JP2651803B2 - Four-way valve for refrigeration cycle - Google Patents

Four-way valve for refrigeration cycle

Info

Publication number
JP2651803B2
JP2651803B2 JP6252619A JP25261994A JP2651803B2 JP 2651803 B2 JP2651803 B2 JP 2651803B2 JP 6252619 A JP6252619 A JP 6252619A JP 25261994 A JP25261994 A JP 25261994A JP 2651803 B2 JP2651803 B2 JP 2651803B2
Authority
JP
Japan
Prior art keywords
rotor
main body
passage
predetermined angle
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6252619A
Other languages
Japanese (ja)
Other versions
JPH0882461A (en
Inventor
正巳 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6252619A priority Critical patent/JP2651803B2/en
Publication of JPH0882461A publication Critical patent/JPH0882461A/en
Application granted granted Critical
Publication of JP2651803B2 publication Critical patent/JP2651803B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Multiple-Way Valves (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は冷凍サイクル,特にヒ
ートポンプ形の空調機の冷房・暖房の切換に用いる冷凍
サイクル用四方弁に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle, and more particularly to a four-way valve for a refrigeration cycle used for switching between cooling and heating of a heat pump type air conditioner.

【0002】[0002]

【従来技術】この種冷凍サイクル用四方弁は,空調機の
ヒートポンプによりその需要は急増しており,低コスト
化,小形化等が要求されている。以下,図面を参照しな
がら,従来の冷凍サイクル用四方弁の一例について説明
する。すなわち図10は従来の冷凍サイクル用四方弁の
断面図を示すもので,1は圧縮機,2はアキュームレー
タで四方弁3を介して室内コイル4と膨張弁5と室外コ
イル6に接続され,周知のヒートポンプ式冷媒回路を構
成している。そして前記四方弁3は弁本体7とパイロッ
トバルブ8とで構成され,この弁体7は2個のピストン
9,10により3つの空間11,12,13に分けら
れ,また前記2個のピストン9,10は連結棒で結ばれ
ており図示の左右方向に移動する。さらにこの連結棒に
はスライドバルブ15が取り付けられ,前記ピストン
9,10が動くことによりこのスライドバルブ15も共
動するようになっている。
2. Description of the Related Art The demand for such a four-way valve for a refrigeration cycle is rapidly increasing due to the heat pump of an air conditioner, and there is a demand for cost reduction and downsizing. Hereinafter, an example of a conventional four-way valve for a refrigeration cycle will be described with reference to the drawings. That is, FIG. 10 is a sectional view of a conventional four-way valve for a refrigeration cycle, in which 1 is a compressor, 2 is an accumulator, which is connected to an indoor coil 4, an expansion valve 5, and an outdoor coil 6 via a four-way valve 3, and Of the heat pump type refrigerant circuit. The four-way valve 3 comprises a valve body 7 and a pilot valve 8. The valve body 7 is divided into three spaces 11, 12, 13 by two pistons 9, 10, and the two pistons 9 , 10 are connected by a connecting rod and move in the left-right direction as shown. Further, a slide valve 15 is attached to the connecting rod, and when the pistons 9 and 10 move, the slide valve 15 also moves together.

【0003】また,前記ピストン9,10で囲まれた領
域には4本の導管16,17,18,19が接続され,
圧縮機1の吐出管16は常時空間12に連通し,圧縮機
1の吸入管17はスライドバルブ15とバルブシート2
0にて形成される空間21に常に連通している。また導
管18,19はそれぞれ室内コイル4および室外コイル
6に接続されており,スライドバルブ15の位置により
空間12と連通したり空間21と連通するように構成し
ている。さらに前記ピストン9,10にはバランス孔2
2,23を設けている。
In addition, four conduits 16, 17, 18, and 19 are connected to a region surrounded by the pistons 9, 10.
The discharge pipe 16 of the compressor 1 is always in communication with the space 12, and the suction pipe 17 of the compressor 1 is connected to the slide valve 15 and the valve seat 2.
0 always communicates with the space 21 formed. The conduits 18 and 19 are connected to the indoor coil 4 and the outdoor coil 6, respectively, and are configured to communicate with the space 12 or with the space 21 depending on the position of the slide valve 15. Further, the balance holes 2 are provided in the pistons 9 and 10.
2, 23 are provided.

【0004】次にパイロットバルブ8の構造について説
明する。すなわちこのパイロットバルブ8内には2つの
空間24,25が設けられ,ソレノイドコイル26によ
り作動する連通孔29を有している。図10に示すニー
ドルバルブ27,28はソレノイドコイル26が通電さ
れた暖房状態を示している。30は前記連通孔29と吸
入管17とを連通する抽気管,32は空間13と空間2
5を連通する抽気管である。
Next, the structure of the pilot valve 8 will be described. That is, two spaces 24 and 25 are provided in the pilot valve 8, and have a communication hole 29 operated by the solenoid coil 26. Needle valves 27 and 28 shown in FIG. 10 show a heating state in which the solenoid coil 26 is energized. Reference numeral 30 denotes a bleed pipe that communicates the communication hole 29 with the suction pipe 17, and 32 denotes a space 13 and a space 2.
5 is an bleed tube communicating with the bleeder 5.

【0005】次に以上の構成にてなる四方弁3の動作に
ついて説明する。図10は暖房運転状態を示しており,
各空間11,12,13,24,25の圧力は次のよう
になっている。圧縮機1の吐出ガスにより空間12は高
圧となり,ピストン9,10に設けられた圧力バランス
孔22,23を通じて空間11および空間13を高圧圧
力に保とうとする。しかしパイロットバルブ8内のニー
ドルバルブ27が連通孔9を閉じているため空間13は
抽気管32,空間25,連通孔29及び抽気管30を介
して吸入管17と連通した低圧圧力となっている。従っ
て空間11と空間13の間にはピストン9,10を介し
て圧力差を生じ,ピストン9,10およびスライドバル
ブ16が図の右方向に押しつけられ暖房運転状態を維持
する。
Next, the operation of the four-way valve 3 having the above configuration will be described. FIG. 10 shows a heating operation state.
The pressure in each of the spaces 11, 12, 13, 24, 25 is as follows. The space 12 has a high pressure due to the gas discharged from the compressor 1, and attempts to maintain the space 11 and the space 13 at a high pressure through the pressure balance holes 22, 23 provided in the pistons 9, 10. However, since the needle valve 27 in the pilot valve 8 closes the communication hole 9, the space 13 has a low pressure communicating with the suction pipe 17 via the bleed pipe 32, the space 25, the communication hole 29, and the bleed pipe 30. . Therefore, a pressure difference is generated between the space 11 and the space 13 via the pistons 9 and 10, and the pistons 9 and 10 and the slide valve 16 are pressed rightward in the drawing to maintain the heating operation state.

【0006】次に暖房運転が停止されるか,除霜運転が
開始されるか,又冷房運転開始時における四方弁3の動
作を説明する。上記3パターンの運転状態においてはソ
レノイドコイル26は通電が停止されている。そのため
ニードルバルブ27,28は図の左方向に移動するた
め,ニードルバルブ28が連通孔9を閉じ,抽気管30
は空間24と連通する。従って暖房時に高圧圧力になっ
ていた空間11は抽気管31,空間24,抽気管30を
介して吸入管17と連通し急激に低圧圧力となる。その
ためピストン9を隔てて空間12と空間11の間に圧力
差を生じ,この圧力差によってピストン9,10および
スライドバルブ15が図の左方向に押しつけられる。従
って吐出管16は導管19と連通し,導管18は空間2
1を介して吸入管17と連通する。
Next, the operation of the four-way valve 3 when the heating operation is stopped, the defrosting operation is started, and the cooling operation is started will be described. In the operation states of the above three patterns, the energization of the solenoid coil 26 is stopped. As a result, the needle valves 27 and 28 move to the left in the drawing, so that the needle valve 28 closes the communication hole 9 and the bleed pipe 30
Communicates with the space 24. Therefore, the space 11 which has been at a high pressure during heating is communicated with the suction pipe 17 via the bleed pipe 31, the space 24, and the bleed pipe 30, and rapidly becomes a low pressure. Therefore, a pressure difference is generated between the space 12 and the space 11 across the piston 9, and the pistons 9, 10 and the slide valve 15 are pressed to the left in the drawing due to the pressure difference. Therefore, the discharge pipe 16 communicates with the conduit 19, and the conduit 18 communicates with the space 2.
1 and communicate with the suction pipe 17.

【0007】[0007]

【発明が解決しようとする課題】しかしながら上記構成
では,スライドバルブ15の駆動は冷媒ガスの高低圧力
差を用いて行うパイロット方式となっているため非常に
多くの部品が必要になり,構造が複雑で,組立工数も多
くなるという問題点を有していた。また構造上,抽気管
30,31,32や,圧力バランス孔22,23,パイ
ロットバルブ28,29等の微小開口部分が多いため,
冷媒回路中の異物等により閉塞され切換え不能となる恐
れがある等,信頼性の面でも不安定であるという問題が
あった。また,最近の空調機動向として四方弁切換時の
高圧冷媒と低圧冷媒の衝突による衝突音をなくす目的で
除霜前後や冷暖房切換時に圧縮機の運転を停止して高低
圧力差をなくした後に四方弁を切り換える制御方式が主
流化していることから,切換時の高低圧力差が低減され
スライドバルブ15の切換力が従来に比べて大幅に低減
される傾向にある。そのため特開昭62−200156
号公報に示すようにスライドバルブに直結したソレノイ
ドコイルにより切換可能にしたパイロットバルブレス化
を図ったものも提案されているが,スライドバルブの摺
動性,シール性などの問題があった。
However, in the above configuration, the slide valve 15 is driven by a pilot system using a high and low pressure difference of the refrigerant gas, so that a very large number of parts are required and the structure is complicated. Therefore, there is a problem that the number of assembling steps is increased. Also, due to the structure, there are many minute openings such as the bleeding tubes 30, 31, 32, the pressure balance holes 22, 23, and the pilot valves 28, 29.
There has been a problem in that the reliability is also unstable, for example, there is a possibility that the switching is impossible due to a foreign substance or the like in the refrigerant circuit being blocked. Also, as a recent trend in air conditioners, the compressor operation was stopped before and after defrosting or when switching between air conditioning and heating to eliminate the collision noise caused by the collision of high-pressure refrigerant and low-pressure refrigerant when switching the four-way valve, and after eliminating the high-low pressure difference. Since the control method for switching the valves has become mainstream, the pressure difference between the high and low pressures at the time of switching has been reduced, and the switching force of the slide valve 15 has tended to be significantly reduced as compared with the conventional case. Therefore, Japanese Patent Application Laid-Open No. 62-200156
As disclosed in Japanese Unexamined Patent Publication No. HEI 10-125, there has been proposed a type in which a pilot valve is eliminated by making it possible to switch by using a solenoid coil directly connected to a slide valve, but there are problems such as slidability and sealability of the slide valve.

【0008】この発明は,上述のような課題を解決する
ためになされたもので,第1の目的は,切り換えを回転
で行うようにして切り換え操作を円滑にさせる冷凍サイ
クル用四方弁を得るものである。また第2の目的は,構
造を簡素化し組立作業性を向上させ,低コスト化を行う
とともに切換作動性のよい,信頼性の高い冷凍サイクル
用四方弁を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems. A first object of the present invention is to provide a four-way valve for a refrigeration cycle in which switching is performed by rotation, thereby facilitating the switching operation. It is. A second object is to provide a highly reliable four-way valve for a refrigeration cycle that has a simplified structure, improves assembling workability, reduces costs, and has good switching operability.

【0009】[0009]

【問題を解決するための手段】この発明に係る冷凍サイ
クル用四方弁は,両端開口部を蓋体で閉鎖した管状本体
胴部に三方放射状に高圧側導入管及び所定角度離間した
第1,第2の導管を突設させるとともに,該本体内に回
転自在に回転子を嵌合させ,この回転子の円周3方向に
所定角度離間した第1,第2の吸入口及び吐出口を有す
る第1通路を設けるとともに,この吐出口と円周方向に
それぞれ所定角度離間して回転子の外周軸方向に第2通
路を形成し,これら第2通路と連通する低圧側導出管を
設け,回転手段で回転子を回転させることにより,導入
管と第1あるいは第2導管を択一的に連通させ,冷媒通
路を切り換えるよう構成したものである。
SUMMARY OF THE INVENTION A four-way valve for a refrigeration cycle according to the present invention is a three-way radially high-pressure side introducing pipe and a first, a first, and a second, which are spaced apart by a predetermined angle, from a tubular main body whose both ends are closed by lids. And a rotor rotatably fitted in the main body and having first and second suction ports and discharge ports spaced apart by a predetermined angle in three circumferential directions of the rotor. A second passage formed in the outer peripheral axis direction of the rotor at a predetermined angle in the circumferential direction from the discharge port, and a low-pressure outlet pipe communicating with the second passage is provided. By rotating the rotor in, the introduction pipe and the first or second conduit are selectively communicated to switch the refrigerant passage.

【0010】また,この発明に係る冷凍サイクル用四方
弁は,両端開口部を蓋体で閉鎖した管状本体胴部に所定
角度離間した第1,第2の導管を突設させるとともに,
該本体内に回転自在に回転子を嵌合させ,前記蓋体の一
方に該本体の軸芯方向に高圧側導入管を貫通装着し,こ
の導入管に軸芯で気密的に連通する第1通路を前記回転
子内に設けるとともに,この通路の他端より円周方向に
吐出口を開口させ,この吐出口と円周方向にそれぞれ所
定角度離間して回転子の外周軸方向に第2通路を形成
し,これら第2通路と連通する低圧側導出管を設け,回
転手段で回転子を回転させることにより,導入管と第1
あるいは第2導管を択一的に連通させ,冷媒通路を切り
換えるよう構成したものである。
In the four-way valve for a refrigeration cycle according to the present invention, first and second conduits spaced apart by a predetermined angle are projected from a tubular main body having both ends closed by lids.
A rotor is rotatably fitted in the main body, and a high-pressure side inlet pipe is inserted through one of the lids in the axial direction of the main body, and a first air-tightly communicates with the inlet pipe by the axial center. A passage is provided in the rotor, and a discharge port is opened in a circumferential direction from the other end of the passage. A second passage is provided in the outer peripheral axis direction of the rotor at a predetermined angle in the circumferential direction from the discharge port. Are formed, and a low-pressure side outlet pipe communicating with these second passages is provided.
Alternatively, the second conduit is selectively communicated to switch the refrigerant passage.

【0011】さらに回転子の1通路に導入管を挿入させ
るとともに,この導入管の挿入部の外周にシール用Oリ
ングを装着し接続部のシール性を向上させるものであ
る。
Further, an introduction pipe is inserted into one passage of the rotor, and a sealing O-ring is attached to the outer periphery of the insertion section of the introduction pipe to improve the sealing property of the connection part.

【0012】さらにまた,蓋体に1個以上の突起部を設
け,この突起部で回転子の端面を当接支持させることに
より,回転子の軸方向の移動を規制することができるも
のである。
Further, by providing one or more projections on the lid and supporting the end face of the rotor with the projections, the axial movement of the rotor can be restricted. .

【0013】回転子の第1通路の吸入口及び吐出口の周
縁部に,前記本体内周面に近接する環状突起を形成,ま
たは第1通路の吸入口及び吐出口の開口部にシール用ス
リーブを設けるか,もしくはこのスリーブとこの周縁部
に間隙をおいて,前記本体内周面に近接する環状突起を
設けることにより,第1通路と本体側各管との接続部の
シール性を向上させるものである。
An annular projection is formed on the periphery of the suction port and the discharge port of the first passage of the rotor near the inner peripheral surface of the main body, or a sealing sleeve is formed on the opening of the suction port and the discharge port of the first passage. Or by providing an annular projection close to the inner peripheral surface of the main body with a gap between the sleeve and the peripheral edge to improve the sealing performance of the connection portion between the first passage and each main body side pipe. Things.

【0014】また,回転子を正方向への回転を阻止する
ようにばね部材を張架させるとともに,該回転子に磁性
体を装着し,この磁性体の回転通過線上に対向して本体
外部に電磁コイルを設け,該電磁コイルに通電させて回
転子の磁性体を吸引させて回転子を正方向へ所定角度回
転させ,通電を遮断するとばね作用で逆方向に回転子を
回転させるものである。
In addition, a spring member is stretched so as to prevent the rotor from rotating in the forward direction, and a magnetic body is mounted on the rotor, and the rotor is disposed outside the main body so as to face the rotation passage line of the magnetic body. An electromagnetic coil is provided, and the rotor is rotated by a predetermined angle in the forward direction by energizing the electromagnetic coil to attract the magnetic material of the rotor. When the energization is stopped, the rotor is rotated in the reverse direction by the action of a spring. .

【0015】[0015]

【実施例】【Example】

実施例1.図1は,この発明の一実施例である冷凍サイ
クル用四方弁を示すもので,図において,31は円筒状
の管状本体,32はこの本体の外壁に突設した高圧側導
入管,33,34はこの導入管の円周線上で,かつ反導
入管側に放射状に突設した第1,第2導管で,これら導
管は所定角度(A゜)離間している。なおこの角度A゜
は45°〜90°が望ましく本体の外径寸法,隣接され
る導管のラップ代等を考慮して最適角度が決定される。
35は前記本体の両端開口部を閉鎖する蓋体でロウ付等
により気密的に固着されている。36は前記本体内に回
転自在に装着された回転子で,例えば66ナイロンのよ
うに滑べり性がよく,耐熱性を有する合成樹脂で成形さ
れている。そしてこの回転子は前記導入管33,34と
連通する第1,第2の吸入口38,39から第1,第2
導管と連通する吐出口40を有するY字状の第1通路3
7を備え,この第1,第2吸入口は所定角度(A゜)離
間している。41は前記回転子36の外周軸方向に形成
された略半円状の第2通路で,前記第1通路の吐出口4
0と円周方向にそれぞれ所定角度(A゜)離間して設け
られている。またこの回転子は正逆方向に所定角度回転
させる回転手段42により回転自在に回転可能になって
いる。43は本体内の回転子36の両側に形成された低
圧空間部で,前記第2通路41と連通している。44は
前記本体31の外壁に設けた低圧側導出管で,前記低圧
空間部に連通している。
Embodiment 1 FIG. FIG. 1 shows a four-way valve for a refrigeration cycle according to one embodiment of the present invention. In the figure, 31 is a cylindrical tubular body, 32 is a high-pressure side inlet pipe protruding from the outer wall of this body, 33, Reference numeral 34 denotes first and second conduits projecting radially on the circumferential line of the introduction pipe and on the side opposite to the introduction pipe, and these conduits are separated by a predetermined angle (A 角度). The angle A 角度 is preferably 45 ° to 90 °, and the optimum angle is determined in consideration of the outer diameter of the main body, the wrap margin of the adjacent conduit, and the like.
Reference numeral 35 denotes a lid closing the openings at both ends of the main body, which is hermetically fixed by brazing or the like. A rotor 36 is rotatably mounted in the main body, and is formed of a heat-resistant synthetic resin, such as nylon 66, having good slipperiness. The rotor is connected to first and second suction ports 38 and 39 communicating with the introduction pipes 33 and 34, respectively.
Y-shaped first passage 3 having discharge port 40 communicating with a conduit
The first and second suction ports are separated by a predetermined angle (A (). Reference numeral 41 denotes a substantially semicircular second passage formed in the outer peripheral axis direction of the rotor 36, and the discharge port 4 of the first passage is provided.
0 and a predetermined angle (A ゜) apart from each other in the circumferential direction. The rotor is rotatably rotatable by rotating means 42 for rotating the rotor by a predetermined angle in the forward and reverse directions. 43 is a low-pressure space formed on both sides of the rotor 36 in the main body, and communicates with the second passage 41. A low-pressure side outlet pipe 44 provided on the outer wall of the main body 31 communicates with the low-pressure space.

【0016】このように構成された四方弁において,回
転手段41により回転子36を所定角度回転させて,回
転子の第1通路の吸入口38と高圧側導入口32と連通
させるとともに吐出口40と本体側の第1導管33を連
通合致させることにより,図2の矢印に示すように,導
入管32より流入した圧縮機で圧縮された高圧冷媒ガス
は第1通路37を介して第1導管33より室内コイル→
膨張弁→室内コイルを経た,低圧冷媒ガスは前記導管3
4より回転子の第2通路41を通って導出管44より排
出されて圧縮機へ戻る冷房サイクル回路あるいは除霜サ
イクル回路となる。また回転子を回転手段により所定角
度回転させて,回転子の第1通路の吸入口39と高圧側
導入管32と連通させるとともに吐出口40と第2導管
34を連通させることにより,図3の矢印に示すよう
に,冷媒ガスは圧縮機→導入管32→導管34→室内コ
イル→膨張弁→室外コイル→第1導管33→導出管44
→圧縮機の暖房サイクル回路を構成する。なお上記実施
例では,導入管32と第1導管33との離間角度(B
゜)と導入管32と第1導管34との離間角度(C゜)
を同一にして冷媒流路をほぼ直線方向にして流路抵抗を
少なくするようにしたが,異なった角度にしてもこの発
明の目的を逸脱するものではない。
In the four-way valve constructed as described above, the rotor 36 is rotated by a predetermined angle by the rotating means 41 so that the suction port 38 of the first passage of the rotor communicates with the high-pressure inlet 32 and the discharge port 40. As shown by the arrow in FIG. 2, the high-pressure refrigerant gas compressed by the compressor flowing from the introduction pipe 32 is passed through the first passage 37 to the first Indoor coil from 33 →
Expansion valve → low-pressure refrigerant gas passed through the indoor coil
4 forms a cooling cycle circuit or a defrost cycle circuit which is discharged from the outlet pipe 44 through the second passage 41 of the rotor and returns to the compressor. Further, by rotating the rotor by a predetermined angle by the rotating means to communicate the suction port 39 of the first passage of the rotor with the high pressure side introduction pipe 32 and the communication between the discharge port 40 and the second conduit 34, as shown in FIG. As indicated by the arrow, the refrigerant gas is supplied from the compressor → the inlet pipe 32 → the conduit 34 → the indoor coil → the expansion valve → the outdoor coil → the first conduit 33 → the outlet pipe 44.
→ Construct a compressor heating cycle circuit. In the above embodiment, the separation angle between the introduction pipe 32 and the first conduit 33 (B
゜), the separation angle between the introduction pipe 32 and the first conduit 34 (C ゜)
And the refrigerant flow paths are made substantially linear so as to reduce the flow path resistance. However, even if the angles are different, the object of the present invention is not deviated.

【0017】また,四方弁の本体31を管状にし,この
外周部に導管をロウ付固定したので,回転子36が嵌合
される本体内の真円度の加工が容易になる。さらに導管
の固定した本体31と回転子36の組立体と蓋体の数少
ない部品を,組立てた後本体外部に回転部材42を装着
することで四方弁が完成する。従って,加工が容易で,
組立性がよく,部品点数が少なく軽量化を図ることがで
きる。
Further, since the main body 31 of the four-way valve is formed in a tubular shape and the conduit is brazed to the outer periphery thereof, the roundness in the main body in which the rotor 36 is fitted is facilitated. Further, after assembling the assembly of the main body 31 and the rotor 36 with the conduit fixed thereto and the parts having a small number of lids, the four-way valve is completed by attaching the rotating member 42 to the outside of the main body. Therefore, processing is easy,
Good assemblability, fewer parts, and lighter weight.

【0018】実施例2.図4において,前記第1実施例
と同一または相当部部分は同一符号を付けて説明を省略
する。48は一方の蓋体35の外側に形成した高圧室
で,反蓋体側に高圧側導入管32aを装着するととも
に,該蓋体の前記本体31の軸芯に導入管32bが貫通
装着されている。37は前記回転子36内に形成された
L字状の第1通路で,その一端に前記導入管32bの先
端部が気密的に,かつ該回転子が回転可能に挿入接続さ
れ,他端は該回転子の円周方向に開口する吐出口40を
開口している。
Embodiment 2 FIG. In FIG. 4, the same or corresponding parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. Reference numeral 48 denotes a high-pressure chamber formed outside one of the lids 35. The high-pressure side introduction pipe 32a is mounted on the opposite side of the lid, and the introduction pipe 32b is mounted through the axis of the main body 31 of the lid. . Reference numeral 37 denotes an L-shaped first passage formed in the rotor 36. One end of the first passage is air-tightly connected to the leading end of the introduction pipe 32b, and the rotor is rotatably inserted. A discharge port 40 that opens in the circumferential direction of the rotor is opened.

【0019】従って,回転手段42により回転子36を
所定角度回転させて,回転子の吐出口40と第1導管3
3を連通合致させることにより,高圧導入管32aより
流入した圧縮機で圧縮された高圧冷媒ガスは,一旦高圧
室48に入った後導入管32bから第1通路37を経て
第1導管33より室内コイル→膨張弁→室内コイルを経
た,低圧冷媒ガスは前記導管34より回転子の第2通路
41を通って導出管44より排出されて圧縮機へ戻る冷
房サイクル回路あるいは除霜サイクル回路となる。また
回転子を回転手段により所定角度回転させて,回転子の
吐出口40と第2導管34を連通させることにより,冷
媒ガスは圧縮機→導入管32→導管34→室内コイル→
膨張弁→室外コイル→第1導管33→導出管44→圧縮
機の暖房サイクル回路を構成する。さらに高圧側導入管
32aと蓋体35の軸芯を貫通して装着した導入管32
bを高圧室で分離させているので,本体外部の導入管3
2aが衝撃を受けても蓋体に装着した導入管32bには
影響はなく回転子36の回転に支障はない。なお上記実
施例では高圧導入管32aを本体の軸方向に装着した
が,この発明はこれに限定するものではなく,本体31
の横方向から高圧室48へ連通装着しても上記と同様効
果を有するものである。また上記実施例では,高圧導入
管を高圧室の内外に分離して設けたが,回転子の回転が
妨げられないように,導入管が外部からの衝撃を受け曲
げ応力により変形しない構造を採用すれば,冷凍サイク
ルに接続される高圧導入管を直接蓋体に貫通装着するこ
とが可能となり,構造簡単でより安価な四方弁が提供で
き上記と同様効果を有するものである。
Therefore, the rotor 36 is rotated by a predetermined angle by the rotating means 42 so that the discharge port 40 of the rotor and the first conduit 3 are rotated.
3, the high-pressure refrigerant gas compressed by the compressor that has flowed in from the high-pressure inlet pipe 32a once enters the high-pressure chamber 48 and then from the inlet pipe 32b through the first passage 37 to the first conduit 33 through the first conduit 33. The low-pressure refrigerant gas having passed through the coil → the expansion valve → the indoor coil passes through the second passage 41 of the rotor from the conduit 34, is discharged from the outlet pipe 44, and returns to the compressor to form a cooling cycle circuit or a defrost cycle circuit. By rotating the rotor by a predetermined angle by the rotating means and communicating the discharge port 40 of the rotor with the second conduit 34, the refrigerant gas is supplied from the compressor → the inlet pipe 32 → the conduit 34 → the indoor coil →
The expansion valve → the outdoor coil → the first conduit 33 → the outlet pipe 44 → constitutes a heating cycle circuit of the compressor. Further, the introduction pipe 32 attached through the high pressure side introduction pipe 32a and the axis of the lid 35 is mounted.
b is separated in the high pressure chamber, so that the introduction pipe 3
Even if the shock is applied to 2a, the introduction pipe 32b attached to the lid is not affected and the rotation of the rotor 36 is not hindered. In the above embodiment, the high pressure introducing pipe 32a is mounted in the axial direction of the main body. However, the present invention is not limited to this.
The same effect as described above can be obtained even if the device is connected to the high-pressure chamber 48 from the lateral direction. In the above embodiment, the high-pressure inlet pipe is provided separately inside and outside the high-pressure chamber. However, a structure is adopted in which the inlet pipe is not deformed by bending stress due to an external impact so that the rotation of the rotor is not hindered. Then, the high-pressure introduction pipe connected to the refrigeration cycle can be directly mounted through the lid, and a simpler and less expensive four-way valve can be provided, which has the same effect as described above.

【0020】実施例3.前記実施例2において,回転子
36内に形成した第1通路37の一端に導入管32の端
部が挿入され,この導入管の挿入部の外周に複数本のテ
フロンOリング47が装着されている。従って,導入管
と第1通路で形成された高圧媒体通路の接続部はシール
用Oリングにより気密的にシールされる。
Embodiment 3 FIG. In the second embodiment, the end of the introduction tube 32 is inserted into one end of the first passage 37 formed in the rotor 36, and a plurality of Teflon O-rings 47 are mounted on the outer periphery of the insertion portion of the introduction tube. I have. Therefore, the connection between the introduction pipe and the high-pressure medium passage formed by the first passage is hermetically sealed by the sealing O-ring.

【0021】実施例4.図1及び図4において,45は
前記蓋体35の円板内面に形成した3個の突起部で,前
記回転子36の両端面を両側から支持している。従っ
て,回転子36の軸芯方向への移動が規制されるので,
本体側の導入管及び導管と回転子の第1通路とが連通合
致する。また回転子36と蓋体35間に低圧空間43を
形成されるので導管から戻った低圧冷媒ガスは第2通路
41を通り導出管44へ流出する。また突起部の高さが
低く低圧空間が少ないときは,第2通路に対応する回転
子の端面を切り欠いて低圧空間43を形成させることに
より上記と同様効果を有する。なお上記実施例では複数
の突起部を設置したが,この発明はこれに限定されるも
のではなく前記回転子36の両端軸芯を単一の突起部4
5で支持するようにしても上記と同様効果を有するもの
である。
Embodiment 4 FIG. 1 and 4, reference numeral 45 denotes three projections formed on the inner surface of the disk of the lid 35, which support both end surfaces of the rotor 36 from both sides. Therefore, the movement of the rotor 36 in the axial direction is restricted.
The introduction pipe and the conduit on the main body side and the first passage of the rotor are in communication with each other. Further, since a low-pressure space 43 is formed between the rotor 36 and the lid 35, the low-pressure refrigerant gas returned from the conduit flows out to the outlet pipe 44 through the second passage 41. When the height of the projection is low and the low-pressure space is small, the same effect as described above can be obtained by forming the low-pressure space 43 by cutting out the end face of the rotor corresponding to the second passage. In the above embodiment, a plurality of projections are provided, but the present invention is not limited to this.
Even if it is supported by 5, the same effect as above can be obtained.

【0022】実施例5.図7において,51は回転子3
6内に形成した第1通路の第1,第2吸入口38,39
及び吐出口40の各周縁部に形成した環状突起で,前記
本体31内周面と近接する高さを有し,前記導入管3
2,第1または第2導管33,34との接続部の高圧冷
媒ガスの洩れを極力少なくするように作用する。また5
2は回転子36内に形成した第1通路の第1,第2吸入
口38,39及び吐出口40の開口部にそれぞれ装着し
たシール用のスリーブで,前記導入管32,第1または
第2導管33,34との接続部の高圧冷媒ガスの洩れを
極力少なくするように作用する。そして前記環状突起5
1またはシール用スリーブ52のいずれか一方を単独に
使用してもシール効果を発揮するが,双方を併用するこ
とにより−段とシール効果を向上することができる。さ
らに図8に示すように通路の開口部に環状長溝53を形
成し,この長溝にシール用スリーブ52を可動自在に挿
着するとともに弾性ばね54により該スリーブを本体3
1内周面へ押圧状態にすることによりシール性は向上
し,さらにまた導管側にテフロンOリング55を装着す
ればさらにシール性は向上する。
Embodiment 5 FIG. In FIG. 7, 51 is the rotor 3
6, first and second suction ports 38, 39 of the first passage formed
And an annular projection formed on each peripheral edge of the discharge port 40, having a height close to the inner peripheral surface of the main body 31, and
2. It acts to minimize leakage of the high-pressure refrigerant gas at the connection with the first or second conduit 33, 34. Also 5
Reference numeral 2 denotes a sealing sleeve mounted on the opening of the first and second suction ports 38 and 39 and the discharge port 40 of the first passage formed in the rotor 36, and the inlet pipe 32, the first or second sleeve. It acts to minimize leakage of high-pressure refrigerant gas at the connection with the conduits 33 and 34. And the annular projection 5
Although the sealing effect is exhibited even when either one of the sealing sleeves 52 or the sealing sleeve 52 is used alone, the sealing effect can be improved by using both together. Further, as shown in FIG. 8, an annular long groove 53 is formed in the opening of the passage, a sealing sleeve 52 is movably inserted into this long groove, and the sleeve is
1 The sealing performance is improved by pressing the inner peripheral surface, and the sealing performance is further improved by mounting the Teflon O-ring 55 on the conduit side.

【0023】実施例6.回転子を正逆方向に所定角度回
転させる回転手段42に関するもので,図1及び図9に
おいて,56は磁性体で,前記回転子36の一端に固定
され,該回転子と共動・回転する。57は電磁コイル
で,前記磁性体の回転通過線上に対応し,かつ前記導出
管33と反第2導管側に所定角度(A゜)離間して本体
外部に固定されている。58はばね部材で,一端を本体
31の内壁に当接させるとともに他端はばね掛部59に
係止するように略中央部で磁性体56を回転子36に締
め付けるボルト60で支持されている。かかる構成にお
いて,このばね部材の不作動時には磁性体56は図9に
一点鎖線で示す位置にあって,導入管32は第2導管3
4と連通状態にあるが,電磁コイル57に通電させるこ
とにより回転子と一体の磁性体56は該コイルに吸引作
動と同時に該回転子は所定角度回転し,回転子の第1吸
入口38と導入管32と連通するとともに吐出管40と
第1導管33は連通状態になって導管内の流れ方向は切
り換えられる。また電磁コイル56への通電を遮断する
ことにより該コイルの吸引力は消勢され,回転子は前記
ばね部材58の復帰作用で所定角度逆転し元の位置に停
止するするとともに導管33,34内の流れ方向は切り
換えられる。
Embodiment 6 FIG. 1 and 9, a magnetic member 56 is fixed to one end of the rotor 36 and cooperates with and rotates with the rotor. . An electromagnetic coil 57 is fixed to the outside of the main body at a predetermined angle (A 所 定) away from the outlet pipe 33 and opposite to the second conduit side, corresponding to the rotation passage line of the magnetic body. 58 is a spring member, one end of which abuts against the inner wall of the main body 31 and the other end of which is supported by a bolt 60 for fastening the magnetic body 56 to the rotor 36 at a substantially central portion so as to be engaged with the spring hook 59. . In such a configuration, when the spring member is not operated, the magnetic body 56 is at the position shown by the one-dot chain line in FIG.
When the electromagnetic coil 57 is energized, the magnetic body 56 integral with the rotor rotates by a predetermined angle at the same time as the suction operation of the coil, and the first suction port 38 of the rotor is connected to the first suction port 38 of the rotor. The discharge pipe 40 and the first conduit 33 are in communication with the introduction pipe 32 and the flow direction in the conduit is switched. Further, by stopping the energization of the electromagnetic coil 56, the attraction force of the coil is extinguished, and the rotor is reversed by a predetermined angle by the return action of the spring member 58 to stop at the original position, and the inside of the conduits 33, 34 Is switched.

【0024】[0024]

【発明の効果】この発明は,以上説明したように構成さ
れているので,以下に示すような効果を有する。
Since the present invention is configured as described above, it has the following effects.

【0025】両端開口部を蓋体で閉鎖した管状本体胴部
に三方放射状に高圧側導入管および所定角度離間した第
1,第2の導管をそれぞれ突設させるとともに,該本体
内に回転手段により回転する回転子を嵌合させ,この回
転子の前記本体側各管に対応する円周3方向に所定角度
離間した第1,第2吸入口及び吐出口を有するY字状の
第1通路と,この吐出口と円周方向にそれぞれ所定角度
離間して回転子の外周軸方向に第2通路を形成し,この
第2通路と連通する低圧側導出管を設け,前記回転手段
により回転子を正逆いずれかの方向に回転させることに
より,導出管と第1または第2導管を択一的に連通させ
て各と導管内の流れ方向を切り換えるようにしたもの
で,回転子を所定角度回転させることで切換動作が可能
となり切換力が低減できる。また本体内の高圧部を回転
子内に限定しているので容易に回転操作を行うことがで
きる。さらに本体を円筒状にしたので,回転子が嵌合す
る真円度加工が容易で組立性がよく,部品点数が少な
く,かつ軽量化が可能となり,低コスト化,小形化を図
ることができる。
A high-pressure side introduction pipe and first and second conduits spaced apart from each other by a predetermined angle are projected from a tubular main body body whose both ends are closed by a lid, and are rotated inside the main body by a rotating means. A Y-shaped first passage having first and second suction ports and discharge ports which are fitted with a rotating rotor and which are separated by a predetermined angle in three circumferential directions corresponding to the respective tubes on the main body side of the rotor; A second passage is formed in the outer peripheral axis direction of the rotor at a predetermined angle in the circumferential direction from the discharge port, and a low-pressure side outlet pipe communicating with the second passage is provided. By rotating in either forward or reverse direction, the outlet pipe and the first or second conduit are selectively communicated to switch the flow direction in each conduit, and the rotor is rotated by a predetermined angle. Switching operation is enabled by reducing the switching force. Kill. Further, since the high-pressure part in the main body is limited to the inside of the rotor, the rotating operation can be easily performed. Furthermore, because the main body is cylindrical, roundness processing for fitting the rotor is easy, good assemblability is achieved, the number of parts is reduced, weight can be reduced, and cost reduction and downsizing can be achieved. .

【0026】また,高圧側導入管を蓋体を貫通して本体
の軸芯に装着し,この導入管を回転子内の第1通路に気
密的に挿入接続させるようにしたから,前記効果に加え
回転子内の第1通路開口部と導管との接続部のシール箇
所を少なくすることができ高圧媒体の洩れ防止を図るこ
とができる。
Also, the high-pressure side introduction pipe is attached to the shaft of the main body through the lid, and this introduction pipe is air-tightly inserted and connected to the first passage in the rotor. In addition, the number of sealing locations at the connection between the first passage opening in the rotor and the conduit can be reduced, and leakage of the high-pressure medium can be prevented.

【0027】さらに回転子の第1通路内に挿入される導
入管の挿入部の外周にシール用Oリングを装着したか
ら,可動部で,かつ高圧媒体通路の接続部のシール性を
向上させることができる。
Furthermore, since an O-ring for sealing is mounted on the outer periphery of the insertion portion of the introduction pipe inserted into the first passage of the rotor, the sealing performance of the movable portion and the connection portion of the high-pressure medium passage is improved. Can be.

【0028】さらにまた,蓋体内面に1個以上の突起部
を設け,この突起部で前記回転子の端面を支持するよう
にしたので,回転子の軸芯方向への移動が規制され導入
管及び各管と回転子の第1通路とが連通合致する。また
回転子と蓋体間に低圧空間が形成され,導管から本体内
へ戻った低圧媒体は第2通路を経てこの低圧空間を経て
導出管へ流出される。
Furthermore, since one or more projections are provided on the inner surface of the lid, and the projections support the end face of the rotor, the movement of the rotor in the axial direction is restricted, and the introduction pipe is restricted. And each pipe and the first passage of the rotor communicate and match. A low-pressure space is formed between the rotor and the lid, and the low-pressure medium that has returned from the conduit into the main body flows through the second passage through the low-pressure space to the outlet pipe.

【0029】回転子の外周面に開口する通路の吸入口ま
たは吐出口の開口周縁部に環状突起,もしくは通路の吸
入口または吐出口の開口部にシール用のスリーブの少な
くともいずれか一方を設けることにより,回転子の第1
通路と本体側の各管との接続におけるシール性を向上さ
せることができる。
At least one of an annular protrusion is provided at the peripheral edge of the suction port or the discharge port of the passage opening to the outer peripheral surface of the rotor, or a sealing sleeve is provided at the opening of the suction port or the discharge port of the passage. As a result, the first
The sealing performance at the connection between the passage and each pipe on the main body side can be improved.

【0030】回転子に磁性体を固定するとともに,この
磁性体の通過線上に電磁コイルを設け,この電磁コイル
と所定角度離間して前記回転子を該コイル側への回転を
阻止するように,一端を回転子側に固定し他端を本体内
壁に当接するばね部材を備え,前記電磁コイルに通電し
て前記磁性体を吸引して回転子を所定角度回転させると
ともに,該磁性コイルを消勢したとき前記ばね部材の復
帰作用で回転子を強制的に回転させる回転手段を備える
ようにしたので,簡単な構成で,回転子の正逆方向への
回転を容易に行うことができる。
A magnetic material is fixed to the rotor, and an electromagnetic coil is provided on a passing line of the magnetic material. The electromagnetic coil is separated from the electromagnetic coil by a predetermined angle to prevent the rotor from rotating toward the coil. A spring member having one end fixed to the rotor side and the other end in contact with the inner wall of the main body, energizing the electromagnetic coil to attract the magnetic material, rotate the rotor by a predetermined angle, and deactivate the magnetic coil In this case, since the rotation means for forcibly rotating the rotor by the return action of the spring member is provided, the rotation of the rotor in the forward and reverse directions can be easily performed with a simple configuration.

【0031】[0031]

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の一実施例における冷凍サイクル用四
方弁の断面図である。
FIG. 1 is a sectional view of a refrigeration cycle four-way valve according to an embodiment of the present invention.

【図2】図1のD−D線の断面図である。FIG. 2 is a sectional view taken along line DD of FIG. 1;

【図3】図2に相当する動作説明図である。FIG. 3 is an operation explanatory view corresponding to FIG. 2;

【図4】この発明の他の実施例を示す冷凍サイクル用四
方弁の断面図である。
FIG. 4 is a sectional view of a four-way valve for a refrigeration cycle showing another embodiment of the present invention.

【図5】図1のE−E断面図である。FIG. 5 is a sectional view taken along line EE of FIG. 1;

【図6】この発明の他の実施例を示す図4の要部拡大断
面図である。
FIG. 6 is an enlarged sectional view of a main part of FIG. 4, showing another embodiment of the present invention.

【図7】この発明の他の実施例を示す図2,図5の要部
拡大断面図である。
FIG. 7 is an enlarged sectional view of a main part of FIGS. 2 and 5, showing another embodiment of the present invention.

【図8】この発明の他の実施例を示す図7に相当する断
面図である。
FIG. 8 is a sectional view showing another embodiment of the present invention and corresponding to FIG. 7;

【図9】この発明の他の実施例を示す図1のF−F断面
図である。
FIG. 9 is a sectional view taken along line FF of FIG. 1 showing another embodiment of the present invention.

【図10】従来の冷凍サイクル用四方弁の断面図であ
る。
FIG. 10 is a cross-sectional view of a conventional refrigeration cycle four-way valve.

【符号の説明】[Explanation of symbols]

31 本体 32 導入管 33 第1導管 34 第2導管 35 蓋体 36 回転子 37 第1通路 38 第1吸入口 39 第2吸入口 40 吐出口 41 第2通路 42 回転手段 44 導出管 45 突起部 47 Oリング 51 環状突起 52 スリーブ 56 磁性体 57 電磁コイル 58 ばね部材 31 main body 32 introduction pipe 33 first conduit 34 second conduit 35 lid 36 rotator 37 first passage 38 first suction port 39 second suction port 40 discharge port 41 second passage 42 rotating means 44 outlet pipe 45 protrusion 47 O-ring 51 annular projection 52 sleeve 56 magnetic body 57 electromagnetic coil 58 spring member

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】管状本体の円周面に三方放射状にそれぞれ
突設する高圧側導入管及び所定角度離間した第1,第2
導管と,この本体の両端開口部をそれぞれ気密的に閉鎖
する蓋体と,前記本体内に回転自在に嵌合する回転子
と,この回転子の円周3方向に開口する所定角度離間し
た第1,第2の吸入口及び吐出口を有する第1通路と,
この第1通路の吐出口と円周方向にそれぞれ所定角度離
間して回転子の外周軸方向にそれぞれ形成する第2通路
と,これら第2通路と連通する低圧側導出管と,前記回
転子を正逆方向に所定角度回転させる回転手段とを備
え,前記回転子を所定角度回転させて前記導入管と第1
あるいは第2導管を択一的に連通させ,第1,第2導管
内の流れ方向を切り換え可能にしたことを特徴とする冷
凍サイクル用四方弁。
1. A high-pressure side inlet pipe projecting radially from a circumferential surface of a tubular main body, and first and second spaced apart by a predetermined angle.
A conduit, a lid for hermetically closing the openings at both ends of the main body, a rotor rotatably fitted in the main body, and a rotor separated by a predetermined angle and opened in three circumferential directions of the rotor. 1, a first passage having a second suction port and a discharge port,
A second passage formed in the outer peripheral axial direction of the rotor at a predetermined angle in the circumferential direction from the discharge port of the first passage, a low-pressure side outlet pipe communicating with the second passage, and the rotor; Rotating means for rotating the rotor by a predetermined angle in the forward and reverse directions;
Alternatively, a four-way valve for a refrigeration cycle characterized in that the second conduit is selectively communicated so that the flow direction in the first and second conduits can be switched.
【請求項2】管状本体の円周面に所定角度離間して突設
する第1,第2導管と,この本体の両端開口部をそれぞ
れ気密的に閉鎖する蓋体と,一方の蓋体の該本体の軸芯
方向に貫通装着した高圧側導入管と,この導入管に軸芯
で連通する第1通路を有し,前記本体内に回転自在に嵌
合する回転子と,前記通路の他端より回転子の円周方向
に開口する吐出口と,この吐出口と円周方向にそれぞれ
所定角度離間して回転子の外周軸方向に形成する第2通
路と,これら第2通路と連通する低圧側導出管と,前記
回転子を正逆方向に所定角度回転させる回転手段とを備
え,前記回転子を所定角度回転させて前記導入管と第1
あるいは第2導管を択一的に連通させ,第1,第2導管
内の流れ方向を切り換え可能にしたことを特徴とする冷
凍サイクル用四方弁。
2. A first and a second conduit projecting from a circumferential surface of a tubular main body at a predetermined angle, a lid for hermetically closing both end openings of the main body, and a lid of one of the lids. A high-pressure side inlet pipe penetratingly mounted in the axial direction of the main body, a first passage communicating with the introducer pipe by an axis, and a rotor rotatably fitted in the main body; A discharge port that opens from the end in the circumferential direction of the rotor, a second passage formed in the direction of the outer peripheral axis of the rotor at a predetermined angle from the discharge port in the circumferential direction, and communicates with these second paths. A low-pressure-side outlet pipe; and rotating means for rotating the rotor by a predetermined angle in the forward / reverse direction.
Alternatively, a four-way valve for a refrigeration cycle characterized in that the second conduit is selectively communicated so that the flow direction in the first and second conduits can be switched.
【請求項3】回転子の第1通路に導入管の先端を挿入さ
せるとともに導入管の挿入部の外周にシール用Oリング
を装着したことを特徴とする請求項2記載の冷凍サイク
ル用四方弁。
3. The four-way valve for a refrigeration cycle according to claim 2, wherein the tip of the introduction pipe is inserted into the first passage of the rotor, and an O-ring for sealing is mounted on the outer periphery of the insertion section of the introduction pipe. .
【請求項4】前記蓋体に回転子端面に当接支持する1個
以上の突起部を設けたことを特徴とする請求項1または
請求項2記載の冷凍サイクル用四方弁。
4. The refrigeration cycle four-way valve according to claim 1, wherein one or more projections are provided on the lid to abut and support the rotor end face.
【請求項5】回転子外周面の第1通路の吸入口,吐出口
等の開口周縁部にそれぞれ装着したシール用スリーブ
と,前記周縁部に間隙をおいて,前記本体内周面に近接
形成した環状突起の少なくともいずれか一方を設けたこ
とを特徴とする請求項1または請求項2記載の冷凍サイ
クル用四方弁。
5. A sealing sleeve mounted on an outer peripheral portion of an opening of a first passage on an outer peripheral surface of a rotor, and a sealing sleeve attached to an inner peripheral surface of the main body with a gap at the peripheral portion. The four-way valve for a refrigeration cycle according to claim 1, wherein at least one of the annular protrusions is provided.
【請求項6】管状本体内に近接するように回転子に固定
した磁性体と,この磁性体の通過線上に対応して本体外
部に装着した電磁コイルと,回転子を該コイル側への回
転を阻止するように一端を回転子側に固定し他端を本体
内壁に当接するばね部材を備え,前記電磁コイルに通電
することにより該電磁コイルに前記磁性体が吸引され,
通電を遮断するとばね部材の復帰作用により回転子を逆
方向に所定角度回転させるようにしたことを特徴とする
請求項1または請求項2記載の冷凍サイクル用四方弁。
6. A magnetic body fixed to a rotor so as to be close to the inside of a tubular body, an electromagnetic coil mounted outside the main body corresponding to a passing line of the magnetic body, and a rotor rotated to the coil side. A spring member having one end fixed to the rotor side and the other end abutting against the inner wall of the main body so as to prevent the magnetic body from being energized by energizing the electromagnetic coil,
3. The four-way valve for a refrigeration cycle according to claim 1, wherein the rotor is rotated by a predetermined angle in a reverse direction by a return action of the spring member when the energization is cut off.
JP6252619A 1994-09-09 1994-09-09 Four-way valve for refrigeration cycle Expired - Lifetime JP2651803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6252619A JP2651803B2 (en) 1994-09-09 1994-09-09 Four-way valve for refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6252619A JP2651803B2 (en) 1994-09-09 1994-09-09 Four-way valve for refrigeration cycle

Publications (2)

Publication Number Publication Date
JPH0882461A JPH0882461A (en) 1996-03-26
JP2651803B2 true JP2651803B2 (en) 1997-09-10

Family

ID=17239886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6252619A Expired - Lifetime JP2651803B2 (en) 1994-09-09 1994-09-09 Four-way valve for refrigeration cycle

Country Status (1)

Country Link
JP (1) JP2651803B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2761200B2 (en) * 1995-06-06 1998-06-04 富士インジェクタ株式会社 High / low pressure path reversal switching device for air conditioner

Also Published As

Publication number Publication date
JPH0882461A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
JP3977066B2 (en) Solenoid proportional valve
JP5080612B2 (en) Flow path switching valve
CN106545670B (en) Direct-acting solenoid valve and four-way selector valve provided with same as pilot valve
CN106369193B (en) Direct-acting solenoid valve and four-way selector valve provided with same as pilot valve
JP2651803B2 (en) Four-way valve for refrigeration cycle
JP7367972B2 (en) pilot valve
EP3754234B1 (en) Channel switching valve
JP2001343077A (en) Control valve
JPH0718494B2 (en) Four-way valve for refrigeration cycle
JP2002005317A (en) Rotary four-way valve
JP4446628B2 (en) Bypass valve and air conditioner using the same
JPS6367472A (en) Four-way valve for refrigerating cycle
JP3256270B2 (en) Reversible valve
JPS62196477A (en) Four-way valve for refrigerating cycle
JPH04116360A (en) Five way reversing valve for reversible refrigeration cycle
JP2023148364A (en) Slide type switch valve and refrigeration cycle system
JP2002372160A (en) Four way selector valve
JPH04177067A (en) Defrosting method in reversible refrigeration cycle, and five-way reversing valve with defrosting valve
JP2532497B2 (en) Four-way valve for refrigeration cycle
JPS63180780A (en) Four-way valve for refrigerating cycle
JPH0541911B2 (en)
JPS62196476A (en) Four-way valve for refrigerating cycle
JPH0718491B2 (en) Four-way valve for refrigeration cycle
JPS62101977A (en) Four way type valve for refrigerating cycle
JPH0648062B2 (en) Four-way valve for refrigeration cycle