JP2657316B2 - Fiber reinforced member with ability to detect stress - Google Patents

Fiber reinforced member with ability to detect stress

Info

Publication number
JP2657316B2
JP2657316B2 JP1094079A JP9407989A JP2657316B2 JP 2657316 B2 JP2657316 B2 JP 2657316B2 JP 1094079 A JP1094079 A JP 1094079A JP 9407989 A JP9407989 A JP 9407989A JP 2657316 B2 JP2657316 B2 JP 2657316B2
Authority
JP
Japan
Prior art keywords
fiber
stress
elastic member
fiber reinforced
amorphous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1094079A
Other languages
Japanese (ja)
Other versions
JPH02271227A (en
Inventor
潤 笹原
満 野口
直正 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP1094079A priority Critical patent/JP2657316B2/en
Publication of JPH02271227A publication Critical patent/JPH02271227A/en
Application granted granted Critical
Publication of JP2657316B2 publication Critical patent/JP2657316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 A.発明の目的 (1) 産業上の利用分野 本発明は被応力検出能を備えた繊維強化部材に関す
る。
DETAILED DESCRIPTION OF THE INVENTION A. Objects of the Invention (1) Field of Industrial Application The present invention relates to a fiber reinforced member having the ability to detect stress.

(2) 従来の技術 従来、強化用繊維は、主として部材の強度、特に靭性
を向上させる目的で使用されている。
(2) Conventional Technology Conventionally, reinforcing fibers have been used mainly for the purpose of improving the strength, particularly toughness, of a member.

(3) 発明が解決しようとする課題 前記従来の繊維強化部材、例えば、FRP製弾性部材に
おいて、その使用時の応力を測定する必要が生じた場
合、前記弾性部材自体は被応力検出能を備えていないの
で、測定作業上次のような問題がある。
(3) Problems to be Solved by the Invention In the conventional fiber reinforced member, for example, an elastic member made of FRP, when it is necessary to measure the stress at the time of use, the elastic member itself has the ability to detect stress. However, there are the following problems in the measurement work.

即ち、弾性部材に金属箔ひずみゲージを接着しなけれ
ばならない、金属箔ひずみゲージは電気抵抗を利用する
ものであるから温度の影響を受け易く、そのため測定値
の補正が必要である、金属箔ひずみゲージは弾性域の狭
い金属等のひずみには追随し得るとしても、比較的弾性
域の広いFRP製弾性部材のひずみには追随することがで
きず、その結果、測定作業中に金属箔ひずみゲージが弾
性部材から剥離するおそれがある、この剥離防止のため
に金属箔ひずみゲージを弾性部材に埋設することが考え
られるが、このように構成すると、測定部位が埋設位置
に限られ、また埋設位置が応力集中起点となり易い。
In other words, the metal foil strain gauge must be bonded to the elastic member. Since the metal foil strain gauge utilizes electrical resistance, it is susceptible to temperature, so that it is necessary to correct measured values. Even if the gauge can follow the strain of a metal with a narrow elastic range, it cannot follow the strain of an elastic member made of FRP with a relatively wide elastic range. May be separated from the elastic member. In order to prevent the separation, it is conceivable to embed the metal foil strain gauge in the elastic member. However, in such a configuration, the measurement site is limited to the embedding position, and the embedding position is limited. Tends to be a stress concentration starting point.

本発明は前記に鑑み、繊維強化能と共にその強化用繊
維を利用して被応力検出能を具備させた前記繊維強化部
材を提供することを目的とする。
In view of the above, an object of the present invention is to provide the fiber reinforced member having the ability to detect a stress by using the reinforcing fiber together with the fiber reinforcing ability.

B.発明の構成 (1) 課題を解決するための手段 本発明は、強化用繊維とマトリックスとよりなり、荷
重の作用に伴い引張応力および圧縮応力の少なくとも一
方が発生する部位を備えた繊維強化部材であって、前記
部位に存する前記強化用繊維の少なくとも一部を応力−
磁気特性を有する金属繊維にしたことを第1の特徴とす
る。
B. Configuration of the Invention (1) Means for Solving the Problems The present invention comprises a fiber for reinforcement and a matrix, and has a fiber reinforced portion provided with at least one of a tensile stress and a compressive stress in response to a load. A member, wherein at least a part of the reinforcing fibers present at the site is stress-
The first feature is that the metal fiber has magnetic properties.

本発明は、強化用繊維とマトリックスとよりなり、荷
重の作用に伴い引張応力および圧縮応力の少なくとも一
方が発生する部位を備えた繊維強化部材であって、前記
部位の表層に存する前記強化用繊維の少なくとも一部を
応力−磁気特性を有する金属繊維にしたことを第2の特
徴とする。
The present invention is a fiber reinforced member comprising a reinforcing fiber and a matrix, wherein at least one of a tensile stress and a compressive stress is generated by the action of a load, wherein the reinforcing fiber present in a surface layer of the portion is provided. A second feature is that at least a part of is made of a metal fiber having stress-magnetic characteristics.

(2) 作用 第1の特徴によれば、繊維強化部材に、強化用繊維に
よる強化能と被応力検出能とを兼備させることができ
る。
(2) Action According to the first feature, the fiber reinforced member can have both the reinforcing ability by the reinforcing fiber and the ability to detect stress.

第2の特徴によれば、繊維強化部材に発生する応力に
対して金属繊維の感度を良好にし、また応力測定範囲を
広げることが可能となる。
According to the second feature, the sensitivity of the metal fiber to the stress generated in the fiber reinforced member can be improved, and the stress measurement range can be expanded.

(3) 実施例 第1図は、被応力検出能を備えた繊維強化部材として
のFRP製板状弾性部材1を示す。その弾性部材1は二層
構造であり、厚い主層2と、その主層2の片面に一体に
積層された薄い表層3とよりなる。表層3の厚さT1は、
弾性部材1の2分の1の厚さ、即ち、表面sと中立面n
との間の厚さTよりも薄くなるように設定されている
(即ち、T1<T)。弾性部材1の撓みに伴いその表面s
と中立面nとの間に在って表層3を含む部位1aには交互
に引張応力および圧縮応力が発生し、したがって弾性部
材1は、荷重の作用に伴い両応力が発生する部位1aを備
える。
(3) Example FIG. 1 shows an FRP plate-like elastic member 1 as a fiber reinforced member having the ability to detect stress. The elastic member 1 has a two-layer structure, and includes a thick main layer 2 and a thin surface layer 3 integrally laminated on one surface of the main layer 2. The thickness T 1 of the surface layer 3 is
One-half the thickness of the elastic member 1, ie, the surface s and the neutral surface n
Are set so as to be smaller than the thickness T between them (that is, T 1 <T). The surface s of the elastic member 1 accompanying the deflection
A tensile stress and a compressive stress are alternately generated in a portion 1a including the surface layer 3 between the surface 1 and the neutral surface n. Therefore, the elastic member 1 has a portion 1a in which both stresses are generated by the action of the load. Prepare.

主層2は、強化用繊維としてのガラス繊維と、マトリ
ックスとしての合成樹脂とより構成される。合成樹脂と
しては、エポキシ樹脂等の熱硬化性樹脂またはポリエー
テルエーテルケトン(PEEK)等の熱可塑性樹脂が用いら
れる。ガラス繊維は長繊維であり、その繊維軸が弾性部
材1の長さ方向aと平行に配向し、また弾性部材1の全
長に亘って延びている。ガラス繊維の繊維体積率(Vf)
は60%である。
The main layer 2 is composed of glass fibers as reinforcing fibers and a synthetic resin as a matrix. As the synthetic resin, a thermosetting resin such as an epoxy resin or a thermoplastic resin such as polyetheretherketone (PEEK) is used. The glass fiber is a long fiber, and its fiber axis is oriented parallel to the length direction a of the elastic member 1 and extends over the entire length of the elastic member 1. Fiber volume fraction of glass fiber (Vf)
Is 60%.

表層3は強化用繊維と、マトリックスとしての合成樹
脂とより構成される。合成樹脂としては主層2と同種の
ものが用いられる。
The surface layer 3 is composed of reinforcing fibers and a synthetic resin as a matrix. The same type of synthetic resin as that of the main layer 2 is used.

強化用繊維としては、繊維体積率30%のガラス繊維お
よび繊維堆積率50%のアモルファス合金繊維よりなる混
合繊維が用いられる。このアモルファス合金繊維は、応
力−磁気特性を有する金属繊維の一例に該当する。両繊
維は長繊維であって、各繊維軸が弾性部材1の長さ方向
aと平行に配向し、また弾性部材1の全長に亘って延び
ている。さらにアモルファス合金繊維は弾性部材1の幅
方向bに平均化に分散している。
As the reinforcing fiber, a mixed fiber composed of glass fiber having a fiber volume ratio of 30% and amorphous alloy fiber having a fiber deposition rate of 50% is used. This amorphous alloy fiber corresponds to an example of a metal fiber having stress-magnetic characteristics. Both fibers are long fibers, and each fiber axis is oriented parallel to the length direction a of the elastic member 1 and extends over the entire length of the elastic member 1. Further, the amorphous alloy fibers are dispersed in the widthwise direction b of the elastic member 1 so as to be averaged.

アモルファス合金繊維は、直径10〜200μmで、Fe 6
5〜67原子%、Si 8〜9原子%、B 11〜13原子%、C
o 10〜12原子%、Cr 1〜3原子%の組成を有し、ま
た応力−磁気特性を備えている。この応力−磁気特性と
は、正の磁歪を持つ強磁性材料であるアモルファス合金
に、荷重の作用に伴い引張応力(または圧縮応力)が発
生したとき、その引張り方向(または圧縮方向)の磁気
弾性エネルギが低下してその方向での磁化が容易になる
現象をいう。
Amorphous alloy fibers have a diameter of 10 to 200 μm
5 to 67 atomic%, Si 8 to 9 atomic%, B 11 to 13 atomic%, C
o It has a composition of 10 to 12 at%, Cr 1 to 3 at%, and has stress-magnetic properties. This stress-magnetic property means that when an amorphous alloy, which is a ferromagnetic material having positive magnetostriction, generates tensile stress (or compressive stress) due to the action of a load, magnetoelasticity in the tensile direction (or compressive direction) is generated. This refers to a phenomenon in which the energy decreases and magnetization in that direction becomes easier.

前記のように各化学成分の含有量を設定すると、アモ
ルファス合金繊維の応力−磁気特性を増し、また耐食性
を向上させることができる。この耐食性の向上は、FRP
がかなりの吸湿性を有することからアモルファス合金繊
維の延命化を図る上で有効である。
When the content of each chemical component is set as described above, the stress-magnetic characteristics of the amorphous alloy fiber can be increased, and the corrosion resistance can be improved. This improvement in corrosion resistance
Is effective in prolonging the life of the amorphous alloy fiber since it has considerable hygroscopicity.

本実施例において用いられたアモルファス合金繊維は
Fe 65.5原子%、Si 8.5原子%、B 12原子%、Co 1
1原子%、Cr 2原子%の組成を有し、また直径は120μ
mである。
The amorphous alloy fiber used in this example is
Fe 65.5 atomic%, Si 8.5 atomic%, B 12 atomic%, Co 1
It has a composition of 1 atomic% and 2 atomic% of Cr, and has a diameter of 120μ.
m.

なお、アモルファス合金繊維の直径が10μmを下回る
と、繊維化が困難となり、一方、200μmを上回るとア
モルファス化が不可能になる。
Note that if the diameter of the amorphous alloy fiber is less than 10 μm, it becomes difficult to form a fiber, while if it exceeds 200 μm, it becomes impossible to form an amorphous alloy fiber.

弾性部材1の長さ方向a中央部にセンシングコイル4
が隙間無く嵌着される。そのセンシングコイル4は、第
2図に示すように内側の励磁コイル5と、外側の検出コ
イル6と、両コイル5,6を被覆する可撓性カバー部材7
とよりなる。
The sensing coil 4 is provided at the center of the elastic member 1 in the longitudinal direction a.
Are fitted without gaps. As shown in FIG. 2, the sensing coil 4 includes an inner excitation coil 5, an outer detection coil 6, and a flexible cover member 7 for covering both the coils 5, 6.
And

弾性部材1は、センシングコイル4を備えた状態で所
定の装置の緩衝部に組込まれ、これにより緩衝作用時に
おける弾性部材1に発生する応力の測定が可能となる。
The elastic member 1 is incorporated in a buffer of a predetermined device with the sensing coil 4 provided, so that the stress generated in the elastic member 1 during the buffering operation can be measured.

その応力の測定は、第2図に示すように励磁コイル5
に高周波電流用電源8より高周波電流を供給して、相互
インダクタンスに基づき検出コイル6に誘起された誘起
電圧を検出器9により検出することによって行われる。
即ち、弾性部材1が第2図示のように上方へ撓むと、そ
の撓みに応じて表層3に引張応力が発生し、また逆に、
下方へ撓むと、表層3に圧縮応力が発生する。この場
合、引張応力を応力測定要素に選定すると、前記誘起電
圧はアモルファス合金繊維の透磁率の変化、したがって
表層3をおける引張応力の大小によって変化し、そこ
で、予じめアモルファス合金繊維の引張応力と誘起電圧
との関係を調べておくことにより、誘起電圧を検出する
ことによって弾性部材1の応力を測定することができ
る。
The measurement of the stress was performed by using the exciting coil 5 as shown in FIG.
A high-frequency current is supplied from a high-frequency current power supply 8 to the detector 9, and a detector 9 detects an induced voltage induced in the detection coil 6 based on the mutual inductance.
That is, when the elastic member 1 bends upward as shown in FIG. 2, a tensile stress is generated in the surface layer 3 in accordance with the bending, and conversely,
When it bends downward, a compressive stress is generated in the surface layer 3. In this case, if the tensile stress is selected as the stress measuring element, the induced voltage changes depending on the change in the magnetic permeability of the amorphous alloy fiber, and hence the magnitude of the tensile stress in the surface layer 3, where the tensile stress of the amorphous alloy fiber is determined in advance. By examining the relationship between the induced voltage and the induced voltage, the stress of the elastic member 1 can be measured by detecting the induced voltage.

第3図は、弾性部材1の応力測定に当り、その測定要
素として引張応力および圧縮応力を選定した場合を示
す。
FIG. 3 shows a case where a tensile stress and a compressive stress are selected as measurement elements in measuring the stress of the elastic member 1.

この弾性部材1は、三層構造であり、厚い主層2と、
その主層2の両面に一体に積層された薄い第1,第2表層
31,32とよりなる。両表層31,32の厚さは、前記同様に弾
性部材1の2分の1の厚さ、即ち、両表面s1,s2と中立
面nとの間の厚さよりも薄くなるように設定されてい
る。弾性部材1の撓みに伴い、その両表面s1,s2と中立
面nとの間に在って両表層31,32を含む部位1a,1bには交
互に引張応力および圧縮応力が発生し、したがって弾性
部材1は、荷重の作用に伴い両応力が発生する部位1a,1
bを備える。主層2および両表層31,32の構成は、前記主
層2および表層2のそれとそれぞれ同一である。
The elastic member 1 has a three-layer structure, and includes a thick main layer 2,
Thin first and second surface layers integrally laminated on both sides of the main layer 2
3 1 , 3 2 The thickness of both surface layers 3 1 , 3 2 is, as in the above, half the thickness of elastic member 1, that is, smaller than the thickness between both surfaces s 1 , s 2 and neutral surface n. It is set as follows. With the deflection of the elastic member 1, the both surfaces s 1, s 2 and a tensile stress and compressive stress alternately in both surface layers 3 1, 3 parts 1a containing 2, 1b and lies between the neutral plane n Therefore, the elastic member 1 is provided at the portions 1a, 1 where both stresses occur due to the action of the load.
b. The main layer 2 and the both surface layers 3 1, 3 2 configuration, the same each of which is identical the main layer 2 and the surface layer 2.

弾性部材1の両表層31,32に近接させたカバー部材71,
72内にU字形第1,第2フェライトコア101,102がそれぞ
れ埋封される。第1フェライトコア101に第1励磁コイ
ル51および第1検出コイル61が別々に巻装され、また第
2フェライトコア102に第2励磁コイル52および第2検
出コイル62が別々に巻装される。
The cover member 7 1 , which is brought close to both surface layers 3 1 , 3 2 of the elastic member 1
U-shaped first seven 2, second ferrite cores 10 1, 10 2 are embedded respectively. The first exciting coil 5 1 and the first detection coil 61 is wound separately on the first ferrite core 10 1, and the second exciting coil 5 2 and a second detection coil 6 2 separate the second ferrite core 10 2 Wound around.

第1,第2励磁コイル51,52は高周波電流電源8に接続
され、また、第1,第2検出コイル61,62は検出器91に接
続される。この場合検出器91は、第1検出コイル61によ
り検出された、例えば引張応力に伴う誘起電圧(+e)
と第2検出コイル62により検出された、例えば圧縮応力
に伴う誘起電圧(−e)との差、即ちe−(−e)=2e
を検出するようになっている。
The first, second exciting coil 5 1, 5 2 is connected to a high-frequency current power source 8, the first, second detection coil 6 1, 6 2 are connected to the detector 9 1. In this case the detector 9 1, detected by the first detection coil 61, the induced voltage due to such as tensile stress (+ e)
When the difference between the detected, for example, the induced voltage due to compressive stress (-e) by the second detection coil 6 2, i.e. e - (- e) = 2e
Is to be detected.

このように引張応力および圧縮応力を併用して弾性部
材1に発生する応力を測定するようにすると、その応力
の微小変化をも検出することが可能であり、また測定可
能な応力の範囲も広がり、その上測定値もリニアリティ
の優れたものとなる。
When the stress generated in the elastic member 1 is measured by using both the tensile stress and the compressive stress as described above, it is possible to detect even a small change in the stress, and the range of the measurable stress is expanded. In addition, the measured values have excellent linearity.

第4,第5図は、弾性部材1におけるアモルファス合金
繊維の厚さ方向埋設位置と、応力(ひずみ)および誘起
電圧との関係を示す。
FIGS. 4 and 5 show the relationship between the position where the amorphous alloy fibers are embedded in the elastic member 1 in the thickness direction, and the stress (strain) and induced voltage.

この場合、アモルファス合金繊維を縦糸に、またガラ
ス繊維を横糸にした一枚の網状物11が用いられ、その縦
糸は弾性部材1の長さ方向aと平行に配向している。こ
のように網状物11を用いると、両繊維の取扱い性が容易
になる。
In this case, a single net 11 having an amorphous alloy fiber as a warp and a glass fiber as a weft is used, and the warp is oriented parallel to the length direction a of the elastic member 1. The use of the mesh material 11 facilitates the handling of both fibers.

第4図において、網状物11は中立面nから表面sまで
の間に埋設されるもので、中立面nと表面sとの間の厚
さをTとし、また中立面nと埋設位置との間の厚さをTa
mとすると次のことが言える。
In FIG. 4, the mesh 11 is buried between the neutral plane n and the surface s. The thickness between the neutral plane n and the surface s is T, and the mesh 11 is The thickness between the position and Ta
The following can be said with m.

Tam=0では、網状物11が中立面nに在り、したがっ
て第5図線(ひずみ軸)x1のようにひずみ(ε)は零
で、誘起電圧も零である。
When Tam = 0, the mesh 11 is on the neutral plane n, so that the strain (ε) is zero and the induced voltage is also zero as shown in FIG. 5 (strain axis) × 1 .

Tam≒Tでは、網状物11が略表面sに在り、したがっ
て第5図線x2のようにひずみ(ε)は最大となるので感
度は良好となるが、アモルファス合金の特性が大きなひ
ずみに対しては誘起電圧が飽和状態となり、したがって
リニアリティな測定値が得られない場合がある。
In tam ≒ T, there reticular material 11 is substantially a surface s, thus distortion as in FIG. 5 lines x 2 (epsilon) is the sensitivity becomes good since the maximum, the characteristics of the amorphous alloy to large strain In some cases, the induced voltage becomes saturated, so that a linear measured value may not be obtained.

0<Tam<T、例えばTam=1/2Tでは、網状物11が表面
sと中立面nとの中間位置に在り、これにより第5図線
x3のようにひずみに対し誘起電圧が略直線状に変化する
範囲が長くなり、また感度も良好となる。たゞし、0<
Tam<1/2Tではアモルファス合金繊維の感度が低下する
傾向がある。
In the case of 0 <Tam <T, for example, Tam = 1 / 2T, the mesh 11 is at an intermediate position between the surface s and the neutral surface n.
induced voltage with respect to the strain as x 3 becomes longer range that varies substantially linearly, and sensitivity is improved. Tap, 0 <
At Tam <1 / 2T, the sensitivity of the amorphous alloy fiber tends to decrease.

上記のことから、網状物11、したがってアモルファス
合金繊維を表面sから1/2Tの範囲に存する表層3(第4
図点描領域)に配設するのがよい。この表層3に対応す
るひずみ−誘起電圧特性は、第5図斜線示の領域に存す
る。
From the above, it is clear that the mesh 11, and thus the amorphous alloy fiber, is placed on the surface layer 3 (4th
It is preferable to dispose it in the drawing point drawing area). The strain-induced voltage characteristic corresponding to the surface layer 3 exists in the shaded region in FIG.

前記のように検出素子をアモルファス合金繊維にする
と、その埋設作業が容易であり、また埋設位置が正確に
制定され、その上、弾性部材1の撓みに対しアモルファ
ス合金繊維を、それを損傷することなく追随させること
ができる。
When the detecting element is made of an amorphous alloy fiber as described above, the embedding work is easy, the embedding position is accurately determined, and the bending of the elastic member 1 damages the amorphous alloy fiber. You can follow without.

また前記埋設手段の採用によって、アモルファス合金
繊維への温度および湿度変化の影響を少なくし、その
上、水による腐食からアモルファス合金繊維を保護する
ことができる。
Further, by adopting the embedding means, the influence of temperature and humidity changes on the amorphous alloy fiber can be reduced, and the amorphous alloy fiber can be protected from corrosion by water.

各表層3,31,32における強化用繊維として、前記のよ
うに混合繊維を用いると、その配合割合によってそれら
表層3,31,32のヤング率の調整が容易となり、また破損
時の限界付近における挙動を緩慢にすることが可能とな
る。
When the mixed fibers are used as the reinforcing fibers in each of the surface layers 3, 3 1 and 3 2 as described above, the Young's modulus of the surface layers 3, 3 1 and 3 2 can be easily adjusted depending on the blending ratio, and also, when breakage occurs. Behavior near the limit can be slowed down.

なお、表層3、第1,第2表層31,32の強化用繊維とし
てはアモルファス合金繊維のみを用いることもある。ま
たアモルファス合金繊維を、前記実施例のように弾性部
材1全長に配設せずに、応力測定要求箇所にのみ配設し
てもよい。さらにセンシングコイル4等は弾性部材1の
長さ方向aに沿って複数用いることもあり、またセンシ
ングコイル4等と弾性部材1との間には隙間が存在して
もよい。
Incidentally, the surface layer 3, first, as the second surface layer 3 1, 3 2 of the reinforcing fibers is also possible to use only the amorphous alloy fibers. Further, the amorphous alloy fibers may be provided only at the places where the stress measurement is required, instead of being provided over the entire length of the elastic member 1 as in the above embodiment. Further, a plurality of sensing coils 4 and the like may be used along the length direction a of the elastic member 1, and a gap may exist between the sensing coil 4 and the like and the elastic member 1.

さらに本発明は、合成樹脂をマトリックスとする、弾
性部材以外の繊維強化部材、金属をマトリックスとする
繊維強化部材等にも適用される。
Further, the present invention is also applied to a fiber reinforced member other than an elastic member using a synthetic resin as a matrix, a fiber reinforced member using a metal as a matrix, and the like.

繊維強化部材のひずみとアモルファス合金繊維による
出力(誘起電圧)との関係をリニアリティ域に収めるべ
く、マトリックスがゴム等より構成されて繊維強化部材
の撓みが大きい場合にはアモルファス合金繊維は中立面
側に、またマトリックスが金属より構成されて繊維強化
部材の撓みが小さい場合にはアモルファス合金繊維は表
面側にそれぞれ配設される。
In order to keep the relationship between the strain of the fiber reinforced member and the output (induced voltage) of the amorphous alloy fiber within the linearity range, when the matrix is made of rubber or the like and the fiber reinforced member has a large deflection, the amorphous alloy fiber has a neutral surface. When the matrix is made of a metal and the flexure of the fiber reinforced member is small, the amorphous alloy fibers are disposed on the surface side.

前記のような弾性部材1の応力測定技術は、その弾性
部材1がリーフスプリングである場合、車両における車
高調整、リーフスプリングの破損検出等に適用される。
この場合、アモルファス合金繊維はリーフスプリング内
に埋設されているので、その繊維を、飛来した石等の衝
撃等から保護することができる。
When the elastic member 1 is a leaf spring, the technique for measuring the stress of the elastic member 1 as described above is applied to vehicle height adjustment in a vehicle, detection of breakage of the leaf spring, and the like.
In this case, since the amorphous alloy fiber is buried in the leaf spring, the fiber can be protected from impact of a flying stone or the like.

C.発明の効果 第(1)項記載の発明によれば、極めて簡単な構成に
より、繊維強化能および被応力検出能を兼備した前記繊
維強化部材を提供することができ、これにより前記部材
の応力測定作業の簡素化を図ることが可能となる。
C. Effects of the Invention According to the invention described in the item (1), it is possible to provide the fiber-reinforced member having both the fiber-reinforcing ability and the stress-sensing ability with an extremely simple configuration. The stress measurement operation can be simplified.

第(2)項記載の発明によれば、前記効果に加え、広
い測定範囲を有すると共に感度が良好で、リニアリティ
の優れた測定値を得ることが可能な前記繊維強化部材を
提供することができる。
According to the invention described in the item (2), in addition to the above-mentioned effects, it is possible to provide the fiber reinforced member having a wide measurement range, good sensitivity, and capable of obtaining a measurement value with excellent linearity. .

【図面の簡単な説明】[Brief description of the drawings]

第1図はセンシングコイルを備えた弾性部材の斜視図、
第2,第3図は弾性部材の応力を測定する二種の方式を示
す概略図、第4図は弾性部材の側面図、第5図はひずみ
と誘起電圧との関係を示すグラフである。 1……弾性部材(繊維強化部材)、1a,1b……引張応力
および圧縮応力を受ける部位、3,31,32……表層、第1,
第2表層
FIG. 1 is a perspective view of an elastic member provided with a sensing coil,
2 and 3 are schematic diagrams showing two types of methods for measuring the stress of the elastic member, FIG. 4 is a side view of the elastic member, and FIG. 5 is a graph showing the relationship between strain and induced voltage. 1 ... elastic member (fiber reinforced member), 1a, 1b ... parts subjected to tensile stress and compressive stress, 3, 3 1 , 3 2 ... surface layer, 1st
2nd surface

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08J 5/24 B29C 67/14 (56)参考文献 特開 平1−210485(JP,A) 特開 昭63−220064(JP,A) 特開 昭63−210632(JP,A) 実開 昭61−97867(JP,U)──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication location C08J 5/24 B29C 67/14 (56) References JP-A 1-210485 (JP, A) JP-A-63-220064 (JP, A) JP-A-63-210632 (JP, A) JP-A-61-97867 (JP, U)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】強化用繊維とマトリックスとよりなり、荷
重の作用に伴い引張応力および圧縮応力の少なくとも一
方が発生する部位を備えた繊維強化部材であって、前記
部位に存する前記強化用繊維の少なくとも一部を応力−
磁気特性を有する金属繊維にしたことを特徴とする、被
応力検出能を備えた繊維強化部材。
1. A fiber reinforced member comprising a reinforcing fiber and a matrix, wherein at least one of a tensile stress and a compressive stress is generated by the action of a load, wherein the reinforcing fiber is At least partly stress-
A fiber reinforced member having the ability to detect stress, wherein the fiber reinforced member is a metal fiber having magnetic properties.
【請求項2】強化用繊維とマトリックスとよりなり、荷
重の作用に伴い引張応力および圧縮応力の少なくとも一
方が発生する部位を備えた繊維強化部材であって、前記
部位の表層に存する前記強化用繊維の少なくとも一部を
応力−磁気特性を有する金属繊維にしたことを特徴とす
る、被応力検出能を備えた繊維強化部材。
2. A fiber reinforced member comprising a reinforcing fiber and a matrix, wherein at least one of a tensile stress and a compressive stress is generated by the action of a load, wherein the reinforcing member present on the surface layer of the portion is provided. A fiber reinforced member having a capability of detecting a stress, wherein at least a part of the fiber is a metal fiber having stress-magnetic characteristics.
【請求項3】前記繊維強化部材は板状部材であり、該板
状部材の表面と中立面との間の厚さをTとしたとき、前
記表層は前記表面から厚さ1/2Tの範囲に存する、第
(2)項記載の被応力検出能を備えた繊維強化部材。
3. The fiber-reinforced member is a plate-like member, and when the thickness between the surface and the neutral surface of the plate-like member is T, the surface layer has a thickness of 1 / 2T from the surface. A fiber reinforced member having the ability to detect stress as described in (2), which is within the range.
JP1094079A 1989-04-13 1989-04-13 Fiber reinforced member with ability to detect stress Expired - Fee Related JP2657316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1094079A JP2657316B2 (en) 1989-04-13 1989-04-13 Fiber reinforced member with ability to detect stress

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1094079A JP2657316B2 (en) 1989-04-13 1989-04-13 Fiber reinforced member with ability to detect stress

Publications (2)

Publication Number Publication Date
JPH02271227A JPH02271227A (en) 1990-11-06
JP2657316B2 true JP2657316B2 (en) 1997-09-24

Family

ID=14100480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1094079A Expired - Fee Related JP2657316B2 (en) 1989-04-13 1989-04-13 Fiber reinforced member with ability to detect stress

Country Status (1)

Country Link
JP (1) JP2657316B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3313165B2 (en) * 1992-11-24 2002-08-12 本田技研工業株式会社 Method of bonding fiber-reinforced plastic member and method of detecting defective bonding of fiber-reinforced plastic member containing adhesive layer
DE4317098B4 (en) * 1993-05-21 2005-12-01 Honda Giken Kogyo K.K. Method of detecting internal damage in an FRP element
US5453291A (en) * 1993-05-25 1995-09-26 Honda Giken Kogyo Kabushiki Kaisha FRP member and method of detecting internal damage therein
DE69520608T2 (en) * 1994-01-26 2001-08-02 Honda Motor Co Ltd Measurement of the tensile stress of a magnetic material and error detection in fiber-reinforced plastic structures and adhesive elements provided with magnetic material
TW434360B (en) * 1998-02-18 2001-05-16 Toray Industries Carbon fiber matrix for reinforcement, laminate and detecting method
GB2488315A (en) * 2011-02-22 2012-08-29 Rolls Royce Plc Composite component comprising an indicator mechanically associated with the reinforcing fibres
CN110477928B (en) * 2019-09-19 2024-02-06 五邑大学 Tensile stress sensor and bending sensor
CN114061435A (en) * 2021-11-15 2022-02-18 无锡纤发新材料科技有限公司 Micro-strain sensor based on magnetic fibers and strain monitoring method
CN114061434A (en) * 2021-11-15 2022-02-18 浙江大学 Structural health monitoring system and method for magnetic fiber composite material
CN117128848B (en) * 2023-10-26 2024-03-29 中国科学技术大学 Bi-directional bending sensor based on crack gap magnetic resistance modulation

Also Published As

Publication number Publication date
JPH02271227A (en) 1990-11-06

Similar Documents

Publication Publication Date Title
US10203379B2 (en) GMR biosensor with enhanced sensitivity
JP2657316B2 (en) Fiber reinforced member with ability to detect stress
US5437197A (en) Magnetostrictive sensor structures
US10240989B2 (en) Magnetoelastic sensor using strain-induced magnetic anisotropy to measure the tension or compression present in a plate
EP0471073A1 (en) Cylinder device
US20070107528A1 (en) Versatile strain sensor employing magnetostrictive electrical conductors
JP2011163832A5 (en)
US4891992A (en) Torque detecting apparatus
US5640088A (en) Process for measuring stress of magnetic materials, FRP member whose internal damage is detectable, and adhesive layer forming adhesive member whose internal defection is detectable
Hristoforou et al. Tensile stress distribution sensors based on amorphous alloys
US6154028A (en) Miniature magnetic sensor device using an inductor device
Mohri et al. New extensometers using amorphous magnetostrictive ribbon wound cores
Vandevelde et al. Finite-element computation of the deformation of ferromagnetic material taking into account magnetic forces and magnetostriction
Beihoff A survey of torque transduction methodologies for industrial applications
JP3148423B2 (en) Defect detection method for fiber reinforced plastic members
Ng et al. The effects of demagnetizing and stray fields on magnetoacoustic emission
JP6881413B2 (en) Magnetic sensor
JP3696270B2 (en) Stress measurement sensor
Arcas et al. Sensor applications based on induced magnetic anisotropy in toroidal cores
Bydzovsky et al. Magnetoelastic properties of CoFeCrSiB amorphous ribbons-a possibility of their application
Huang et al. Novel sensors based on magnetostrictive/piezoelectric laminations
JP3406045B2 (en) FRP member capable of detecting internal damage
Hristoforou et al. Characteristics of a bending beam force sensor array element
JPS58135432A (en) Pressure sensor
JP3270632B2 (en) Stress measuring sensor and stress measuring device using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees