JP2656418B2 - Method for controlling NOx in flue gas - Google Patents

Method for controlling NOx in flue gas

Info

Publication number
JP2656418B2
JP2656418B2 JP522392A JP522392A JP2656418B2 JP 2656418 B2 JP2656418 B2 JP 2656418B2 JP 522392 A JP522392 A JP 522392A JP 522392 A JP522392 A JP 522392A JP 2656418 B2 JP2656418 B2 JP 2656418B2
Authority
JP
Japan
Prior art keywords
nox
combustion
concentration
value
nox concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP522392A
Other languages
Japanese (ja)
Other versions
JPH05187625A (en
Inventor
色 正 治 一
藤 隆 巳 佐
方 良 晋 尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP522392A priority Critical patent/JP2656418B2/en
Publication of JPH05187625A publication Critical patent/JPH05187625A/en
Application granted granted Critical
Publication of JP2656418B2 publication Critical patent/JP2656418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)
  • Coke Industry (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、コークス炉,熱風炉等
の熱風炉から発生する、周期的に変動する燃焼排ガス中
のNOx濃度を、基準値以下に抑制する為の予測制御方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a predictive control method for suppressing a periodically fluctuating NOx concentration in flue gas generated from a hot stove such as a coke oven or a hot stove to a reference value or less. It is.

【0002】[0002]

【従来技術】燃焼排ガス中のNOxは大気汚染の原因と
なり、その低減が望まれており、その1つとしてコーク
ス炉の燃焼排ガス中のNOx濃度の低減は大きな課題と
なっている。このコークス炉から排出される燃焼排ガス
中のNOx濃度は燃焼室における燃焼温度に大きく左右
されている。しかも、このNOx濃度は、コークス炉の
燃焼切替えに伴って周期的に変動するものである。
2. Description of the Related Art NOx in flue gas causes air pollution, and it is desired to reduce it. One of the problems is to reduce the NOx concentration in flue gas of a coke oven. The NOx concentration in the combustion exhaust gas discharged from the coke oven largely depends on the combustion temperature in the combustion chamber. In addition, the NOx concentration periodically fluctuates with the combustion switching of the coke oven.

【0003】このようなNOxを抑制する為に、例え
ば、特開平2−202586号公報に示すように燃焼室
へ供給する加熱媒体(ガス・エアー)に蓄熱室より排出
した排ガスを混合させる事により、燃焼室における燃焼
温度を低くして、燃焼排ガス中のNOx濃度を減少させ
る方法が提案されている。
In order to suppress such NOx, for example, as disclosed in Japanese Patent Application Laid-Open No. 2-202586, a heating medium (gas / air) supplied to a combustion chamber is mixed with exhaust gas discharged from a heat storage chamber. A method has been proposed in which the combustion temperature in the combustion chamber is lowered to reduce the NOx concentration in the combustion exhaust gas.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記コ
ークス炉,熱風炉等は、炉況変動により燃焼排ガス中の
NOx濃度が変化するものである。このため、上記特開
平2−20586号公報のように常に一定量のNOxを
抑制する手段では、前記のように炉況変動により変化す
る排ガス中のNOx濃度に対応する事が出来ず、必要以
上にNOx濃度を抑制したり、これとは逆に抑制が不足
する事が発生する。特に、必要以上にNOxを抑制した
場合には、環境上は好ましくなるが、燃焼温度が低下し
コークス炉,熱風炉の稼働状況に大きな影響を与える。
However, in the above coke ovens, hot blast ovens and the like, the NOx concentration in the combustion exhaust gas changes due to furnace condition fluctuations. For this reason, the means for always suppressing a fixed amount of NOx as in the above-mentioned Japanese Patent Application Laid-Open No. Hei 2-20586 cannot cope with the NOx concentration in the exhaust gas which changes due to the furnace condition fluctuation as described above, and is more than necessary. In some cases, the NOx concentration is suppressed, or conversely, the suppression is insufficient. In particular, when NOx is suppressed more than necessary, it is environmentally preferable, but the combustion temperature is reduced, which greatly affects the operating conditions of the coke oven and the hot blast oven.

【0005】本発明は、コークス炉,熱風炉等のように
略所定間隔で燃焼切替えを行い、その燃焼排ガス中のN
Ox濃度が所定周期で変化する燃焼炉の、燃焼排ガス中
のNOx濃度を抑制しかつ稼働効率を高く維持すること
を目的とする。
According to the present invention, combustion switching is performed at substantially predetermined intervals as in a coke oven, a hot blast oven, etc.
An object of the present invention is to suppress the NOx concentration in the combustion exhaust gas of a combustion furnace in which the Ox concentration changes at a predetermined cycle, and to maintain a high operating efficiency.

【0006】[0006]

【課題を解決するための手段】本発明では、上記課題を
解決するために、過去のNOx濃度の実積値から、今後
のNOx濃度を精度よくリアルタイムに予知し、この予
知したNOx濃度に基づきNOx濃度抑制手段を制御し
て、該NOx濃度を基準値以下に抑制する事により、生
産障害を最小限に留める。そのために、周期的に変動す
る燃焼排ガス中のNOx濃度を逐次測定すると共に、各
周期毎のNOx濃度値パターンを過去の測定NOx濃度
から予測し、このNOx濃度予測値パターンのピーク値
が基準値以上であれば、基準値との差に応じてNOx抑
制手段の調整を行うに際し、前記各周期毎の初期設定用
NOx濃度予測値パターンを前周期のNOx測定濃度値
パターンとし、更に、当該周期内の所定時間経過毎に過
去直近所定時間のNOx測定濃度値の平均値と、その所
定時間に対応する少なくとも1周期前の所定時間のNO
x測定濃度値の平均値との差を求め、この差に基いて前
記初期設定したNOx濃度予測値パターンの残存期間の
パターンを補正してピーク値を求める。
According to the present invention, in order to solve the above-mentioned problem, a future NOx concentration is accurately predicted in real time from an actual product value of a past NOx concentration, and based on the predicted NOx concentration. By controlling the NOx concentration suppressing means to suppress the NOx concentration to a reference value or less, production troubles are minimized. For this purpose, the NOx concentration in the combustion exhaust gas which fluctuates periodically is measured sequentially, and the NOx concentration value pattern in each cycle is predicted from the measured NOx concentration in the past, and the peak value of the NOx concentration predicted value pattern is used as a reference value. If it is the above, when adjusting the NOx suppressing means in accordance with the difference from the reference value, the initial setting NOx concentration predicted value pattern for each cycle is set as the NOx measured concentration value pattern of the previous cycle, and Each time a predetermined time elapses, the average value of the NOx measurement concentration values of the past predetermined time and the NO of the predetermined time corresponding to the predetermined time at least one cycle before
The difference between the average value of the x-measured concentration value and the average value is obtained, and the peak value is obtained by correcting the pattern of the initially set NOx concentration predicted value pattern in the remaining period based on the difference.

【0007】[0007]

【作用と実施例】本発明の作用と実施例を図1〜図2を
参照しつつ説明する。図1はコークス炉に於けるNOx
制御のための全体構成を示した図であり、図2はNOx
濃度の予測説明図であり、図中、1はコークス炉本体、
2a〜2dは燃焼排ガスの排出と空気導入を兼ねるソー
ルフリュー、2はソールフリュー2a〜2dからの燃焼
排ガスを煙突6に導入する煙道、3はNOx分析計、4
はNOx抑制制御装置、5はガス流量調整弁、a〜dは
燃焼室である。
Operation and Embodiment The operation and embodiment of the present invention will be described with reference to FIGS. Figure 1 shows NOx in a coke oven
FIG. 2 is a diagram showing an overall configuration for control, and FIG.
It is a prediction explanatory diagram of the concentration, in which 1 is a coke oven main body,
Reference numerals 2a to 2d denote sole flue for discharging flue gas and air introduction, 2 a flue for introducing flue gas from the sole flue 2a to 2d into a chimney 6, 3 a NOx analyzer, 4
Is a NOx suppression control device, 5 is a gas flow control valve, and ad are combustion chambers.

【0008】このコークス炉本体1は2分割燃焼方式を
採用しており、一方の燃焼室a、cにおいて、高炉ガス
(以下BFGと称する)とコークス炉ガス(以下COG
と称する)の2種類の混合ガスと、同方向のソールフリ
ュー2a、2cからの燃焼用空気と、を混合して燃焼す
る。そしてその燃焼排ガスを、水平煙道(図示せず),
他方の燃焼室b,d、および同方向のソールフリュー2
b,2dを順次経て、両端にある煙道2に導くが、上記
BFGとCOGの混合ガスを燃焼する燃焼室を、20分
周期で切替える構造、つまり、分割燃焼室への混合ガス
の切替えと空気導入の切替えを行う構造となっている。
The coke oven main body 1 employs a two-split combustion system. In one of the combustion chambers a and c, blast furnace gas (hereinafter referred to as BFG) and coke oven gas (hereinafter COG) are used.
) And the combustion air from the sole flues 2a and 2c in the same direction and burn. The flue gas is then transferred to a horizontal flue (not shown),
The other combustion chambers b and d and the sole flu 2 in the same direction
b and 2d are sequentially passed to the flue 2 at both ends, and the combustion chamber for burning the mixed gas of BFG and COG is switched at a cycle of 20 minutes, that is, the switching of the mixed gas to the divided combustion chamber is performed. It has a structure to switch air introduction.

【0009】つまり、燃焼にはA燃焼およびB燃焼があ
る。A燃焼では、図1のa部およびc部にある燃焼室で
前記混合ガスが燃焼し、燃焼排ガスは、a部側からb部
側へ、またc部側からd部側へと流れる。B燃焼では、
A燃焼とは逆に、図1のb部およびd部にある燃焼室で
前記混合ガスが燃焼し、燃焼排ガスは、b部側からa部
側へ、またd部側からc部側へと流れる。
That is, the combustion includes A combustion and B combustion. In the A-combustion, the mixed gas is burned in the combustion chambers at the portions a and c in FIG. 1, and the combustion exhaust gas flows from the portion a to the portion b and from the portion c to the portion d. In B combustion,
Contrary to the A-combustion, the mixed gas is burned in the combustion chambers at the parts b and d in FIG. 1, and the combustion exhaust gas flows from the part b to the part a and from the part d to the part c. Flows.

【0010】そして、この燃焼排ガスは煙道2へ導か
れ、この燃焼排ガスの一部は煙道2の末端部に設置され
たNOx分析計3にリアルタイムに吸引され、燃焼排ガ
ス中のNOx濃度の分析が行なわれる。
Then, the flue gas is led to the flue 2, and a part of the flue gas is sucked in real time by the NOx analyzer 3 installed at the end of the flue 2, and the NOx concentration in the flue gas is measured. An analysis is performed.

【0011】ここで、分析した燃焼排ガス中のNOx濃
度値は、NOx抑制制御装置4内のNOx濃度予測部4
−Aに入力する。このNOx濃度予測部4−Aでは、リ
アルタイムに分析された燃焼排ガス中のNOx濃度を順
次入力して、1回のA燃焼とB燃焼を1周期とするパタ
ーンを逐次記憶すると共に、各周期毎に、当該周期の残
存期間のNOx濃度パターンを予測する。この当該周期
残存期間のNOx濃度パターン予測を図2を参照して詳
細に説明する。
Here, the analyzed NOx concentration value in the combustion exhaust gas is calculated by a NOx concentration predicting unit 4 in the NOx suppression control unit 4.
-Input to A. The NOx concentration prediction unit 4-A sequentially inputs the NOx concentration in the combustion exhaust gas analyzed in real time, sequentially stores a pattern in which one cycle of A combustion and one cycle of B combustion is performed, and stores a pattern for each cycle. Next, the NOx concentration pattern of the remaining period of the cycle is predicted. The prediction of the NOx concentration pattern in the cycle remaining period will be described in detail with reference to FIG.

【0012】図2中、NAは前記A燃焼時のNOx濃
度、NBはB燃焼時のNOx濃度であり、このA燃焼に
続いてB燃焼が完了したことをもって1周期の燃焼が完
了する。 今、燃焼周期XのB燃焼が完了して、次の燃
焼周期YのA燃焼に移る時刻T1において、過去直近の
燃焼周期XのA燃焼とB燃焼の、記憶しているNOx濃
度パターンNA,NBを読出し、このNOx濃度パター
ンNA,NBを時刻T1以降の次燃焼周期Yの初期設定
用としてのNOx濃度予測値パターン(以下基本NOx
濃度予測値パターンと称す)NAG,NBGを設定す
る。
In FIG. 2, NA is the NOx concentration at the time of the A combustion, and NB is the NOx concentration at the time of the B combustion. One cycle of the combustion is completed when the B combustion is completed after the A combustion. Now, at time T1 when the B combustion in the combustion cycle X is completed and the combustion proceeds to the A combustion in the next combustion cycle Y, the stored NOx concentration patterns NA, of the A combustion and the B combustion in the latest combustion cycle X in the past are stored. NB is read, and the NOx concentration patterns NA and NB are used as NOx concentration predicted value patterns (hereinafter referred to as basic NOx) for initial setting of the next combustion cycle Y after time T1.
NAG and NBG are set.

【0013】次に、この基本NOx濃度予測値パターン
NAG,NBGの残存期間パターンを1分経過毎に算定
した下記NOx濃度変動分で補正して、その都度のNO
x濃度予測値パターンを求め、更に、そのパターンのピ
ーク値を求める。
Next, the remaining period pattern of the basic NOx concentration predicted value patterns NAG and NBG is corrected by the following NOx concentration fluctuation calculated every one minute, and the NOx concentration at each time is corrected.
An x density predicted value pattern is obtained, and further, a peak value of the pattern is obtained.

【0014】このNOx濃度変動分の算出方法を以下に
説明する。例えば、現在時刻T1とすると、この時刻T
1から過去t分間、つまり、燃焼周期XのB燃焼時のT
t〜T1間におけるNOx濃度パターンNBの平均値X
bと燃焼周期ZのB燃焼時におけるT2〜T3間のt分
間〔(20分+t)前〜20分前までの時間〕のNOx
濃度NBの平均値Xaを求め、この求めた平均値Xbと
Xaの差Xe(=Xb−Xa)を算出する。
The method of calculating the NOx concentration variation will be described below. For example, assuming the current time T1, the time T
From 1 to the past t minutes, that is, T at the time of B combustion in the combustion cycle X
Average value X of NOx concentration pattern NB between t and T1
NOx for t minutes (time from (20 minutes + t) to 20 minutes before) between T2 and T3 during b and B combustion in combustion cycle Z
An average value Xa of the concentration NB is obtained, and a difference Xe (= Xb-Xa) between the obtained average value Xb and Xa is calculated.

【0015】このようにして求めた差XeをT1時刻以
降のNOx濃度変動分とて、先に設定した基本NOx濃
度予測値パターンNAG,NBGに加減算する事によっ
て、現時刻T1以後の基本NOx濃度予測値パターンN
AG,NBGを補正して、今後の燃焼周期YのNOx濃
度予測値パターン(2点鎖線)NAX、NBXとする。
これを1分間隔で繰り返す。
The difference Xe obtained in this way is added to or subtracted from the previously set basic NOx concentration predicted value patterns NAG and NBG as the NOx concentration fluctuation after the time T1, thereby obtaining the basic NOx concentration after the current time T1. Predicted value pattern N
AG and NBG are corrected to obtain NOx concentration predicted value patterns (two-dot chain line) NAX and NBX for the future combustion cycle Y.
This is repeated at one minute intervals.

【0016】又、前記T1から所定時間が経過して、現
在時刻がT5になったとすると、前回と同様に、この時
刻T4〜T5(燃焼周期Y)の過去t分間の、実測し記
憶したNOx濃度パターンNAの平均値Xgを求めると
共に、1燃焼周期前〔(20分+t)前〜20分前まで
の時間〕の燃焼周期XのT6〜T7間におけるt分間
の、実測し記憶したNOx濃度パターンNAの平均値X
cを求める。そして、この平均値XgとXcの差Xf
(=Xg−Xc)を算出する。そして、この差Xfを現
時刻T5以後の基本NOx濃度予測値パターンNAG,
NBGに加減算して補正し、現在時刻T5以降のNOx
濃度予測値NAY,NBYパターン(1点鎖線)とす
る。
If the current time has reached T5 after a lapse of a predetermined time from T1, the measured and stored NOx for the past t minutes from this time T4 to T5 (combustion cycle Y), as in the previous time. The average value Xg of the concentration pattern NA is obtained, and the actually measured and stored NOx concentration for t minutes between T6 and T7 of the combustion cycle X one combustion cycle before (the time from (20 minutes + t) to 20 minutes before). Average value X of pattern NA
Find c. Then, the difference Xf between this average value Xg and Xc
(= Xg-Xc) is calculated. Then, the difference Xf is calculated by using the basic NOx concentration predicted value pattern NAG,
NBG is corrected by adding or subtracting from NBG, and NOx after the current time T5 is corrected.
It is assumed that the density predicted values NAY and NBY patterns (dashed lines).

【0017】尚、この平均値を求める時間tは5〜8分
程度が予測精度面から最も好ましい。 このようにし
て、逐次補正して求めたNOx濃度予測値パターンNA
X,NBX,NAY,NBYをNOx抑制判断部4−B
に出力する。
The time t for obtaining the average value is most preferably about 5 to 8 minutes from the viewpoint of prediction accuracy. In this way, the NOx concentration predicted value pattern NA obtained by successively correcting
X, NBX, NAY, and NBY are determined by the NOx suppression determination unit 4-B.
Output to

【0018】NOx抑制判断部4−Bでは、NOx含有
量予測部4−Aで得られた補正NOx含有量予測値パタ
ーンを導入する都度、そのピーク値と各基準値を比較
し、NOx制御の要否を判定し、要の場合においては最
適なNOx抑制手段を選定する。つまり、NOx抑制判
断部4−Bには、操業状態,環境規制値等を考慮しつ
つ、任意に設定可能な基準値を設定してあり、この例で
は2つの基準値1,2を設定してあり、これらは、基準
値2<基準値1の関係にある。
Each time the corrected NOx content prediction value pattern obtained by the NOx content prediction unit 4-A is introduced, the NOx suppression determination unit 4-B compares the peak value with each reference value, and performs NOx control. The necessity is determined, and if necessary, the optimal NOx suppressing means is selected. That is, in the NOx suppression determination section 4-B, reference values that can be set arbitrarily are set in consideration of the operating state, environmental regulation values, and the like. In this example, two reference values 1 and 2 are set. These are in a relationship of reference value 2 <reference value 1.

【0019】基準値2は、NOx量抑制の有無を判断す
る基準となる値であり、上記NOx含有量予測部4−A
からの補正NOx濃度予測値パターンのピーク値と逐次
比較して次の処理を行なう。
The reference value 2 is a value used as a criterion for judging the presence or absence of the NOx amount suppression.
The following processing is performed by successively comparing with the peak value of the corrected NOx concentration predicted value pattern from.

【0020】 補正NOx濃度予測値パターンのピー
ク値(最大値)>基準値2の場合には、NOx抑制手段
を実行する必要性が無いとして、そのままの操業を継続
する。
When the peak value (maximum value) of the corrected NOx concentration predicted value pattern> the reference value 2, it is determined that there is no need to execute the NOx suppressing means, and the operation is continued as it is.

【0021】 基準値2<補正NOx濃度予測値パタ
ーンのピーク値<基準値1の場合には、当該補正NOx
濃度予測値パターンのピーク値と基準値1の差により、
BFG流量調整弁及び又はCOG流量調整弁を絞ってB
FG及び又はCOGの流量を減少することにより、燃焼
室に流入する混合ガスの燃焼カロリーを低減する。
When the reference value 2 <the peak value of the corrected NOx concentration predicted value pattern <the reference value 1, the corrected NOx
By the difference between the peak value of the density predicted value pattern and the reference value 1,
Squeeze the BFG flow control valve and / or COG flow control valve to
By reducing the flow rate of FG and / or COG, the calorie of the mixed gas flowing into the combustion chamber is reduced.

【0022】 NOx濃度予測値パターンのピーク値
>基準値1の場合には、燃焼空気導入側のソールフリュ
ー2a〜2dの燃焼空気調整弁を所定量開放して、燃焼
室への燃焼用空気量を増加させ、その大気が持つ冷却効
果により燃焼室における燃焼温度を低下させて、NOx
量を低減する。
When the peak value of the NOx concentration predicted value pattern> the reference value 1, the combustion air regulating valves of the sole flutes 2a to 2d on the combustion air introduction side are opened by a predetermined amount, and the combustion air amount to the combustion chamber is opened. NOx by reducing the combustion temperature in the combustion chamber by the cooling effect of the atmosphere
Reduce the volume.

【0023】このNOx抑制判断部4−Bで決定したN
Ox抑制情報は、NOx抑制制御部4−Cに入力し、そ
の入力した情報により抑制制御部4−Cは燃焼空気調整
弁,BFG流量調整弁およびCOG流量調整弁の何れか
の流量調整弁5を操作する。尚、前記NOx抑制手段と
して、燃焼室への燃焼空気の導入、BFG,COGの流
量を調整する方法について説明したが、これに限るもの
ではなく、燃焼用空気への燃焼排ガスの混合量の調整等
周知の燃焼調整手段を採用すれば良い。
The N determined by the NOx suppression determination section 4-B
The Ox suppression information is input to the NOx suppression control unit 4-C, and based on the input information, the suppression control unit 4-C causes the combustion air adjustment valve, the BFG flow adjustment valve, or the COG flow adjustment valve to have one of the flow adjustment valves 5. Operate. As the NOx suppressing means, the method of introducing the combustion air into the combustion chamber and adjusting the flow rates of BFG and COG has been described. However, the present invention is not limited to this, and the adjustment of the mixing amount of the combustion exhaust gas into the combustion air is not limited thereto. For example, known combustion adjusting means may be employed.

【0024】また、抑制処置を実行した後の抑制効果が
現れるまでには遅れが生じる為、抑制処置後所定時間内
はガス量調整弁5の調整を変更しないようにすることが
好ましい。
In addition, since there is a delay before the suppression effect appears after the suppression treatment is performed, it is preferable not to change the adjustment of the gas amount adjusting valve 5 within a predetermined time after the suppression treatment.

【0025】[0025]

【効果】以上の如く、燃焼排ガス中のNOx濃度は燃焼
室における燃焼温度の変化に左右され、その変化も急速
に現れることから、本発明は過去直近から2周期前まで
の燃焼排ガス中の実績NOx濃度のみを利用して、今後
のNOx濃度を精度良く予測することが可能となり、こ
の予測NOx濃度に基づいて周知のNOx抑制手段を制
御することにより、コークス炉,熱風炉等の操業上に与
える悪影響を最小限に維持しつつ、燃焼排ガス中のNO
x濃度を所定値以下に抑制することが可能となり、この
分野における効果は多大なものである。
As described above, the NOx concentration in the flue gas is affected by the change in the combustion temperature in the combustion chamber, and the change appears rapidly. Using only the NOx concentration, it is possible to accurately predict the future NOx concentration. By controlling the well-known NOx suppressing means based on the predicted NOx concentration, it becomes possible to operate the coke oven, hot blast stove, etc. NO in the flue gas while keeping the adverse effects
The x concentration can be suppressed to a predetermined value or less, and the effect in this field is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明を実施する装置構成の一例を示すブロ
ック図である。
FIG. 1 is a block diagram showing an example of a device configuration for implementing the present invention.

【図2】 図1に示すNOx抑制制御装置によるNOx
濃度予測値の時系列の変化を示すグラフである。
FIG. 2 is a diagram showing a NOx control system shown in FIG. 1;
It is a graph which shows a time-sequential change of a concentration prediction value.

【符号の説明】[Explanation of symbols]

1:コ−クス炉 2:煙道 2a〜2d:ソールフリュー a〜d:燃焼室 3:NOx分析計 4:NOx抑制制御装
置 5:ガス量調整弁 6:煙突 BFG:高炉ガス COG:コークス炉ガ
1: coke oven 2: flue 2a to 2d: sole flue a to d: combustion chamber 3: NOx analyzer 4: NOx suppression control unit 5: gas amount regulating valve 6: chimney BFG: blast furnace gas COG: coke oven gas

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】周期的に変動する燃焼排ガス中のNOx濃
度を逐次測定すると共に、各周期毎のNOx濃度値パタ
ーンを過去の測定NOx濃度から予測し、このNOx濃
度予測値パターンのピーク値が基準値以上であれば、基
準値との差に応じてNOx抑制手段の調整を行うに際
し、前記各周期毎の初期設定用NOx濃度予測値パター
ンを前周期のNOx測定濃度値パターンとし、更に、当
該周期内の所定時間経過毎に過去直近所定時間のNOx
測定濃度値の平均値と、その所定時間に対応する少なく
とも1周期前の所定時間のNOx測定濃度値の平均値と
の差を求め、この差に基いて前記初期設定したNOx濃
度予測値パターンの残存期間のパターンを補正してピー
ク値を求めることを特徴とするNOx抑制制御方法。
An NOx concentration in a flue gas which fluctuates periodically is sequentially measured, and a NOx concentration value pattern in each cycle is predicted from a past measured NOx concentration. If not less than the reference value, when adjusting the NOx suppression means according to the difference from the reference value, the initial setting NOx concentration predicted value pattern for each cycle as the previous cycle NOx measurement concentration value pattern, further, NOx of the last predetermined time in the past every predetermined time in the cycle
The difference between the average value of the measured concentration values and the average value of the NOx measured concentration values of the predetermined time corresponding to the predetermined time at least one cycle before is obtained, and based on the difference, the initial setting of the NOx concentration predicted value pattern is performed. A NOx suppression control method, wherein a peak value is obtained by correcting a pattern of a remaining period.
JP522392A 1992-01-14 1992-01-14 Method for controlling NOx in flue gas Expired - Lifetime JP2656418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP522392A JP2656418B2 (en) 1992-01-14 1992-01-14 Method for controlling NOx in flue gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP522392A JP2656418B2 (en) 1992-01-14 1992-01-14 Method for controlling NOx in flue gas

Publications (2)

Publication Number Publication Date
JPH05187625A JPH05187625A (en) 1993-07-27
JP2656418B2 true JP2656418B2 (en) 1997-09-24

Family

ID=11605198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP522392A Expired - Lifetime JP2656418B2 (en) 1992-01-14 1992-01-14 Method for controlling NOx in flue gas

Country Status (1)

Country Link
JP (1) JP2656418B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164108A (en) * 2018-03-14 2019-09-26 三菱重工業株式会社 Fuel simple analysis device and analysis condition adjustment device therefor
US11366089B2 (en) * 2018-03-14 2022-06-21 Mitsubishi Heavy Industries, Ltd. Analysis condition adjusting device of simple fuel analyzer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUP9800244A2 (en) * 1997-03-21 1999-06-28 Von Roll Umwelttechnik Aktiengesellschaft Method and apparatus for regulation of operating-agents feed for reduction of no content of exhaust gas coming from combustion

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019164108A (en) * 2018-03-14 2019-09-26 三菱重工業株式会社 Fuel simple analysis device and analysis condition adjustment device therefor
US11366089B2 (en) * 2018-03-14 2022-06-21 Mitsubishi Heavy Industries, Ltd. Analysis condition adjusting device of simple fuel analyzer

Also Published As

Publication number Publication date
JPH05187625A (en) 1993-07-27

Similar Documents

Publication Publication Date Title
JPH06264062A (en) Operation of coke oven dry quencher
CN110205427A (en) A kind of intelligence hot-blast stove Optimal Control System and method
JP2656418B2 (en) Method for controlling NOx in flue gas
CN104615856A (en) Gas consumption prediction model establishing method and device based on hot blast stove group
CN111795584B (en) Control method and device for reducing content of nitrogen oxides in combustion waste gas of heating furnace
JP3712329B2 (en) Process control unit
JP4627509B2 (en) Plant control apparatus and plant control method
JPH10226809A (en) Method for controlling hot stove
KR102231347B1 (en) Apparatus and method for controlling power generation output based on prediction of supply of by-product gas
JPS6137313B2 (en)
Simkin et al. Control model of the heating hot blast stove regenerative chamber based on fuzzy knowledge with training set
CN115215532A (en) Glass melting furnace pressure control method and control system thereof
Prasolov et al. Development of a simulation model of the heat transfer process in the hot-blast stove checkerwork
JP3410555B2 (en) Ammonia injection amount control device for denitration equipment
JPH0442920B2 (en)
CN112556441A (en) Steel rolling heating furnace and dynamic control method for asymmetric characteristics of flue gas pipe network thereof
JPH0248196B2 (en) KOOKUSURONOHIOTOSHIJIKANSEIGYOHOHO
JP2003028579A (en) Method and program predicting hourly variation in furnace temperature distribution and recording medium recording program
JPS61141787A (en) Control of oven temperature in coke oven
TWI817819B (en) Method and computer program product for controlling hot blast stove
CN114317859B (en) Air supply strategy correction method for hot blast stove
JPS5950196B2 (en) How to determine whether a coke oven has caught fire
JPH09187625A (en) Device and method for controlling injection of ammonia into stack gas denitrating equipment
JP2000234717A (en) Method and apparatus for controlling pressure of combustion furnace
Wang et al. Control strategy of hot blast stove's combustion system-fuzzy self-adaptive control

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970513