堆積中金属層の横方向酸化を強く防止することがで
きる。かかる窒素の添加を行うことにより、導体細条
は、その両側の窒素添加による上側層により被覆されて
いない部分において、窒素添加を行わない場合よりも一
層強く酸化されるようになる。従って導体細条は減少端
部を有するようになるが、これも窒素の添加によって防
止することができる。
Further, it is preferable to further form a conductor strip on the tungsten layer to which titanium and nitrogen are added. By adding nitrogen to the mixture of tungsten and titanium, lateral oxidation of the metal layer during silicon oxide deposition can be strongly prevented. By performing the addition of nitrogen, the conductor strip is more strongly oxidized in a portion on both sides of the conductor strip that is not covered by the upper layer formed by the addition of nitrogen than when no nitrogen is added. The conductor strip thus has a reduced end, which can also be prevented by the addition of nitrogen.

(実施例) 第1〜8図は本発明方法により製造した半導体装置の
製造工程の数段を示す。出発材料は、p導電型珪素半導
体領域3及びこれを囲むフィールド酸化物領域4に隣接
する表面2を有する半導体本体1とする。このフィール
ド酸化物領域4は通常のように珪素の局部酸化により得
ることができる。又、このフィールド酸化物は半導体本
体に形成した条溝に珪素酸化物を充填することによって
も形成することができる。本例では表面2は、半導体領
域3上及びフィールド酸化物領域4上に同一レベルで位
置させる。しかし、この表面2のレベルを半導体領域3
上よりもフィールド酸化物領域4上で高くすることもで
きる。表面レベルが平坦な場合を“埋込みフィールド酸
化物”と称する。
(Embodiment) FIGS. 1 to 8 show several steps of a manufacturing process of a semiconductor device manufactured by the method of the present invention. The starting material is a semiconductor body 1 having a p-type silicon semiconductor region 3 and a surface 2 adjacent to a field oxide region 4 surrounding it. This field oxide region 4 can be obtained as usual by local oxidation of silicon. This field oxide can also be formed by filling grooves formed in the semiconductor body with silicon oxide. In this example, the surface 2 is located at the same level on the semiconductor region 3 and the field oxide region 4. However, the level of the surface 2 is changed to the semiconductor region 3
It can be higher on field oxide region 4 than above. The case where the surface level is flat is called "buried field oxide".

図面にはフィールド酸化物領域4によって囲まれた単
一の半導体領域3のみを示すが、実際には半導体本体は
極めて多数のかかる領域を具える。これら領域の各々
は、例えば電界効果トランジスタのような回路素子を具
える。本例では半導体領域3に電界効果トランジスタを
具える。
Although the figure shows only a single semiconductor region 3 surrounded by a field oxide region 4, in practice the semiconductor body comprises a very large number of such regions. Each of these regions comprises a circuit element such as, for example, a field effect transistor. In this example, the semiconductor region 3 includes a field effect transistor.

通常のようにこの半導体表面2には半導体領域3から
ゲート酸化物の層5によって分離された多結晶珪素のゲ
ート電極6を設ける。図面に示すようにフィールド酸化
物領域4上には多結晶珪素の導体細条7をも設ける。こ
の導体細条7は、隣接する半導体領域に設ける電界効果
トランジスタのゲート電極を構成する。ゲート電極6及
び導体細条7を形成した後、約55KeVのエネルギーで約
2×1015イオン/cm2のドーズ量でBF2 +イオンを通常のよ
うに注入して半導体領域8及び9を形成する。これらゲ
ート電極6及びフィールド酸化物領域4はイオン注入用
マスクとして用いる。半導体領域8及び9は電界効果ト
ランジスタのソース及びドレイン領域として用いる。こ
れら半導体領域8及び9を形成した後半導体本体1全体
に酸化珪素層を堆積すると共にこの酸化珪素層に対し端
縁分離部分10がこの酸化珪素層上に残存するような時間
に亘り異方性エッチング処理して施してゲート電極6及
び導体細条7に端縁分離部分10を設ける。
As usual, the semiconductor surface 2 is provided with a polycrystalline silicon gate electrode 6 separated from the semiconductor region 3 by a layer 5 of gate oxide. As shown in the drawing, a conductor strip 7 of polycrystalline silicon is also provided on the field oxide region 4. The conductor strip 7 forms a gate electrode of a field effect transistor provided in an adjacent semiconductor region. After forming the gate electrode 6 and the conductive strip 7, BF 2 + ions are implanted in the usual manner at an energy of about 55 KeV and a dose of about 2 × 10 15 ions / cm 2 to form semiconductor regions 8 and 9 I do. The gate electrode 6 and the field oxide region 4 are used as a mask for ion implantation. The semiconductor regions 8 and 9 are used as source and drain regions of a field effect transistor. After the semiconductor regions 8 and 9 are formed, a silicon oxide layer is deposited on the entire semiconductor body 1 and anisotropically separated from the silicon oxide layer for a time such that an edge separation portion 10 remains on the silicon oxide layer. An edge separation portion 10 is provided on the gate electrode 6 and the conductor strip 7 by etching.

電気抵抗の低い半導体領域8及び9を接触し得るよう
にするためにこれら領域8及び9に金属珪化物より成る
上側層12を設けるのが好適である。この層は、珪素に対
し珪化物を形成し得る金属の層11、本例では、厚さが約
40nmのチタン層によって半導体本体1全体を被覆し、そ
の後基板1を窒素雰囲気中で650℃の温度で10秒間に亘
り加熱することによって形成する。金属層11が珪素と接
触する区域ではチタン珪化物が形成され、且つ金属層が
酸化珪素上に位置する区域では窒化チタンが形成される
ようになる。次いで形成した窒化チタンをアンモニア及
び過酸化物水素の水溶液中で除去する。次いで基板1を
窒素雰囲気中で850℃の温度で更に10秒間に亘り加熱す
る。次に、半導体領域8及び9、ゲート電極6及び多結
晶珪素の導体7には、抵抗値が2.5〜3.5Ω/□のチタン
珪化物の安定な上側層12を設ける。ゲート電極6及び導
体細条7の端縁分離部分10及びフィールド酸化物領域4
には上記チタン珪化物を被覆しない。
Preferably, these regions 8 and 9 are provided with an upper layer 12 of metal silicide so that the semiconductor regions 8 and 9 with low electrical resistance can be contacted. This layer is made of a metal layer 11 capable of forming a silicide with respect to silicon.
The entire semiconductor body 1 is covered with a 40 nm titanium layer, and then formed by heating the substrate 1 in a nitrogen atmosphere at a temperature of 650 ° C. for 10 seconds. Titanium silicide is formed in a region where the metal layer 11 contacts silicon, and titanium nitride is formed in a region where the metal layer is located on silicon oxide. Next, the formed titanium nitride is removed in an aqueous solution of ammonia and hydrogen peroxide. Next, the substrate 1 is heated in a nitrogen atmosphere at a temperature of 850 ° C. for further 10 seconds. Next, the semiconductor regions 8 and 9, the gate electrode 6, and the conductor 7 of polycrystalline silicon are provided with a stable upper layer 12 of titanium silicide having a resistance of 2.5 to 3.5 Ω / □. Edge separation portion 10 of gate electrode 6 and conductor strip 7 and field oxide region 4
Does not cover the titanium silicide.

チタン珪化物の上側層12を形成した後、半導体領域3
及びフィールド酸化物領域4に形成された半導体領域8
及び9と隣接し、上側にゲート電極6及び多結晶珪素の
導体7が形成されている半導体本体の表面2に金属導体
細条17,18を設ける。この表面2上の導体細条17,18全体
に亘って酸化珪素の分離層19を堆積する。これら2つの
金属導体細条17及び18を第7及び8図に示す。導体細条
17は半導体領域8上、フィールド酸化物領域4上及び多
結晶珪素導体細条7上に延在させると共にこれによって
半導体領域8を導体細条7に接続する。又、導体細条18
は、半導体領域8及びフィールド酸化物領域4上に延在
させると共に酸化珪素層19にあけた窓20及びこの窓20に
設けた金属プラグ体21を経て酸化珪素層19上に設けた他
の導体22に接続する。
After forming the upper layer 12 of titanium silicide, the semiconductor region 3
And semiconductor region 8 formed in field oxide region 4
And metal conductor strips 17 and 18 are provided on the surface 2 of the semiconductor body on which the gate electrode 6 and the conductor 7 of polycrystalline silicon are formed on the upper side. A separation layer 19 of silicon oxide is deposited over the entire conductor strips 17 and 18 on the surface 2. These two metal conductor strips 17 and 18 are shown in FIGS. Conductor strip
17 extends over the semiconductor region 8, over the field oxide region 4 and over the polycrystalline silicon conductor strip 7, thereby connecting the semiconductor region 8 to the conductor strip 7. Also, conductor strip 18
The other conductor provided on the silicon oxide layer 19 through the window 20 opened in the silicon oxide layer 19 and the metal plug body 21 provided in the window 20 and extending over the semiconductor region 8 and the field oxide region 4 Connect to 22.

上記金属導体細条17,18は、表面2上に金属層13を堆
積し、次いでこの金属層を導体細条17,18に対応するパ
ターンにエッチングすることによって表面2に形成す
る。本発明によれば、酸化珪素層19を導体細条17,18上
に設ける前にこの導体細条17,18の酸化防止材料の上側
層16を設ける。
The metal conductor strips 17 and 18 are formed on the surface 2 by depositing a metal layer 13 on the surface 2 and then etching the metal layer into a pattern corresponding to the conductor strips 17 and 18. According to the invention, before the silicon oxide layer 19 is provided on the conductor strips 17, 18, the upper layer 16 of an antioxidant material for the conductor strips 17, 18 is provided.

酸化珪素は分離層19は、層を堆積し得、且つ極めて良
好なステップカバレージを有する処理によって形成する
必要がある。かかる処理中半導体基板1を650℃以上の
温度に加熱し、且つ、珪素含有ガス混合物、例えばテト
ラエトキシシランSi(OC2H5、又はジクロロシランS
iH2Cl2及び酸素の混合物を半導体本体上に流すようにす
る。これらの条件のもとでは、チタン、バナジウム、ク
ロム、ジルコニウム、ニオブ、モリブデン、ハフニウム
又はタングステン或いはその合金は容易に酸化し得るよ
うになる。第1の例においても、ガス混合物はこの目的
のための充分な量の酸素を含有する。従ってかかる金属
の導体細条は比較的高い抵抗値を有し、電気的な遮断を
も行う場合がある。その理由は高温度に耐え得ると共に
酸化珪素層の下側に設けるのが極めて好適であるからで
ある。450℃の以下の充分に低い温度ではこの金属は酸
化ガス混合物内においても実際上酸化しないが、かかる
低温度では良好なステップカバレージを有する酸化珪素
層を設けることはできない。しかし、酸化防止上側層16
を設けることにより導体細条上に極めて良好なステップ
カバレージを有する酸化珪素層を堆積することができ
る。
The silicon oxide must be formed by a process in which the separation layer 19 can deposit a layer and has very good step coverage. During such processing, the semiconductor substrate 1 is heated to a temperature of 650 ° C. or higher, and a silicon-containing gas mixture such as tetraethoxysilane Si (OC 2 H 5 ) 4 or dichlorosilane S
A mixture of iH 2 Cl 2 and oxygen is caused to flow over the semiconductor body. Under these conditions, titanium, vanadium, chromium, zirconium, niobium, molybdenum, hafnium or tungsten or alloys thereof can be easily oxidized. Also in the first example, the gas mixture contains a sufficient amount of oxygen for this purpose. Therefore, such metal conductive strips have a relatively high resistance value, and may also perform electrical interruption. The reason for this is that it is extremely suitable to be able to withstand high temperatures and to be provided below the silicon oxide layer. At sufficiently low temperatures, below 450 ° C., this metal does not actually oxidize even in oxidizing gas mixtures, but at such low temperatures it is not possible to provide a silicon oxide layer with good step coverage. However, the antioxidant upper layer 16
Is provided, a silicon oxide layer having an extremely good step coverage can be deposited on the conductor strip.

本発明による導体細条17,18には、アモルファスシリ
コンの上側層16を酸化防止上側層として設ける。かかる
上側層は、通常のスパッタ堆積処理又はアモルファスシ
リコンをモノシラン(SiH4)含有蒸気から堆積する堆積
処理によって450℃以下の温度で容易に堆積することが
できる。第2の例の場合には金属表面は、450℃以下の
温度で生じ得るモノシランの分解反応に対する触媒とし
て作用する。これらの処理中上述した金属は酸化しな
い。実際上アモルファスシリコンの上側層自体は、良好
なステップカバレージを有する上述した処理の1つによ
って酸化珪素の堆積中酸化しないことを確かめた。又、
かかる上側層を密実にすると、実際に下側の金属が酸化
され得ないことを確かめた。
The conductor strips 17, 18 according to the invention are provided with an upper layer 16 of amorphous silicon as an antioxidant upper layer. Such an upper layer can be easily deposited at temperatures below 450 ° C. by a conventional sputter deposition process or a deposition process in which amorphous silicon is deposited from a vapor containing monosilane (SiH 4 ). In the second case, the metal surface acts as a catalyst for the decomposition reaction of monosilane, which can occur at temperatures below 450 ° C. During these treatments, the metals mentioned do not oxidize. In effect, it has been found that the upper layer of amorphous silicon itself does not oxidize during the deposition of silicon oxide by one of the processes described above with good step coverage. or,
It has been ascertained that making such an upper layer solid could not actually oxidize the underlying metal.

アモルファスシリコンの酸化防止上側層はその厚さを
少くとも3nmとするのか好適である。かかる厚さの層は
下側の金属を酸化から充分に防止することができる。
Preferably, the antioxidant upper layer of amorphous silicon has a thickness of at least 3 nm. A layer of such thickness can sufficiently protect the underlying metal from oxidation.

半導体本体1の表面2に、チタン、バナジウム、クロ
ム、ジルコニウム、ニオブ、モリブデン、ハフニウム、
タンタル又はタングステン或いはその混合物の金属層13
を、例えば通常のスパッタ堆積処理によって堆積し、そ
の後金属層を酸化防止材料の層14によって被覆すること
によって、金属導体細条17,18に酸化防止上側層16を設
ける。次いで、双方の層を、通増のように設けたフォト
レジストマスク15でマスク処理しながら、導体細条17に
対応するパターンにエッチングする。この際、酸化防止
材料の層14を先ず最初このパターンにエッチングする。
次いで酸化防止材料の層の残りの部分16を、フォトレジ
ストマスク15の除去後、下側の金属層13を同一のパター
ンにエッチングする工程中マスクとして用いる。これが
ため、酸化防止上側層16を有する導体細条17を形成する
ことができる。本例ではアモルァスシリコンの層とする
かかる酸化防止層14は、テトラフルオロカーボン(C
F4)及び酸素を含有するガス混合物中で形成したプラズ
マ内で金属層13に対して極めて選択的にエッチングする
ことができる。本例ではチタン及びタングステンの窒素
含有合金より成る金属層13は、その下側に位置する材
料、即ち金属酸化物及び酸化珪素並びにアモルファスシ
リコンに対し過酸化水素溶液中で選択的にエッチングす
ることができる。酸化防止層14によって厚さが3〜50nm
の極めて薄いマスクを構成するため、金属層13はその被
覆されていない部分で極めて満足するように湿潤される
ようになる。これがため、極めて僅かな距離(1μm以
下)離間された導体細条を得ることができる。
On the surface 2 of the semiconductor body 1, titanium, vanadium, chromium, zirconium, niobium, molybdenum, hafnium,
Metal layer 13 of tantalum or tungsten or a mixture thereof
The metal conductor strips 17, 18 are provided with an antioxidant upper layer 16 by depositing, for example, by a conventional sputter deposition process, and then coating the metal layer with a layer 14 of antioxidant material. Next, both layers are etched into a pattern corresponding to the conductor strips 17 while being masked with a photoresist mask 15 provided as an ordinary. Here, the layer 14 of antioxidant material is first etched into this pattern.
The remaining portion 16 of the antioxidant material layer is then used as a mask during the process of removing the photoresist mask 15 and etching the lower metal layer 13 into the same pattern. For this reason, it is possible to form the conductor strip 17 having the oxidation preventing upper layer 16. In this example, the antioxidant layer 14, which is a layer of amorphous silicon, is made of tetrafluorocarbon (C
It is possible to etch very selectively with respect to the metal layer 13 in a plasma formed in a gas mixture containing F 4 ) and oxygen. In this example, the metal layer 13 made of a nitrogen-containing alloy of titanium and tungsten can be selectively etched in a hydrogen peroxide solution with respect to the underlying material, that is, metal oxide, silicon oxide, and amorphous silicon. it can. 3-50 nm in thickness due to antioxidant layer 14
The metal layer 13 becomes very satisfactorily moistened in its uncovered parts in order to form a very thin mask of the type described above. For this reason, it is possible to obtain conductor strips separated by a very small distance (1 μm or less).

チタン及びタングステンを1:4の割合で含有し、且つ
これに10〜30原子%の窒素を更に添加したチタン及びタ
ングステンの窒素含有混合物の金属層13は、その厚さを
例えば100nmとするが、アモルファスシリコンの層14の
厚さは3nm以上とする。この層は、例えば、チタン及び
タングステン1:4の割合で含有するターゲットを、多く
とも25容量%の窒素を含有するアルゴン及び窒素含有ガ
ス中で150℃の温度でmトルの圧力でスパッタリングす
ることによって堆積することができる。従って多くとも
30原子%の窒素がこの層内に含有されるようになる。か
ようにこの層13に窒素を添加することにより基板全体に
亘る酸化珪素層19の次の堆積中金属層の横方向の酸化を
強く防止することができる。窒素を添加しないチタン及
びタングステンの混合物の層の横方向酸化が300nmとな
る場合でも、窒素を添加したかかる合金の同一厚さの層
の横方向酸化は140nmとなるだけである。
The metal layer 13 of a titanium and tungsten nitrogen-containing mixture containing titanium and tungsten in a ratio of 1: 4 and further adding 10 to 30 atomic% of nitrogen thereto has a thickness of, for example, 100 nm. The thickness of the amorphous silicon layer 14 is 3 nm or more. This layer is for example sputtered on a target containing titanium and tungsten in a ratio of 1: 4 in an argon and nitrogen containing gas containing at most 25% by volume of nitrogen at a temperature of 150 ° C. and a pressure of m torr. Can be deposited by So at most
30 atomic% of nitrogen will be contained in this layer. Thus, by adding nitrogen to this layer 13, the lateral oxidation of the metal layer during the next deposition of the silicon oxide layer 19 over the entire substrate can be strongly prevented. Even if the lateral oxidation of a layer of a mixture of titanium and tungsten without the addition of nitrogen is 300 nm, the lateral oxidation of an equal thickness layer of such an alloy with the addition of nitrogen is only 140 nm.

酸化珪素層19は、これをテトラエトキシシランのガス
雰囲気中で約700℃の温度で加熱することによって基板
1上に設ける。次いでこの層を通常のように平坦化す
る。最後に酸化珪素層19に接点窓20を形成する。この窓
20を導体細条18上全体に位置させることにより、そのエ
ッチング工程中下側のフィールド酸化物4を損傷し得な
い他の利点がある。その理由は、導体細条18がエッチン
グストッパとして作用するからである。
The silicon oxide layer 19 is provided on the substrate 1 by heating it at a temperature of about 700 ° C. in a gas atmosphere of tetraethoxysilane. This layer is then planarized as usual. Finally, a contact window 20 is formed in the silicon oxide layer 19. This window
Positioning the entire 20 on the conductor strip 18 has the further advantage that the lower field oxide 4 cannot be damaged during the etching process. The reason is that the conductor strip 18 acts as an etching stopper.

次いで、タングステンを導体細条18上に選択的に堆積
するか又は基板1上全体に肉厚の金属層を被覆し、次い
でこれを再び酸化珪素層までエッチング除去し、接点窓
に充填された部分が残存するようにして接点窓20に通常
のように金属21、例えばタングステンを充填する。酸化
珪素層上には例えばアルミニウムの他の金属層22を設
け、次いでこれを前記接点窓20の金属21及び金属導体18
並びに金属珪化層12を経て半導体領域9に電気的に接触
させるようにする。
Tungsten is then selectively deposited on the conductor strip 18 or coated over the substrate 1 with a thick metal layer, which is then etched back again to the silicon oxide layer and the portion filled in the contact window , The contact window 20 is filled with a metal 21, for example tungsten, as usual. On the silicon oxide layer, for example, another metal layer 22 of aluminum is provided, which is then applied to the metal 21 and the metal conductor 18 of the contact window 20.
In addition, the semiconductor region 9 is electrically contacted via the metal silicide layer 12.

導体細条17,18を形成する金属層13は、金属珪化物の
上側層12を半導体領域8,9及び多結晶ゲート電極6並び
に多結晶導体細条7上に形成した後に設けるのが好適で
ある。この場合形成順序も相違する。例えば先ず最初金
属珪化物を形成する金属層11上に金属層13を設け、その
後に珪化処理を施す。この際この処理を適宜行って下側
の金属層11によって下側の珪素に対する金属珪化物を形
成するが、上側の金属層13は変化させないでそのままと
する。次いで金属層に導体細条を形成し、その後金属珪
化物に変換しなかった下側金属層11の被覆していない部
分を除去する。しかし、上述した方法に対し、この方法
によれば、珪化処理中珪素が半導体領域8,9から、すで
に形成された珪化物を経て拡散し、いまだ反応してない
な金属に対し珪化物を形成する。かようにして例えばゲ
ート電極6の側方分離部分10のような酸化珪素上にも金
属珪化物を形成することができる。これがため、不所望
な短絡が生ずるようになる。かかる金属珪化物の過成長
は本発明方法では防止することができる。前述したよう
に、金属珪化物は窒素雰囲気中で極めて短い時間で形成
される。金属層11の下側に珪素が存在しない区域ではこ
の層は窒化物金属に変換されない。この金属によって珪
素に対する極めて良好な拡散障壁を構成するため、上述
した金属窒化物の過成長は強く抑圧されるうようにな
る。この金属窒化物は、窒素含有雰囲気中で600〜700℃
の温度で5〜20秒間に亘り熱処理を施すことによって形
成するのか好適である。
The metal layer 13 forming the conductor strips 17, 18 is preferably provided after the upper layer 12 of metal silicide is formed on the semiconductor regions 8, 9 and the polycrystalline gate electrode 6 and the polycrystalline conductor strip 7. is there. In this case, the forming order is also different. For example, first, a metal layer 13 is provided on a metal layer 11 on which a metal silicide is formed, and then a silicidation process is performed. At this time, this treatment is appropriately performed to form a metal silicide for lower silicon by the lower metal layer 11, but the upper metal layer 13 is left unchanged. Next, a conductor strip is formed on the metal layer, and then the uncovered portion of the lower metal layer 11 that has not been converted to metal silicide is removed. However, in contrast to the above-described method, according to this method, silicon is diffused from the semiconductor regions 8 and 9 through the already formed silicide during the silicidation treatment to form silicide for a metal that has not yet reacted. I do. In this way, a metal silicide can be formed also on the silicon oxide such as the side separation portion 10 of the gate electrode 6. This results in undesirable short circuits. Such overgrowth of the metal silicide can be prevented by the method of the present invention. As mentioned above, metal silicides are formed in a very short time in a nitrogen atmosphere. In areas where there is no silicon below the metal layer 11, this layer is not converted to nitride metal. Since this metal constitutes a very good diffusion barrier to silicon, the above-mentioned overgrowth of the metal nitride is strongly suppressed. This metal nitride is heated to 600-700 ° C in a nitrogen-containing atmosphere.
It is preferable to form by performing a heat treatment at a temperature of 5 to 20 seconds.

本発明方法は上述した例にのみ限定されるものではな
く、要旨を変更しない範囲内で種々の変形を加えること
ができる。例えば半導体領域3に電界効果トランジスタ
を形成する代りに例えばバイポーラトランジスタのよう
な他の回路素子を形成し得ることは勿論である。
The method of the present invention is not limited to the above-described example, and various modifications can be made without departing from the scope of the invention. For example, instead of forming a field effect transistor in the semiconductor region 3, other circuit elements such as a bipolar transistor can of course be formed.

【図面の簡単な説明】[Brief description of the drawings]

第1〜8図は本発明方法により得られる半導体装置の種
々の製造工程を夫々示す断面図である。 1……半導体本体(基板) 2……表面、3……半導体領域 4……フィールド酸化物領域 5……ゲート酸化物層、6……ゲート電極 7……導体細条、8,9……半導体領域 10……端縁分離部分、11……金属層 12……上側層(チタン珪化物) 13……金属層、14……酸化防止層 15……フォトレジストマスク 16……酸化防止上側層、17,18……金属導体細条 19……酸化珪素層、20……接点窓 21……金属(タングステン) 22……他の金属層(アルミニウム)
1 to 8 are sectional views showing various manufacturing steps of a semiconductor device obtained by the method of the present invention. DESCRIPTION OF SYMBOLS 1 ... Semiconductor main body (substrate) 2 ... Surface 3 ... Semiconductor region 4 ... Field oxide region 5 ... Gate oxide layer, 6 ... Gate electrode 7 ... Conductor strip, 8, 9 ... Semiconductor region 10: Edge separation portion, 11: Metal layer 12: Upper layer (titanium silicide) 13: Metal layer, 14: Antioxidant layer 15: Photoresist mask 16: Antioxidant upper layer , 17, 18… Metal conductor strip 19… Silicon oxide layer, 20… Contact window 21… Metal (tungsten) 22… Other metal layer (aluminum)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 アレクサンダー・ヒェイスベルタス・マ シアス・ヨンケルス オランダ国5621 ベーアー アインドー フェン フルーネバウツウェッハ1 (56)参考文献 特開 昭56−50533(JP,A) 特開 昭63−219124(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Alexander Jacebertas Macias Jonkels The Netherlands 5621 Baer Eindow Fen-Fleune Bewswech 1 (56) References JP-A-56-50533 (JP, A) JP-A Sho 63-219124 (JP, A)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体領域及びこれを囲むフィールド酸化
物領域が隣接する表面を有する半導体本体を具え、この
表面には金属層で形成された導体細条を設けるとともに
シリコンの上側層を設け、その後酸化成分を含み良好な
ステップカバレージを有する酸化物層の得られるシリコ
ン含有ガス混合物を半導体本体上に通過させながら半導
体本体を加熱し半導体本体にシリコン酸化物の分離層を
堆積するようにして半導体装置を製造するに当たり、前
記シリコン酸化物層の堆積時にはその堆積中酸化防止材
料として作用するアモルファスシリコンの上側層を前記
導体細条に設け、その後半導体本体を650℃以上の温度
に加熱するようにしたことを特徴とする半導体装置の製
造方法。
1. A semiconductor body having a surface adjacent to a semiconductor region and a field oxide region surrounding the semiconductor region, the surface having a conductor strip formed of a metal layer and an upper layer of silicon provided thereon. Heating a semiconductor body while passing a silicon-containing gas mixture containing an oxidizing component and having an oxide layer having good step coverage over the semiconductor body to deposit a separation layer of silicon oxide on the semiconductor body In manufacturing, the upper layer of amorphous silicon acting as an antioxidant material during the deposition of the silicon oxide layer was provided on the conductor strip during the deposition, and then the semiconductor body was heated to a temperature of 650 ° C. or more. A method for manufacturing a semiconductor device, comprising:
【請求項2】前記導体細条には厚さが少なくとも3nmの
アモルファスシリコンの上側層を設けるようにしたこと
を特徴とする請求項1に記載の半導体装置の製造方法。
2. The method according to claim 1, wherein said conductor strip is provided with an upper layer of amorphous silicon having a thickness of at least 3 nm.
【請求項3】前記導体細条には、酸化防止材料の層を前
記本体表面に設けられた金属層上に堆積して前記導体細
条に対応する同一パターンにこれら金属層および酸化防
止材料層をエッチングすることにより上側層を設けるよ
うにしたことを特徴とする請求項1乃至2の何れかの項
に記載の半導体装置の製造方法。
3. The conductor strip has a layer of an antioxidant material deposited on a metal layer provided on the surface of the main body to form the metal layer and the antioxidant material layer in the same pattern corresponding to the conductor strip. 3. The method of manufacturing a semiconductor device according to claim 1, wherein an upper layer is provided by etching.
【請求項4】前記酸化防止材料の層をまず最初上記パタ
ーンにエッチングし、次いでこの酸化防止材料の層のパ
ターンをマスクしながら下側の金属層にエッチングによ
り同一パターンを形成することを特徴とする請求項3に
記載の半導体装置の製造方法。
4. The method according to claim 1, wherein the layer of the antioxidant material is first etched into the pattern, and then the same pattern is formed by etching the lower metal layer while masking the pattern of the antioxidant material. The method for manufacturing a semiconductor device according to claim 3.
【請求項5】前記導体細条は、タングステンおよびチタ
ンの混合物に窒素を加えることにより設けられた層で形
成するようにしたことを特徴とする請求項4に記載の半
導体装置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 4, wherein said conductor strip is formed of a layer provided by adding nitrogen to a mixture of tungsten and titanium.
【請求項6】タングステン及びチタンを1:4の割合で含
む混合物に10乃至30原子%の窒素を加えることを特徴と
する請求項5に記載の半導体装置の製造方法。
6. The method according to claim 5, wherein 10 to 30 atomic% of nitrogen is added to a mixture containing tungsten and titanium at a ratio of 1: 4.
【請求項7】導体細条を形成する金属層を設ける前に半
導体領域に少なくとも局部的に金属珪化物の上側層を設
けることを特徴とする請求項1乃至6の何れかの項に記
載の半導体装置の製造方法。
7. The semiconductor device according to claim 1, wherein an upper layer of a metal silicide is provided at least locally on the semiconductor region before the metal layer forming the conductor strip is provided. A method for manufacturing a semiconductor device.
【請求項8】前記金属珪化物の上側層は、窒素含有雰囲
気中で600乃至700℃の温度で5乃至20秒に亘り熱処理を
施すことにより形成することを特徴とする請求項7に記
載の半導体装置の製造方法。
8. The method according to claim 7, wherein the upper layer of the metal silicide is formed by performing a heat treatment at a temperature of 600 to 700 ° C. for 5 to 20 seconds in a nitrogen-containing atmosphere. A method for manufacturing a semiconductor device.
JP1017836A 1988-01-29 1989-01-30 Method for manufacturing semiconductor device Expired - Fee Related JP2664757B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL8800220 1988-01-29
NL8800220A NL8800220A (en) 1988-01-29 1988-01-29 METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE, IN WHICH A METAL CONDUCTOR TRACK IS APPLIED ON A SURFACE OF A SEMICONDUCTOR BODY.

Publications (2)

Publication Number Publication Date
JPH02205343A JPH02205343A (en) 1990-08-15
JP2664757B2 true JP2664757B2 (en) 1997-10-22

Family

ID=19851678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1017836A Expired - Fee Related JP2664757B2 (en) 1988-01-29 1989-01-30 Method for manufacturing semiconductor device

Country Status (6)

Country Link
US (1) US5366928A (en)
EP (1) EP0326218A1 (en)
JP (1) JP2664757B2 (en)
KR (1) KR0158441B1 (en)
CN (1) CN1016297B (en)
NL (1) NL8800220A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5418179A (en) * 1988-05-31 1995-05-23 Yamaha Corporation Process of fabricating complementary inverter circuit having multi-level interconnection
JPH0758701B2 (en) * 1989-06-08 1995-06-21 株式会社東芝 Method for manufacturing semiconductor device
US5500557A (en) * 1992-04-30 1996-03-19 Sgs-Thomson Microelectronics, Inc. Structure and method for fabricating integrated circuits
US5444302A (en) 1992-12-25 1995-08-22 Hitachi, Ltd. Semiconductor device including multi-layer conductive thin film of polycrystalline material
US5654575A (en) * 1993-01-12 1997-08-05 Texas Instruments Incorporated TiSi2 /TiN clad interconnect technology
US5635426A (en) * 1993-08-26 1997-06-03 Fujitsu Limited Method of making a semiconductor device having a silicide local interconnect
EP0748517A1 (en) * 1994-02-28 1996-12-18 National Semiconductor Corporation Providing a low resistance to integrated circuit devices
US5496750A (en) * 1994-09-19 1996-03-05 Texas Instruments Incorporated Elevated source/drain junction metal oxide semiconductor field-effect transistor using blanket silicon deposition
JP2692617B2 (en) * 1994-12-06 1997-12-17 日本電気株式会社 Method for manufacturing semiconductor device
US5607879A (en) * 1995-06-28 1997-03-04 Taiwan Semiconductor Manufacturing Company Ltd. Method for forming buried plug contacts on semiconductor integrated circuits
JP2001036080A (en) * 1999-07-26 2001-02-09 Mitsubishi Electric Corp Semiconductor device and manufacture thereof

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859127A (en) * 1972-01-24 1975-01-07 Motorola Inc Method and material for passivating the junctions of mesa type semiconductor devices
US3806361A (en) * 1972-01-24 1974-04-23 Motorola Inc Method of making electrical contacts for and passivating a semiconductor device
US4106051A (en) * 1972-11-08 1978-08-08 Ferranti Limited Semiconductor devices
JPS5232270A (en) * 1975-09-05 1977-03-11 Hitachi Ltd Passivation film formaion by sputtering
FR2335951A1 (en) * 1975-12-19 1977-07-15 Radiotechnique Compelec SEMICONDUCTOR DEVICE WITH A PASSIVE SURFACE AND METHOD OF OBTAINING THE PASSIVATION STRUCTURE
JPS5410668A (en) * 1977-06-25 1979-01-26 Fujitsu Ltd Production of semiconductor device
JPS5650533A (en) * 1979-10-01 1981-05-07 Hitachi Ltd Semiconductor device
US4267012A (en) * 1979-04-30 1981-05-12 Fairchild Camera & Instrument Corp. Process for patterning metal connections on a semiconductor structure by using a tungsten-titanium etch resistant layer
US4622735A (en) * 1980-12-12 1986-11-18 Tokyo Shibaura Denki Kabushiki Kaisha Method for manufacturing a semiconductor device utilizing self-aligned silicide regions
JPS5846644A (en) * 1981-09-14 1983-03-18 Oki Electric Ind Co Ltd Semiconductor element
JPS5877098A (en) * 1981-10-28 1983-05-10 Toshiba Corp Programmable read-only memory element
JPS58119669A (en) * 1982-01-08 1983-07-16 Seiko Epson Corp Manufacture of thin film semiconductor device
US4491860A (en) * 1982-04-23 1985-01-01 Signetics Corporation TiW2 N Fusible links in semiconductor integrated circuits
US4558507A (en) * 1982-11-12 1985-12-17 Nec Corporation Method of manufacturing semiconductor device
JPS59111152A (en) * 1982-12-16 1984-06-27 Sharp Corp Photosensitive body for electrophotography
US4570328A (en) * 1983-03-07 1986-02-18 Motorola, Inc. Method of producing titanium nitride MOS device gate electrode
JPS59198734A (en) * 1983-04-25 1984-11-10 Mitsubishi Electric Corp Multilayer interconnection structure
US4567058A (en) * 1984-07-27 1986-01-28 Fairchild Camera & Instrument Corporation Method for controlling lateral diffusion of silicon in a self-aligned TiSi2 process
JPH0682839B2 (en) * 1984-08-21 1994-10-19 セイコー電子工業株式会社 Manufacturing method of display panel
JPH063813B2 (en) * 1984-10-08 1994-01-12 松下電器産業株式会社 Method of manufacturing thin film transistor
US4761386A (en) * 1984-10-22 1988-08-02 National Semiconductor Corporation Method of fabricating conductive non-metallic self-passivating non-corrodable IC bonding pads
EP0490877A3 (en) * 1985-01-22 1992-08-26 Fairchild Semiconductor Corporation Interconnection for an integrated circuit
US4965218A (en) * 1985-10-21 1990-10-23 Itt Corporation Self-aligned gate realignment employing planarizing overetch

Also Published As

Publication number Publication date
JPH02205343A (en) 1990-08-15
NL8800220A (en) 1989-08-16
US5366928A (en) 1994-11-22
CN1034826A (en) 1989-08-16
KR0158441B1 (en) 1999-02-01
EP0326218A1 (en) 1989-08-02
CN1016297B (en) 1992-04-15
KR890012361A (en) 1989-08-26

Similar Documents

Publication Publication Date Title
US6020254A (en) Method of fabricating semiconductor devices with contact holes
KR100530401B1 (en) Semiconductor device having a low-resistance gate electrode
US5869396A (en) Method for forming a polycide gate electrode
US4510670A (en) Method for the manufacture of integrated MOS-field effect transistor circuits silicon gate technology having diffusion zones coated with silicide as low-impedance printed conductors
US4276557A (en) Integrated semiconductor circuit structure and method for making it
JP2682268B2 (en) Process of selectively encapsulating conductive structure in semiconductor element
US6008124A (en) Semiconductor device having improved lamination-structure reliability for buried layers, silicide films and metal films, and a method for forming the same
JP3249524B2 (en) Method for fabricating semiconductor device in CMOS technology with local interconnect
US4332839A (en) Method for making integrated semiconductor circuit structure with formation of Ti or Ta silicide
JP3049487B2 (en) Metal wiring structure and method of forming the same
JPH09199443A (en) Method for manufacturing landing pad structure body in integrated circuit
JP3277855B2 (en) Method for forming wiring of semiconductor device
JP2664757B2 (en) Method for manufacturing semiconductor device
KR0177534B1 (en) Method for forming a contact with activation and silicide forming heat treatment
JPS6174342A (en) Formation of narrow thread groove
JPS5826184B2 (en) Zetsuen Gate Denkai Kouka Transistor No.
JP2004000006U (en) Semiconductor device
JP2004000006U6 (en) Semiconductor device
USRE32207E (en) Method for making integrated semiconductor circuit structure with formation of Ti or Ta silicide
JPS60178666A (en) Semiconductor device and manufacture thereof
JPH10163430A (en) Semiconductor device and manufacture thereof
JP2000133712A (en) Manufacture of semiconductor device
GB2307341A (en) Method of forming a tungsten plug of a semiconductor device.
JP2654175B2 (en) Method for manufacturing semiconductor device
US20080067612A1 (en) Semiconductor Device Including Nickel Alloy Silicide Layer Having Uniform Thickness and Method of Manufacturing the Same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees