JP2651379B2 - Evaporator - Google Patents

Evaporator

Info

Publication number
JP2651379B2
JP2651379B2 JP63132026A JP13202688A JP2651379B2 JP 2651379 B2 JP2651379 B2 JP 2651379B2 JP 63132026 A JP63132026 A JP 63132026A JP 13202688 A JP13202688 A JP 13202688A JP 2651379 B2 JP2651379 B2 JP 2651379B2
Authority
JP
Japan
Prior art keywords
heat transfer
heat exchange
exchange medium
bubbles
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63132026A
Other languages
Japanese (ja)
Other versions
JPH01302078A (en
Inventor
彰 矢部
浩良 川平
健利 山崎
潤司 緒方
康彦 平尾
正嘉 豊福
幹治 大武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Tokyo Electric Power Company Holdings Inc
Original Assignee
Agency of Industrial Science and Technology
Tokyo Electric Power Co Inc
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Tokyo Electric Power Co Inc, Mitsubishi Heavy Industries Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP63132026A priority Critical patent/JP2651379B2/en
Publication of JPH01302078A publication Critical patent/JPH01302078A/en
Application granted granted Critical
Publication of JP2651379B2 publication Critical patent/JP2651379B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は蒸発器、特に、熱交換媒体をこれに電場を掛
けた状態で伝熱面を介して加熱することにより沸騰蒸発
をさせる蒸発器に関する。
Description: FIELD OF THE INVENTION The present invention relates to an evaporator, and more particularly, to an evaporator that heats a heat exchange medium through a heat transfer surface while an electric field is applied to the heat exchange medium to perform boiling evaporation. About.

(従来の技術) フロン等の電気抵抗が大きい誘電体からなる熱交換媒
体をこれに電場を掛けた状態で伝熱面を介して加熱する
ことにより沸騰蒸発させると、伝熱面から熱交換媒体へ
の沸騰限界熱流束が増加することが知られている。(特
公昭59−50920号公報参照) (発明が解決しようとする課題) 熱交換媒体に電場を掛けることによる伝熱促進効果は
伝熱面が平板の場合は5〜6倍、管の場合には2〜3倍
程度であった。
(Prior Art) When a heat exchange medium made of a dielectric material having a large electric resistance such as chlorofluorocarbon is heated through a heat transfer surface in a state where an electric field is applied to the heat exchange medium, the heat exchange medium is removed from the heat transfer surface. It is known that the critical heat flux to boiling increases. (Refer to Japanese Patent Publication No. 59-50920) (Problems to be Solved by the Invention) The effect of promoting heat transfer by applying an electric field to the heat exchange medium is 5 to 6 times when the heat transfer surface is a flat plate, and when it is a tube. Was about 2-3 times.

これは気泡の発生周期が非常に短くて発生した気泡に
電場が力として作用するのに必要な時間より短いため、
気泡自体には電場の力が有効に作用しなかった所為と考
えられる。
This is because the bubble generation cycle is so short that it is shorter than the time required for the electric field to act as a force on the generated bubble,
This is probably because the electric field did not effectively act on the bubbles themselves.

なお、気泡の発生周期fは 発生した気泡が電場から力を受けるのに要する時間、
即ち、電荷の緩和時間τは で表される。
Note that the bubble generation period f is The time required for the generated bubbles to receive force from the electric field,
That is, the charge relaxation time τ is It is represented by

但し、 d0は離脱気泡の直径 C1は定数 ρlは液体の比重量 ρgは気体の比重量 gは重力の加速度 εは誘電率 σeは電気伝導度 熱交換媒体としてフロンR11を用いた場合、その気泡
の発生周期fは2×10-2秒、電荷の緩和時間τは1.3秒
故、気泡は電場から力を受けずに通過してしまい、従っ
て、気泡による伝熱面の撹乱効果は生じない。
However, if d 0 is the diameter C 1 is a constant ρl leaving bubbles specific weight ρg of the liquid is specific weight g of gas acceleration ε of gravity permittivity σe is using Freon R 11 as electrical conductivity heat exchange medium Since the bubble generation period f is 2 × 10 -2 seconds and the charge relaxation time τ is 1.3 seconds, the bubbles pass without receiving a force from the electric field, and therefore, the effect of the bubbles on the heat transfer surface is disturbed. Does not occur.

それどころか、電場を掛けるために印加する電圧を増
大させて行くと、一般的に用いられる不平等電界の場合
には電極とその内外で圧力差が生じて熱交換媒体の対流
を促進するので、伝熱面の近傍の沸騰気泡の発生に必要
な過熱液の層厚さを薄くすることになり、結果として気
泡の発生を抑制することとなる。
On the contrary, when the voltage applied for applying the electric field is increased, in the case of a generally used non-uniform electric field, a pressure difference is generated between the electrode and the inside and outside thereof, thereby promoting the convection of the heat exchange medium. The layer thickness of the superheated liquid required for generating boiling bubbles near the hot surface is reduced, and as a result, generation of bubbles is suppressed.

(課題を解決するための手段) 本発明は上記知見に基づいて発見されたものであっ
て、その要旨とするところは、熱交換媒体をこれに電場
を掛けた状態で伝熱面を介して加熱することにより沸騰
蒸発させる蒸発器において、上記熱交換媒体としてフロ
ン等の電気抵抗が大きい誘電体にこの誘電体より電気抵
抗が小さく、かつ、沸点が異なるアルコールを上記熱交
換媒体との混合物が共沸混合媒体とならない範囲で添加
したものを用いたことを特徴とする蒸発器にある。
(Means for Solving the Problems) The present invention has been found based on the above findings, and the gist of the present invention is that a heat exchange medium is applied to the heat exchange medium via a heat transfer surface in an electric field. In an evaporator that boils and evaporates by heating, a dielectric having a high electrical resistance such as chlorofluorocarbon as the heat exchange medium has a lower electrical resistance than the dielectric and a mixture of the alcohol having a different boiling point with the heat exchange medium. An evaporator is characterized in that the one added in a range not to become an azeotropic mixed medium is used.

(作用) 本発明においては、上記構成を備えているので、電荷
の緩和時間が気泡の発生周期に近くなって、発生した気
泡が電場から力を受けて伝熱面に押し付けられたり、伝
熱面上を激しく動き回るようになり、また、発生する気
泡の数も増大する。
(Operation) In the present invention, since the above-described configuration is provided, the relaxation time of the charge becomes close to the bubble generation cycle, and the generated bubble is pressed against the heat transfer surface by receiving a force from the electric field, or The robot moves violently on the surface, and the number of generated bubbles increases.

(実施例) 本発明を図示の実施例を参照しながら具体的に説明す
る。
(Examples) The present invention will be specifically described with reference to the illustrated examples.

第1図には、部分的に破断した蒸発器が示され、第1
図において、1は缶胴、2は管板、3は入口水室、4は
出口水室、5は伝熱管、6はバッフルプレート、7は液
体熱交換媒体の供給管、8は熱交換媒体蒸気の吐出管、
9は加熱流体の供給管、10は加熱流体の流出管、11は電
源である。
FIG. 1 shows a partially broken evaporator,
In the figure, 1 is a can body, 2 is a tube sheet, 3 is an inlet water chamber, 4 is an outlet water chamber, 5 is a heat transfer tube, 6 is a baffle plate, 7 is a supply pipe for a liquid heat exchange medium, and 8 is a heat exchange medium. Steam discharge pipe,
9 is a heating fluid supply pipe, 10 is a heating fluid outflow pipe, and 11 is a power supply.

伝熱管5は多数相互に間隔を隔てて平行に配列されて
缶胴1内にその軸方向に沿って水平に伸び、その両端は
管板2に封密的に固定されて入口水室3及び出口水室4
に開口している。これら伝熱管5はその長さ方向の中間
で複数(図には2個)のバッフルプレート6によって支
持されている。
A large number of heat transfer tubes 5 are arranged in parallel at a distance from each other and extend horizontally in the can body 1 along the axial direction thereof, and both ends thereof are hermetically fixed to the tube sheet 2 so that the inlet water chambers 3 and Exit water room 4
It is open to. These heat transfer tubes 5 are supported by a plurality (two in the figure) of baffle plates 6 in the middle of the length direction.

これら伝熱管5のまわりには、第2図及び第3図に示
すように、金属線からなる複数の電極12が周方向に所定
の間隔を隔てて環状の支持体13に取り付けられ、伝熱管
5の表面から放射方向に所定の間隔を隔ててこれと平行
に配置されている。そして、伝熱管5と電極12との間に
は電源11によって電圧を印加できるようになっている。
As shown in FIGS. 2 and 3, a plurality of electrodes 12 made of a metal wire are attached to the annular support 13 at predetermined intervals in the circumferential direction around the heat transfer tubes 5, and as shown in FIGS. 5 are arranged in parallel with the surface 5 at a predetermined interval in the radial direction. Then, a voltage can be applied between the heat transfer tube 5 and the electrode 12 by the power supply 11.

しかして、液状の熱交換媒体は供給管7から缶胴1内
に供給されて缶胴1内で所定の液位に維持され、この液
状の熱交換媒体中に伝熱管5が浸漬されている。
Thus, the liquid heat exchange medium is supplied from the supply pipe 7 into the can body 1 and is maintained at a predetermined liquid level in the can body 1, and the heat transfer tube 5 is immersed in the liquid heat exchange medium. .

そこで、伝熱管5と電極12との間に電源11によって電
圧を印加することによって伝熱管5の周囲の熱交換媒体
に電場を掛けた状態で加熱流体を供給管9から入口水室
3内を経て各伝熱管5内を流過させ、この加熱流体によ
り管外の熱交換媒体を加熱することにより沸騰蒸発させ
る。熱交換媒体の蒸気は吐出管8を経て排出され、図示
しない凝縮器等に送られる。また、伝熱管5を流過する
ことによって降温した加熱流体は出口水室4内を経て流
出管10から排出される。
Therefore, a heating fluid is supplied from the supply pipe 9 to the inlet water chamber 3 in a state where an electric field is applied to the heat exchange medium around the heat transfer tube 5 by applying a voltage between the heat transfer tube 5 and the electrode 12 by the power supply 11. After passing through each heat transfer tube 5, the heat exchange medium is heated by the heating fluid to evaporate the heat exchange medium. The vapor of the heat exchange medium is discharged through the discharge pipe 8 and sent to a condenser (not shown). The heated fluid whose temperature has been lowered by flowing through the heat transfer tube 5 is discharged from the outlet tube 10 through the outlet water chamber 4.

熱交換媒体としてフロン等の電気抵抗が大きい誘電体
にこの誘電体より電気抵抗が小さく、かつ、沸点が異な
るアルコールを上記熱交換媒体との混合物が共沸混合媒
体とならない範囲で添加したものが用いられる。
As a heat exchange medium, a dielectric material having a high electric resistance such as chlorofluorocarbon is added to a dielectric material having a lower electric resistance than this dielectric material and an alcohol having a different boiling point in a range where the mixture with the heat exchange medium does not become an azeotropic mixture medium. Used.

ここでアルコールとはエチルアルコール、メチルアル
コール、トリフロロエタノール等を含み、その添加量は
5wt%以下が好ましく、エチルアルコールの場合には2wt
%程度が望ましい。
Here, alcohol includes ethyl alcohol, methyl alcohol, trifluoroethanol, etc.
5 wt% or less is preferable. In the case of ethyl alcohol, 2 wt%
% Is desirable.

熱交換媒体としてフロンR11にエチルアルコール(C2H
5OH)を2wt%添加したものを用い、平滑な伝熱管5と電
極12とによって構成される電極間隙3mmの直流正極電界
に印加される電圧を種々変更して実験した結果が第4図
に示されている。第4図から明らかなように、熱伝達率
はエチルアルコールを添加しない場合に比し大巾に向上
する。また、第5図には楕円泡のまわりの電位分布の計
算結果が、第6図には楕円泡に加わる電気力(Maxwell
応力)がそれぞれ示されている。
Ethanol (C 2 H) on Freon R 11 as heat exchange medium
FIG. 4 shows the results of an experiment in which 2 wt% of ( 5 OH) was added and the voltage applied to the DC positive electrode electric field having an electrode gap of 3 mm constituted by the smooth heat transfer tube 5 and the electrode 12 was variously changed. It is shown. As is clear from FIG. 4, the heat transfer coefficient is greatly improved as compared with the case where ethyl alcohol is not added. FIG. 5 shows the calculation result of the potential distribution around the elliptical bubble, and FIG. 6 shows the electric force (Maxwell
Stress) are indicated.

即ち、フロンR11にエチルアルコールを2wt%混入した
場合、電荷の緩和時間τはほぼ9×10-3秒となって、気
泡の発生周期fに近付く。すると、発生した気泡が電場
の力を受けて伝熱面に押え付けられたり、伝熱面上を激
しく動き回るようになり、その形状が円形から電極方向
に縦長の楕円形に変形したり、気泡同志の合体が生じ、
更に、沸騰気泡数も大きく増加する。
That is, when the ethyl alcohol mixed 2 wt% to Freon R 11, is the relaxation time τ of the charge approximately 9 × 10 -3 seconds, closer to the bubble generation period f. Then, the generated air bubbles are pressed against the heat transfer surface by the force of the electric field and move around violently on the heat transfer surface, and the shape is changed from a circle to a vertically long elliptical shape in the electrode direction, Comrades come together,
Furthermore, the number of boiling bubbles also increases greatly.

しかして、伝熱量は気泡の数に潜熱を乗じた値に比例
するので大巾に増大する。
Thus, the amount of heat transfer is greatly increased because it is proportional to the number of bubbles multiplied by the latent heat.

また、気泡が電場の力を受けて伝熱面に押え付けられ
たり、伝熱面上を動き回る現象は次の解析によって証明
できる。
Further, the phenomenon in which bubbles are pressed against the heat transfer surface by the force of the electric field or move around on the heat transfer surface can be proved by the following analysis.

まず、気泡まわりの電界分布について 基礎式i)電流の連続の式 div j=0 ii)電流の式 j=σe・E iii)電位の定義式 E=−grad φ より、σeを一定として、div grad=0 が得られる。 First, with respect to the electric field distribution around the bubble, basic formula i) equation of current continuation div j = 0 ii) equation of current j = σe · E iii) definition equation of electric potential grad = 0 is obtained.

円筒座標についての境界条件 の下で解いた。Boundary conditions for cylindrical coordinates Solved under.

これらの気泡に加わる電気力はMaxwell応力 1/2(εl−εg)E2 で表される。The electric force applied to these bubbles is represented by Maxwell stress 1/2 (εl−εg) E 2 .

なお、記号の E;電界強さ(V/m)、 j;電流密度(A/m3) r;円筒座標の半径成分 Z;円筒座標の高さ成分 ε;誘電率(F/m) σe;電気伝導度(A/Vm) φ;電位(V) r;電荷の緩和時間(sec) 添字の g;気相 l;液相 〜;無次元表示 b;気泡 0;基準値 を示している。Symbol E: electric field strength (V / m), j: current density (A / m 3 ) r; radius component of cylindrical coordinate Z; height component of cylindrical coordinate ε; dielectric constant (F / m) σe ; Electric conductivity (A / Vm) φ; Potential (V) r; Charge relaxation time (sec) Subscript g; Gas phase l; Liquid phase ~; Dimensionless display b; Bubble 0; Reference value .

これらの解析結果から、Maxwell応力の水平方向成分
の最大値は垂直方向成分の最大値に比べて4倍以上もあ
り、水平方向に大きな力が働くので、実験で得られたよ
うな気泡が対向電極上を動き易いという現象を定性的に
説明することができる。また、Maxwell応力の垂直方向
成分は気泡中心から上下で反対向きに作用するが、下部
が気泡を上昇させようとする力、上部が気泡を押え付け
ようとする力であり、下部の垂直方向成分の積算値と上
部の垂直方向成分の積算値を比較すると伝熱面(電極)
の存在のために上部の力が強くなり、電場により気泡が
伝熱面に押え付けられていることを示す。また、両者の
差は気泡の浮力を表し、計算によって得られたこの浮力
に相当する気泡の等価直径は実験で得られた楕円形の等
価直径に等しくなった。両者の値が一致したことは気泡
を伝熱面に押え付けるメカニズムを定量的にも説明でき
ることを示している。
From these analysis results, the maximum value of the horizontal component of the Maxwell stress is more than four times the maximum value of the vertical component, and a large force acts in the horizontal direction. The phenomenon of easy movement on the electrode can be qualitatively explained. The vertical component of the Maxwell stress acts in the opposite direction up and down from the bubble center, but the lower part is the force that tries to lift the bubbles, the upper part is the force that presses the bubbles, and the lower part is the vertical component. Heat transfer surface (electrode) when comparing the integrated value of
Indicates that the bubbles are pressed against the heat transfer surface by the electric field. The difference between the two indicates the buoyancy of the bubble, and the equivalent diameter of the bubble corresponding to the buoyancy obtained by calculation became equal to the equivalent diameter of the ellipse obtained in the experiment. The agreement between the two values indicates that the mechanism for pressing bubbles against the heat transfer surface can be explained quantitatively.

上記伝熱促進効果は気泡の運動方向を与える電極の形
状にも関係すると考えられ、従って、気泡ができるだけ
長く伝熱面上に留まり運動を持続できるように伝熱管の
長手方向に電極を設けて気泡が伝熱面上を長手方向に運
動するようにすることもでき、また、大きなコイルの中
に伝熱管を配置することもできる。
It is considered that the heat transfer promoting effect is also related to the shape of the electrode that gives the direction of movement of the bubbles.Therefore, an electrode is provided in the longitudinal direction of the heat transfer tube so that the bubbles stay on the heat transfer surface as long as possible and can continue the movement. Bubbles can be made to move longitudinally on the heat transfer surface, and heat transfer tubes can be placed in large coils.

また、上記実施例において、フロンR11にエチルアル
コールを2wt%添加しているが、フロンR11に代えてフロ
ンR113等を用いることができ、また、エチルアルコール
に代えてメチルアルコールを用いることもできる。
In the above embodiment, although the addition 2 wt% ethyl alcohol to Freon R 11, can be used Freon R 113 or the like in place of Freon R 11, also the use of methyl alcohol instead of ethyl alcohol Can also.

そして、アルコールの混合率を増加すれば、電荷の緩
和時間τは更に小さくなるが、消費電力が増大して蒸発
器の効率向上に逆行するので、混合率は多くとも熱交換
媒体との混合物が共沸混合媒体とならない範囲、即ち、
数wt%以下が望ましく、エチルアルコールの場合は5wt
%以下とするのが望ましい。なぜなら共沸混合媒体とな
ると、ひとつの媒体として作用し、沸点等の熱特性が変
わってしまう。
If the mixing ratio of the alcohol is increased, the relaxation time τ of the charge is further reduced, but the power consumption increases and goes against the improvement of the efficiency of the evaporator, so that the mixing ratio is at most a mixture with the heat exchange medium. A range that does not become an azeotropic mixture medium, that is,
Less than several wt% is desirable. In the case of ethyl alcohol, 5 wt%
% Is desirable. This is because the azeotropic mixed medium acts as one medium and changes the thermal characteristics such as the boiling point.

一方、フロン等の誘電体とは沸点が異なるアルコール
を共沸混合体とならない範囲で混入すれば非共沸二成分
媒体となって系全体としてローレンツサイクルを画くた
め、誘電体のみからなる熱交換媒体を用いた場合に比し
サイクル効率が向上する。
On the other hand, if an alcohol having a boiling point different from that of a dielectric such as chlorofluorocarbon is mixed in a range that does not become an azeotropic mixture, it becomes a non-azeotropic binary medium and a Lorentz cycle is drawn as a whole system. The cycle efficiency is improved as compared with the case where a medium is used.

(発明の効果) 本発明においては、熱交換媒体としてフロン等の電気
抵抗が大きい誘電体にこの誘電体より電気抵抗が小さ
く、かつ、沸点が異なるアルコールを上記熱交換媒体と
の混合物が共沸混合媒体とならない範囲で添加したもの
を用いたため、電荷の緩和時間が気泡の発生周期に近く
なって発生した気泡が電場から力を受けるので、伝熱促
進効果が促進され、熱伝達率が飛躍的に向上し、蒸発器
の能力が大巾に増大する。そして、誘電体と沸点が異な
るアルコールを用いることにより熱交換媒体は非共沸の
二成分媒体となって系全体としてローレンツサイクルを
画くため、サイクル効率も向上する。
(Effect of the Invention) In the present invention, a mixture of the above-mentioned heat exchange medium and an alcohol having a lower electric resistance and a different boiling point is used as a heat exchange medium for a dielectric having a high electric resistance such as chlorofluorocarbon. Since the charge added is used in a range that does not become a mixed medium, the charge relaxation time is close to the bubble generation cycle, and the generated bubbles receive a force from the electric field, so the heat transfer promotion effect is promoted and the heat transfer coefficient jumps And the capacity of the evaporator is greatly increased. Then, by using an alcohol having a boiling point different from that of the dielectric, the heat exchange medium becomes a non-azeotropic two-component medium and a Lorentz cycle is drawn as a whole system, so that the cycle efficiency is also improved.

【図面の簡単な説明】[Brief description of the drawings]

図面は本発明の1実施例を示し、第1図は部分的に切り
欠いて示す蒸発器の斜視図、第2図は伝熱管の部分的拡
大斜視図、第3図は第2図のIII−III線に沿う断面図、
第4図は印加電圧と熱伝達率との関係を示す線図、第5
図は楕円泡まわりの電位分布の計算結果を示す線図、第
6図は楕円泡に加わる電気力を示す線図である。 伝熱管……5、電極……12、電源……11、液状熱交換媒
体の供給管……7、熱交換媒体蒸気の吐出管……8
The drawings show one embodiment of the present invention, FIG. 1 is a perspective view of an evaporator partially cut away, FIG. 2 is a partially enlarged perspective view of a heat transfer tube, and FIG. 3 is III in FIG. A cross-sectional view along the line III,
FIG. 4 is a diagram showing the relationship between applied voltage and heat transfer coefficient, and FIG.
The figure is a diagram showing the calculation result of the potential distribution around the elliptical bubble, and FIG. 6 is a diagram showing the electric force applied to the elliptical bubble. Heat transfer tube 5, electrode 12, power supply 11, liquid heat exchange medium supply tube 7, heat exchange medium vapor discharge tube 8

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川平 浩良 東京都千代田区内幸町1丁目1番3号 東京電力株式会社内 (72)発明者 山崎 健利 東京都千代田区内幸町1丁目1番3号 東京電力株式会社内 (72)発明者 緒方 潤司 神奈川県横浜市金沢区幸浦1丁目8番地 の1 三菱重工業株式会社基盤技術研究 所内 (72)発明者 平尾 康彦 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 豊福 正嘉 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 大武 幹治 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 審査官 竹内 秀明 (56)参考文献 特開 昭58−37495(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroyoshi Kawadaira 1-3-1 Uchisaiwaicho, Chiyoda-ku, Tokyo Inside Tokyo Electric Power Company (72) Inventor Kentoshi Yamazaki 1-1-3 Uchisaiwaicho, Chiyoda-ku, Tokyo Inside Electric Power Company (72) Inventor Junji Ogata 1-8-1, Koura, Kanazawa-ku, Yokohama-shi, Kanagawa Prefecture Within the Research Center for Fundamental Technology Mitsubishi Heavy Industries, Ltd. No. Within the Mitsubishi Heavy Industries, Ltd. Takasago Research Laboratory (72) Inventor Masayoshi Toyofuku 2-1-1, Araimachi Shinhama, Takasago City, Hyogo Prefecture Mitsubishi Heavy Industries, Ltd. No. 1-1 Examiner, Takasago Research Laboratory, Mitsubishi Heavy Industries, Ltd. Hideaki Takeuchi (56) References JP-A-58-37495 JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】熱交換媒体をこれに電場を掛けた状態で伝
熱面を介して加熱することにより沸騰蒸発させる蒸発器
において、上記熱交換媒体としてフロン等の電気抵抗が
大きい誘電体にこの誘電体より電気抵抗が小さく、か
つ、沸点が異なるアルコールを上記熱交換媒体との混合
物が共沸混合媒体とならない範囲で添加したものを用い
たことを特徴とする蒸発器。
1. An evaporator that heats a heat exchange medium through a heat transfer surface in a state where an electric field is applied to the heat exchange medium, thereby evaporating and evaporating the heat exchange medium. An evaporator comprising an alcohol having an electric resistance lower than that of a dielectric and having a different boiling point added to such an extent that a mixture with the heat exchange medium does not become an azeotropic mixture medium.
JP63132026A 1988-05-30 1988-05-30 Evaporator Expired - Lifetime JP2651379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63132026A JP2651379B2 (en) 1988-05-30 1988-05-30 Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63132026A JP2651379B2 (en) 1988-05-30 1988-05-30 Evaporator

Publications (2)

Publication Number Publication Date
JPH01302078A JPH01302078A (en) 1989-12-06
JP2651379B2 true JP2651379B2 (en) 1997-09-10

Family

ID=15071767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63132026A Expired - Lifetime JP2651379B2 (en) 1988-05-30 1988-05-30 Evaporator

Country Status (1)

Country Link
JP (1) JP2651379B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8850847B2 (en) 2009-05-04 2014-10-07 Lg Electronics Inc. Air conditioner
EP2287546B1 (en) * 2009-05-04 2018-08-15 LG Electronics Inc. Refrigerant heating device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950920B2 (en) * 1981-08-31 1984-12-11 工業技術院長 Boiling heat transfer method

Also Published As

Publication number Publication date
JPH01302078A (en) 1989-12-06

Similar Documents

Publication Publication Date Title
Jones Electrohydrodynamically enhanced heat transfer in liquids—a review
JPS59184709A (en) Method and apparatus for manufacturing ozone
Tang et al. Electric field effect on the heat transfer enhancement in a vertical rectangular microgrooves heat sink
Ahmad et al. Compound effect of EHD and surface roughness in pool boiling and CHF with R-123
JP2651379B2 (en) Evaporator
Chyu et al. Horizontal-tube falling-film evaporation with structured surfaces
Mitrovic et al. A new microstructure for pool boiling
Karayiannis et al. Electrohydrodynamic enhancement of nucleate boiling heat transfer in heat exchangers
Leu et al. Experimental studies of surface modified oscillating heat pipes
Bulanov et al. Results of experimental investigation of heat transfer with emulsions with low-boiling disperse phase
Moharana et al. Experimental assessment of enhanced 2x3 Semi-Closed microstructure tube bundle as an alternative in shell and tube heat exchangers
CN101797439B (en) Microwave field reinforced molecular distillation separation device
Cheung et al. EHD-assisted external condensation of R-134a on smooth horizontal and vertical tubes
US4471833A (en) Augmentation method of boiling heat transfer by applying electric fields
Darabi et al. Falling film and spray evaporation enhancement using an applied electric field
Eames et al. Potential benefits of electrohydrodynamic enhancement of two-phase heat transfer in the design of refrigeration systems
CN201658856U (en) Molecular-distillation separating unit utilizing microwave-field reinforcement
US2582281A (en) Electric field heat-treatment of liquids
JP2659831B2 (en) Boiling evaporation method and apparatus
Darabi et al. Compound augmentation of pool boiling on three selected commercial tubes
JP4523307B2 (en) Liquid EHD pump
JP2501876B2 (en) Constant temperature heater
RU2791097C1 (en) Liquid heater
Tzan et al. Pool boiling of binary mixtures
CN112146493B (en) Mirror symmetry's water accuse vibration loop heat pipe

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term