JP2645239B2 - Low temperature liquefied gas flow-down device - Google Patents

Low temperature liquefied gas flow-down device

Info

Publication number
JP2645239B2
JP2645239B2 JP22941587A JP22941587A JP2645239B2 JP 2645239 B2 JP2645239 B2 JP 2645239B2 JP 22941587 A JP22941587 A JP 22941587A JP 22941587 A JP22941587 A JP 22941587A JP 2645239 B2 JP2645239 B2 JP 2645239B2
Authority
JP
Japan
Prior art keywords
liquid
pressure
phase region
heat insulating
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22941587A
Other languages
Japanese (ja)
Other versions
JPS6484821A (en
Inventor
恒久 石原
健 林
紀男 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Toyo Sanso Co Ltd
Original Assignee
Taiyo Toyo Sanso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Toyo Sanso Co Ltd filed Critical Taiyo Toyo Sanso Co Ltd
Priority to JP22941587A priority Critical patent/JP2645239B2/en
Publication of JPS6484821A publication Critical patent/JPS6484821A/en
Application granted granted Critical
Publication of JP2645239B2 publication Critical patent/JP2645239B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vacuum Packaging (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄肉飲料罐等における内圧確保又は化学物
質,薬品類の安定保存等を目的として罐,容器等に液体
窒素等の低温液化ガスを定量供給する場合に使用される
低温液化ガスの流下装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a low-temperature liquefied gas such as liquid nitrogen in a can, container, or the like for the purpose of securing internal pressure in a thin-walled beverage can or the like, and stably storing chemical substances and chemicals. The present invention relates to a low-temperature liquefied gas flow-down device used when a fixed amount of liquefied gas is supplied.

〔従来の技術〕[Conventional technology]

従来からも、この種低温液化ガス流下装置としては種
々のものが開発されており、その代表的なものとして、
例えば、特開昭57−172217号,特開昭58−184395号又は
特公昭61−50200号公報に開示されたものがある。
Various types of low-temperature liquefied gas flow-down devices have been developed in the past.
For example, there are those disclosed in JP-A-57-172217, JP-A-58-184395 or JP-B-61-50200.

しかし、何れのものにおいても、断熱容器に低温液化
ガスを供給する際にフラッシュ蒸発ガスが発生すること
によって、どうしても断熱容器内の圧力が変動し、断熱
容器内を一定圧に制御維持しておくことが困難であり、
その結果、低温液化ガスの流下量を正確に制御できない
といった問題がある。
However, in any case, the flash evaporation gas is generated when the low-temperature liquefied gas is supplied to the heat insulating container, so that the pressure in the heat insulating container fluctuates, and the pressure inside the heat insulating container is controlled and maintained at a constant pressure. Is difficult,
As a result, there is a problem that the flow rate of the low-temperature liquefied gas cannot be accurately controlled.

すなわち、特開昭57−172217号公報には、断熱容器内
を大気圧に維持しておき、断熱容器への低温液化ガス供
給を液面制御センサからの信号で制御するようにした流
下装置が開示されているが、この装置においては、低温
液化ガスを収容する断熱容器内が外界に連通して大気圧
に維持されているから、流下する低温液化ガスの圧力は
液位の変動や低温液化ガスのフラッシュ蒸発による圧力
変動の影響を受けることを免れ得ず、必ずしも精密な圧
力制御が容易とは言い難く、したがって流下量の定量性
保持をなし得ない虞れがある。
That is, JP-A-57-172217 discloses a flow-down apparatus in which the inside of an insulated container is maintained at atmospheric pressure and the supply of low-temperature liquefied gas to the insulated container is controlled by a signal from a liquid level control sensor. However, in this apparatus, the pressure of the flowing low-temperature liquefied gas is changed due to fluctuations in the liquid level and low-temperature liquefaction since the inside of the heat insulating container containing the low-temperature liquefied gas communicates with the outside world and is maintained at atmospheric pressure. The influence of pressure fluctuations due to flash evaporation of gas cannot be avoided, and precise pressure control is not always easy. Therefore, there is a possibility that the flow rate cannot be maintained quantitatively.

また、特開昭58−184395号公報に開示されたもので
は、断熱容器内に圧力緩衝用断熱容器を設けて、低温液
化ガスを圧力緩衝用断熱容器内に一旦供給し、しかる
後、該圧力緩衝用断熱容器の流出口から断熱容器内に供
給するようにしてあり、圧力緩衝断熱容器内で発生する
気化ガスを気化ガス放出管から排出して、気化ガス圧に
よる断熱容器内の圧力変動を防止することによって、低
温液化ガス流下量の変化を少なくしてその定量性を確保
するように試みられているが、この装置においても、断
熱容器内部が放出管を介して大気に連通されているか
ら、低温液化ガスのフラッシュ蒸発による圧力変動の影
響を払拭するには至っていない。
Further, in the device disclosed in Japanese Patent Application Laid-Open No. 58-184395, a pressure-buffering heat-insulating container is provided in the heat-insulating container, and a low-temperature liquefied gas is once supplied into the pressure-buffering heat-insulating container. It is designed to be supplied into the heat insulating container from the outlet of the buffer heat insulating container, and the vaporized gas generated in the pressure buffer heat insulating container is discharged from the vaporized gas discharge pipe, and the pressure fluctuation in the heat insulating container due to the vaporized gas pressure is reduced. Attempts have been made to reduce the change in the flow rate of the low-temperature liquefied gas and thereby to ensure its quantitativeness, but in this device as well, the inside of the insulated container is connected to the atmosphere via a discharge pipe. Therefore, the influence of pressure fluctuation due to flash evaporation of the low-temperature liquefied gas has not been eliminated.

また、上記両装置についていえることであるが、断熱
容器の断熱性能を長期に亘って確保することは相当に困
難であり、そのため、低温液化ガスのフラッシュ蒸発を
更に招き易いといった問題がある。しかも、断熱容器内
圧を大気圧に保持することから、低温液化ガスの流下速
度を高速化し得ない。
Further, as can be said for both of the above devices, it is considerably difficult to secure the heat insulating performance of the heat insulating container for a long period of time, and therefore, there is a problem that flash evaporation of the low-temperature liquefied gas is more likely to occur. In addition, since the pressure in the heat insulating container is maintained at the atmospheric pressure, the flow rate of the low-temperature liquefied gas cannot be increased.

また、特公昭61−50200号公報には、低温液化ガスを
収容した断熱容器たる貯溜槽の気相空間に、圧力調整弁
を備えた気化ガス放出管を導くと共に、貯溜槽内の圧力
より高圧に保持した低温液化ガス供給用の元タンクにお
ける気化ガス部分を貯溜槽内圧設定用レギュレータを介
して連通接続して、前記圧力制御弁により貯溜槽内を一
定圧に制御維持するようにした溜下装置が開示されてい
るが、この装置においても、貯溜槽と元タンクとの内圧
差により、高圧の低温液化ガスを貯溜槽に供給する際に
低温液化ガスが貯溜槽内でフラッシュ蒸発し、実際上、
流下量に圧力変動による影響を与えないようにすること
は困難であった。
Further, Japanese Patent Publication No. 61-50200 discloses that a vaporized gas discharge pipe equipped with a pressure regulating valve is introduced into a gas phase space of a storage tank, which is an adiabatic container containing a low-temperature liquefied gas, and that a pressure higher than the pressure in the storage tank is applied. The vaporized gas portion in the source tank for supplying the low-temperature liquefied gas held in the tank is connected through a regulator for setting the internal pressure of the storage tank, and the pressure control valve controls and maintains the inside of the storage tank at a constant pressure. Although an apparatus is disclosed, also in this apparatus, when a high-pressure low-temperature liquefied gas is supplied to the storage tank due to the internal pressure difference between the storage tank and the original tank, the low-temperature liquefied gas flash-evaporates in the storage tank, and the Up,
It was difficult to keep the flow rate from being affected by pressure fluctuations.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

本発明は、断熱容器内の低温を安定に保ち、該容器内
における低温液化ガスのフラッシュ蒸発量を大幅に低減
して、断熱容器内の圧力変動を極力防止し、低温液化ガ
スの定量流下を正確且つ高速で行いうるようにした低温
液化ガス流下装置を提供することを目的とするものであ
る。
The present invention stably maintains the low temperature in the insulated container, significantly reduces the flash evaporation of the low-temperature liquefied gas in the container, minimizes pressure fluctuations in the insulated container, and reduces the constant flow of the low-temperature liquefied gas. It is an object of the present invention to provide a low-temperature liquefied gas flow-down device which can be performed accurately and at high speed.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明の低温液化ガスの流下装置は、液体窒素等の低
温液化ガスである被流下液を収容する第1液相領域と該
被流下液の気化ガスが充満する第1気相領域とを容れる
密閉状の断熱容器と、第1気相領域に配設されており、
前記被流下液と同種の低温液化ガスである冷却液を収容
する第2液相領域と該冷却液の気化ガスが充満する第2
気相領域とを形成される密閉状の冷却液容器と、被流下
液供給源から断熱容器周壁内の真空断熱層更に第2液相
領域を通過して断熱容器内に導かれており、被流下液を
冷却液容器内の冷却液と熱交換して冷却させた上で第1
液相領域に供給する被流下液供給路と、第1液相領域に
おける液位を検出して、これに基づいて被流下液供給路
からの被流下液供給量を制御する第1液位制御機構と、
冷却液供給源から断熱容器周壁内の真空断熱層を通過し
て冷却液容器内に導かれた冷却液供給路と、第2液相領
域における液位を検出して、これに基づいて冷却液供給
路からの冷却液供給量を制御する第2液位制御機構と、
第1液相領域から断熱容器外に導いた被流下液の流下通
路と、該流下通路からの被流下液の流下量を制御する流
下量制御機構と、第1気相領域から断熱容器外に導いた
第1気化ガス放出路と、断熱容器内の圧力を大気圧より
高圧の設定圧力に維持すべく、第1気化ガス放出量を制
御する圧力制御機構と、第2気相領域から断熱容器外に
導かれており、大気中に開口して冷却液容器内の圧力を
大気圧に維持する第2気化ガス放出路と、を具備するも
のである。
The low temperature liquefied gas flow-down device of the present invention includes a first liquid phase region containing a low temperature liquefied gas such as liquid nitrogen and a first gas phase region filled with a vaporized gas of the low temperature liquefied gas. A hermetically sealed insulated container and a first gas phase region,
A second liquid phase region containing a cooling liquid, which is a low-temperature liquefied gas of the same type as the flowing liquid, and a second liquid phase region filled with the vaporized gas of the cooling liquid
A hermetically sealed cooling liquid container having a gaseous phase region formed therein, and a flowing liquid supply source, which is guided into the heat insulating container through the vacuum heat insulating layer in the peripheral wall of the heat insulating container and the second liquid phase region. The falling liquid is cooled by heat exchange with the cooling liquid in the cooling liquid container, and the first liquid is cooled.
A downstream liquid supply passage to be supplied to the liquid phase region, and a first liquid level control for detecting the liquid level in the first liquid phase region and controlling the downstream liquid supply amount from the downstream liquid supply passage based on the detected liquid level Mechanism and
A coolant supply path led from the coolant supply source into the coolant container through the vacuum insulation layer in the peripheral wall of the heat insulation container and a liquid level in the second liquid phase region are detected, and the coolant is detected based on the detected liquid level. A second liquid level control mechanism for controlling the amount of coolant supplied from the supply path;
A flow-down passage for the liquid to be flowed down from the first liquid phase region to the outside of the insulated container, a flow-down control mechanism for controlling a flow-down amount of the liquid to be flowed down from the flow-down passage, A first vaporized gas discharge path that is led, a pressure control mechanism that controls the first vaporized gas release amount so as to maintain the pressure in the heat insulating container at a set pressure higher than the atmospheric pressure, and a heat insulating container from the second gas phase region. A second vaporized gas discharge path that is guided to the outside and that opens to the atmosphere to maintain the pressure in the coolant container at atmospheric pressure.

〔作用〕[Action]

第1及び第2液相領域における液位は、第1及び第2
液位制御機構により一定範囲に維持される。
The liquid levels in the first and second liquid phase regions are the first and second liquid phases.
It is maintained within a certain range by the liquid level control mechanism.

被流下液と冷却液とは同種の低温液化ガスであるが、
冷却液容器内の冷却液温度は、冷却液容器内の圧力が大
気圧に維持されているため、断熱容器内の被流下液より
も低温となる。このため、被流下液供給路から断熱容器
内に供給される被流下液は、それが第2液相領域を通過
する間により低温の冷却液と熱交換されて、過冷却状態
つまり完全に液化された状態で断熱容器内に供給される
ことになる。したがって、断熱容器に被流下液が供給さ
れる際に生じるフラッシュガスの発生は極力防止され、
フラッシュガスの発生量を最小限に抑えることができ
る。その結果、低温液化ガスのフラッシュ蒸発による断
熱容器内の圧力変動は極力回避され、圧力制御機構によ
る圧力制御を正確に行うことができ、断熱容器内の圧力
を一定に維持することができる。
The flowing liquid and the cooling liquid are the same kind of low-temperature liquefied gas,
The coolant temperature in the coolant container is lower than the flowing liquid in the heat insulating container because the pressure in the coolant container is maintained at the atmospheric pressure. For this reason, the flowing down liquid supplied from the flowing down liquid supply passage into the heat insulating container is exchanged with the lower temperature cooling liquid while passing through the second liquid phase region, and is supercooled, that is, completely liquefied. It will be supplied in the insulated container in the state where it was done. Therefore, the generation of flash gas generated when the inflow liquid is supplied to the heat insulating container is prevented as much as possible,
The amount of flash gas generated can be minimized. As a result, pressure fluctuation in the heat insulating container due to flash evaporation of the low-temperature liquefied gas is avoided as much as possible, pressure control by the pressure control mechanism can be performed accurately, and the pressure in the heat insulating container can be kept constant.

したがって、圧力容器の内圧を大気圧より高圧の一定
圧力に制御維持し得て、低温液化ガスの定量流下を正確
に行うことができ、しかもその高速化を図ることができ
る。
Therefore, the internal pressure of the pressure vessel can be controlled and maintained at a constant pressure higher than the atmospheric pressure, and the constant flow of the low-temperature liquefied gas can be accurately performed, and the speed can be increased.

また、被流下液供給路及び冷却液供給路が断熱容器の
真空断熱層内を経過していることによって、真空断熱層
の残流ガスが冷却低温化され、その真空度が向上し、維
持されることになる。したがって、断熱容器の断熱性が
長期に亘って良好に確保され、フラッシュ蒸発量を更に
低減できる。
In addition, since the flowing down liquid supply passage and the cooling liquid supply passage pass through the vacuum heat insulating layer of the heat insulating container, the residual gas in the vacuum heat insulating layer is cooled to a low temperature, and the degree of vacuum is improved and maintained. Will be. Therefore, the heat insulating property of the heat insulating container is well maintained over a long period, and the flash evaporation amount can be further reduced.

〔実施例〕〔Example〕

本発明の構成を第1図に示す実施例に基づいてより具
体的に説明する。
The configuration of the present invention will be described more specifically based on the embodiment shown in FIG.

第1図は本発明に係る低温液化ガス流下装置の一例を
示した概略の縦断側面図であり、この装置における断熱
容器1は、上部開放状の容器本体2とその上部開口を閉
塞する蓋体3とからなる密閉状のものである。断熱容器
1は、耐低温性に富むステンレス鋼,アルミニウム,樹
脂材等によって構成されており、容器本体2の周壁2aは
内部を真空断熱層2bに形成した2重壁構造とした。この
実施例の断熱容器1は、内径110mm,外径140mm,高さ200m
mの円筒形状とした。
FIG. 1 is a schematic longitudinal sectional side view showing an example of a low-temperature liquefied gas flow-down device according to the present invention. In this device, an insulated container 1 has a container body 2 having an open top and a lid for closing the upper opening. 3 in a sealed state. The heat insulating container 1 is made of stainless steel, aluminum, resin material or the like which has high low temperature resistance, and the peripheral wall 2a of the container main body 2 has a double wall structure in which the inside is formed by a vacuum heat insulating layer 2b. The heat insulating container 1 of this embodiment has an inner diameter of 110 mm, an outer diameter of 140 mm, and a height of 200 m.
m cylindrical shape.

断熱容器1内には、被流下液供給源たる液体窒素供給
源4(圧力3.0Kg/cm2・G,容積175)から被流下液供給
路5を介して液体窒素たる被流下液6が供給されてお
り、この被流下液6が収容されている領域たる第1液相
領域1a上の空間領域たる第1気相領域1bには被流下液6
の気化ガスが充満している。
The insulated container 1 is supplied with the flowing liquid 6 as liquid nitrogen from the liquid nitrogen supply source 4 (pressure 3.0 kg / cm 2 · G, volume 175) as the flowing liquid supply source via the flowing liquid supply path 5. In the first gas phase region 1b, which is a space region above the first liquid phase region 1a, which is a region in which the flowing liquid 6 is stored, the flowing liquid 6
Is full of vaporized gas.

第1液相領域1aにおける被流下液6の液位は、第1液
位制御機構7により一定の範囲に維持されるようになっ
ている。すなわち、第1液位制御機構7は、断熱容器1
内の液位を検出する第1液位検出器8と、被流下液供給
路5に介設した第1開閉弁9と、検出器8による検出値
に基づいて弁9を開閉制御する制御器10とからなり、断
熱容器1内の液位が設定下限液位にまで下がると、開閉
弁9が開動制御されて、被流下液6を被流下液供給路5
から断熱容器1内に供給させ、しかる後液位が設定上限
液位に達すると、開閉弁9が閉動制御されて被流下供給
路5からの供給を停止させる機構である。
The liquid level of the liquid 6 to be flowed in the first liquid phase region 1a is maintained in a certain range by the first liquid level control mechanism 7. That is, the first liquid level control mechanism 7 includes the heat insulating container 1
A first liquid level detector 8 for detecting the liquid level in the inside, a first opening / closing valve 9 provided in the downstream flowing liquid supply passage 5, and a controller for controlling the opening and closing of the valve 9 based on a value detected by the detector 8 When the liquid level in the heat-insulating container 1 drops to the set lower limit liquid level, the on-off valve 9 is controlled to open, and the flowing liquid 6 flows into the flowing liquid supply path 5.
When the liquid level reaches the set upper limit liquid level, the on-off valve 9 is controlled to close and the supply from the downstream supply path 5 is stopped.

断熱容器1の底部には、第1液相領域1aから断熱容器
1外に導いた被流下液6の流下通路11が形成されてお
り、ここから断熱容器1内の被流下液6を流下排出させ
る。この流下通路11からの流下量は流下量制御機構12に
よって制御される。すなわち、この流下量制御機構12は
公知のものと同様であるから、その詳細は省略するが、
例えば、流下通路11の断熱容器内開口部にニードル弁13
を配設して、このニードル弁13を蓋体3上に配置した制
御装置14により制御することによって、被流下液6の流
下量ないし流下時間を適宜に調整しうる機構である。
At the bottom of the heat-insulating container 1, a flow-down passage 11 for the liquid-to-be-flowed 6 guided from the first liquid phase region 1a to the outside of the heat-insulating container 1 is formed. Let it. The flow rate from the flow-down passage 11 is controlled by a flow rate control mechanism 12. That is, since the flow rate control mechanism 12 is the same as a known mechanism, its details are omitted,
For example, the needle valve 13
By controlling the needle valve 13 by the control device 14 disposed on the lid 3, a flow amount or a flow time of the liquid 6 to be flowed can be appropriately adjusted.

第1気相領域1bには、蓋体3を貫通して断熱容器1外
に導かれた第1気化ガス放出路15が開口されており、こ
の第1気化ガス放出路15からの気化ガス放出量を圧力制
御機構16により制御することによって、断熱容器1内の
圧力を一定の設定圧力(100〜200mmAqの範囲で設定され
る)に維持できる。すなわち、この圧力制御機構16は、
断熱容器1内の圧力を検出する圧力検出器17と、第1気
化ガス放出路15に介設した圧力緩衝槽18(容積15)及
び圧力調整弁19と、圧力検出器17による検出値に基づい
て圧力調整弁19を制御する圧力制御器20とからなり、圧
力検出器17による検出値が設定値を超えると、調整弁19
を開動制御して第1気相領域1bの気化ガスを放出させ、
断熱容器1内の圧力が設定値に達すると、調整弁19を閉
動制御して第1気相領域1bからの気化ガス放出を停止さ
せる。
In the first gas phase region 1b, a first vaporized gas discharge passage 15 which is guided through the lid 3 to the outside of the heat insulating container 1 is opened, and vaporized gas discharge from the first vaporized gas discharge passage 15 is performed. By controlling the amount by the pressure control mechanism 16, the pressure in the heat insulating container 1 can be maintained at a constant set pressure (set within a range of 100 to 200 mmAq). That is, the pressure control mechanism 16
A pressure detector 17 for detecting the pressure in the heat insulating container 1, a pressure buffer tank 18 (volume 15) and a pressure regulating valve 19 interposed in the first vaporized gas discharge passage 15, and a value detected by the pressure detector 17 And a pressure controller 20 for controlling the pressure regulating valve 19 .When the value detected by the pressure detector 17 exceeds a set value, the regulating valve 19 is controlled.
To open and release the vaporized gas in the first gas phase region 1b,
When the pressure in the heat insulating container 1 reaches the set value, the control valve 19 is controlled to close to stop the release of vaporized gas from the first gas phase region 1b.

また、断熱容器1内には、第1気相領域1bつまり被流
下液6の上限液位より上位の空間領域に配して、中心部
にニードル弁挿通路21cを有する密閉円筒状の冷却液容
器21(外径90mm,高さ65mm)が設けられている。この冷
却液容器21内には、前記被流下液供給路5に分岐接続さ
れた冷却液供給路22を介して液体窒素たる冷却液23が供
給されており、この冷却液23が収容されている領域たる
第2液相領域21a上の空間領域たる第1気相領域21bには
冷却液23の気化ガスが充満している。ところで、この冷
却液容器21は断熱容器1と同様にステンレス鋼等の耐低
温性材で構成されるが、被流下液6の気化ガスによって
形成される冷気相領域1b内に配置されていることから、
断熱容器1の如き断熱構造としておく必要がなくなり、
構造の簡略化を図りうると共に、冷却液23の蒸発による
ロスを可及的に低減できる。
A closed cylindrical cooling liquid having a needle valve insertion passage 21c in the center is disposed in the heat insulating container 1 in the first gas phase region 1b, that is, in a space region higher than the upper limit liquid level of the liquid 6 to be flowed down. A container 21 (outer diameter 90 mm, height 65 mm) is provided. In the cooling liquid container 21, a cooling liquid 23, which is liquid nitrogen, is supplied via a cooling liquid supply path 22 branched and connected to the flowing liquid supply path 5, and the cooling liquid 23 is stored therein. The first gas phase region 21b, which is a space region above the second liquid phase region 21a, is filled with the vaporized gas of the cooling liquid 23. Incidentally, the cooling liquid container 21 is made of a low-temperature resistant material such as stainless steel like the heat insulating container 1, but is arranged in the cold gas phase region 1 b formed by the vaporized gas of the liquid 6 flowing down. From
There is no need to have a heat insulating structure like the heat insulating container 1,
The structure can be simplified, and the loss due to evaporation of the cooling liquid 23 can be reduced as much as possible.

第2液相領域21aにおける冷却液23の液位は、第2液
位制御機構24により一定の範囲に維持される。すなわ
ち、第2液位制御機構24は、冷却溶液容器21内の液位を
検出する第2液位検出器25と、冷却液供給路22に介設し
た第2開閉弁26と、検出器25による検出値に基づいて弁
26を開閉制御する制御器27とからなり、冷却液容器21内
の液位が設定下限液位にまで下がると、開閉弁26が開動
制御されて、冷却液23を冷却液供給路22から冷却液容器
21内に供給させ、しかる後、液位が設定上限液位に達す
ると、開閉弁26が閉動制御されて冷却液供給路22からの
供給を停止させる。
The liquid level of the cooling liquid 23 in the second liquid phase region 21a is maintained in a certain range by the second liquid level control mechanism 24. That is, the second liquid level control mechanism 24 includes a second liquid level detector 25 for detecting the liquid level in the cooling solution container 21, a second on-off valve 26 provided in the cooling liquid supply passage 22, and a detector 25. Based on the value detected by the valve
When the liquid level in the cooling liquid container 21 falls to the set lower limit liquid level, the opening / closing valve 26 is controlled to open and cool the cooling liquid 23 from the cooling liquid supply passage 22. Liquid container
After that, when the liquid level reaches the set upper limit liquid level, the on-off valve 26 is controlled to close and the supply from the cooling liquid supply path 22 is stopped.

第2気相領域21bには、蓋体3を貫通して断熱容器1
外に導かれた第2気化ガス放出路28が開口されており、
この第2気化ガス放出路28により第2気相領域21bを大
気中に開放して、冷却液容器21内の圧力を大気圧に維持
している。したがって、冷却液容器21内が大気圧に維持
されていることから、第2液相領域21bにおける冷却液2
3は被流下液6よりも低温(−196℃)に維持されること
になる。
In the second gas phase region 21b, the heat insulating container 1 penetrating through the lid 3 is provided.
A second vaporized gas discharge passage 28 led to the outside is opened,
The second vapor phase region 21b is opened to the atmosphere by the second vaporized gas discharge passage 28, and the pressure in the cooling liquid container 21 is maintained at the atmospheric pressure. Therefore, since the inside of the cooling liquid container 21 is maintained at the atmospheric pressure, the cooling liquid 2 in the second liquid phase region 21b is maintained.
3 is maintained at a lower temperature (−196 ° C.) than the flowing liquid 6.

前記被流下液供給路5は、断熱容器1の真空断熱相2b
内を経過した後断熱容器1内に導かれており、断熱容器
1内には、冷却液容器21の第2液相領域21aを経過した
後開口5aに至っている。第2液相領域21a内における被
流下液供給路部分5bは、該供給路部分5b内を通過する被
流下液6が冷却液容器21内の冷却液たる液体窒素23と効
果的に熱交換冷却されるように、高熱伝導性の伝熱管構
造としてあり、且つその伝熱面の増加を図るべくコイル
状に構成してある。したがって、被流下液6は上記した
如く−196℃に維持された冷却液23と熱交換されること
によって、過冷却状態とされた上で第1液相領域1aに供
給される。つまり、被流下液6は完全に液化された状態
で供給されることになり、そのフラッシュ蒸発が極めて
効果的に防止される。なお、この実施例では、上記熱交
換コイル5bを内径4mm,外径5mm,長さ11mのものに構成し
てある。
The flowing down liquid supply passage 5 is provided with the vacuum insulation phase 2b of the insulation container 1.
After passing through the inside, it is guided into the heat insulating container 1, and reaches the opening 5 a after passing through the second liquid phase region 21 a of the cooling liquid container 21 in the heat insulating container 1. The flowing liquid supply passage portion 5b in the second liquid phase region 21a allows the flowing liquid 6 passing through the supply passage portion 5b to effectively exchange heat with liquid nitrogen 23 as a cooling liquid in the cooling liquid container 21. As described above, the heat transfer tube structure has a high thermal conductivity, and is formed in a coil shape to increase the heat transfer surface. Therefore, the flowing liquid 6 is supercooled by the heat exchange with the cooling liquid 23 maintained at -196 ° C. as described above, and is supplied to the first liquid phase region 1a. That is, the flowing liquid 6 is supplied in a completely liquefied state, and its flash evaporation is extremely effectively prevented. In this embodiment, the heat exchange coil 5b has an inner diameter of 4 mm, an outer diameter of 5 mm, and a length of 11 m.

また、前記冷却液供給路22も、被流下液供給路5と同
様に、断熱容器1の真空断熱層2b内を経過した上で冷却
液容器21内に開口されている。この実施例では、冷却液
供給路22が真空断熱層2b内を螺旋状をなして通過せしめ
られていて、真空断熱層2b内における冷却液供給路22通
過距離を可及的に長尺化すべく図っている。勿論、真空
断熱層2a内における液流下液供給路部分5cも、同様に、
螺旋状にしておくことも可能である(第3図参照)。こ
のように、各供給路5,22が真空断熱層2b内を通過するこ
とにより、該層2b内の残留ガスが冷却低温化されて、断
熱層2bの真空度を高く維持して、その断熱効果を向上さ
せることができる。
Also, the cooling liquid supply passage 22 is opened in the cooling liquid container 21 after passing through the vacuum heat insulating layer 2b of the heat insulating container 1, similarly to the flowing liquid supply passage 5. In this embodiment, the cooling liquid supply passage 22 is spirally passed through the inside of the vacuum heat insulating layer 2b, and the passage distance of the cooling liquid supply passage 22 in the vacuum heat insulating layer 2b is made as long as possible. I'm trying. Of course, the liquid flowing down liquid supply path portion 5c in the vacuum heat insulating layer 2a also has
It is also possible to keep a spiral (see FIG. 3). As described above, when each of the supply passages 5 and 22 passes through the inside of the vacuum heat insulating layer 2b, the residual gas in the layer 2b is cooled and cooled, and the degree of vacuum of the heat insulating layer 2b is maintained high. The effect can be improved.

なお、液体窒素たる被流下液6を被流下液供給路5か
ら断熱容器1に供給する場合、その初期の段階において
暖かい気化ガスが流入する虞れがあるが、この実施例で
は、かかる気化ガスの流入を次のようにして防止する。
When the flowing liquid 6 as liquid nitrogen is supplied from the flowing liquid supply path 5 to the heat-insulating container 1, there is a possibility that warm vaporized gas may flow in the initial stage. Is prevented as follows.

すなわち、被流下液供給路5における第1供給量調整
弁9の介設点と冷却液供給路22の接続点との間に第3気
化ガス放出路29を接続し、被流下液供給路5内の温度を
温度検出器30で検出して、その検出温度が設定温度(大
略−180℃〜−196℃の範囲で設定)以上である場合にの
み、第3気化ガス放出路29の開閉弁31を制御器32により
開動制御して、被流下液供給路5内の気化ガスを排出路
29から排除する。このような構成とすることにより、冷
却液23による冷却負担率を低減できると共に、断熱容器
1内の圧力変動を更に防止できる。
That is, the third vaporized gas discharge path 29 is connected between the interposed point of the first supply amount regulating valve 9 and the connection point of the cooling liquid supply path 22 in the downstream liquid supply path 5, and the downstream liquid supply path 5 The temperature in the inside is detected by the temperature detector 30, and only when the detected temperature is equal to or higher than the set temperature (set in a range of about -180 ° C to -196 ° C), the on-off valve of the third vaporized gas discharge passage 29 is opened. The controller 31 controls the opening operation of the controller 31 so that the vaporized gas in the inflowing liquid supply path 5 is discharged.
Eliminate from 29. With such a configuration, the cooling burden rate of the cooling liquid 23 can be reduced, and the pressure fluctuation in the heat insulating container 1 can be further prevented.

ところで、上記した実施例装置を用いて、制御器20に
おける設定圧力を200mmAq及び1000mmAqとして夫々実験
をしたところ、断熱容器内圧の制御性は200mmAq±3mmAq
(1.5%),1000mmAq±5mmAq(0.5%)となった。従来装
置では一般に±5〜10%であるから、圧力制御性能が大
幅に改善されていることが理解されよう。また、飲料罐
に液体窒素6を流下充填させた場合、その充填速度は20
0〜1500個/分となり、高速充填が可能となることが確
認された。さらに、断熱容器1の内圧を200mmAqに制御
し、充填速度を350個/分とした場合において、断熱容
器1からの放出変化量は0.25〜0.35m3/hであったが、真
空断熱層2b内の供給路部分5c,22a無しにして測定する
と、断熱容器1からの放出変化量は0.3〜0.4m3/hとな
り、更に冷却液容器21も外して測定すると、0.4〜5.0m3
/hとなった。これにより、冷却液容器21や供給路の断熱
層内部分5c,22aを設けた意義が更に確認された。
By the way, using the apparatus of the embodiment described above, experiments were performed with the set pressure in the controller 20 set to 200 mmAq and 1000 mmAq, respectively, and the controllability of the internal pressure of the heat insulating container was 200 mmAq ± 3 mmAq.
(1.5%) and 1000mmAq ± 5mmAq (0.5%). Since it is generally ± 5 to 10% in the conventional apparatus, it can be understood that the pressure control performance is greatly improved. When the beverage can is filled with liquid nitrogen 6 downflow, the filling speed is 20
It was 0 to 1500 pieces / min, and it was confirmed that high-speed filling was possible. Furthermore, when the internal pressure of the heat insulating container 1 was controlled to 200 mmAq and the filling speed was set to 350 pieces / min, the amount of change in release from the heat insulating container 1 was 0.25 to 0.35 m 3 / h, but the vacuum heat insulating layer 2b supply passage portion 5c of the inner, when measured without 22a, release amount of change from the insulated container 1 is 0.3~0.4m 3 / h, and the when measured further removed also cooling liquid container 21, 0.4~5.0m 3
/ h. This further confirmed the significance of providing the coolant container 21 and the portions 5c and 22a in the heat insulating layer of the supply path.

なお、被流下液6及び冷却液23として使用される低温
液化ガスとしては、上記した液体窒素の他、必要に応じ
て、アルゴン,液化炭化水素ガス(LPG)等の各種低温
液化ガスを選ぶことができる。また、上記実施例では、
被流下液供給源と冷却液供給源とを一の低温液化ガス供
給源4で兼用したが、個別に設けるようにしてもよいこ
とは勿論である。
As the low-temperature liquefied gas used as the flowing liquid 6 and the cooling liquid 23, various low-temperature liquefied gases such as argon and liquefied hydrocarbon gas (LPG) may be selected as necessary in addition to the liquid nitrogen described above. Can be. In the above embodiment,
Although one low-temperature liquefied gas supply source 4 is used for both the flowing liquid supply source and the cooling liquid supply source, it goes without saying that they may be provided separately.

さらに、断熱容器1及び冷却溶液器21の形状,各供給
路5,22の配管形状等の構成は、本発明の基本原理を逸脱
しない範囲においては任意であり、例えば第2図又は第
3図に示す如く構成してもよい。
Further, the configuration of the heat insulating container 1 and the shape of the cooling solution container 21 and the configuration of the piping of each of the supply passages 5 and 22 are arbitrary without departing from the basic principle of the present invention. May be configured as shown in FIG.

〔発明の効果〕〔The invention's effect〕

以上の説明から容易に理解されるように、本発明の低
温液化ガスの流下装置にあっては、被流下液が冷却液と
の熱交換により過冷却状態で断熱容器に供給されること
から、断熱容器内における低温液化ガスのフラッシュ蒸
発が極力防止される。しかも、被流下液供給路及び冷却
液供給路が断熱容器の真空断熱層内を通過することか
ら、断熱層の真空度がより高く維持され、良好な断熱効
果を長期に亘って維持でき、このことによってフラッシ
ュ蒸発を更に有効に阻止できる。
As can be easily understood from the above description, in the low-temperature liquefied gas flowing-down device of the present invention, since the flowing-down liquid is supplied to the heat-insulating container in a supercooled state by heat exchange with the cooling liquid, Flash evaporation of the low-temperature liquefied gas in the insulated container is prevented as much as possible. Moreover, since the flowing liquid supply passage and the cooling liquid supply passage pass through the vacuum heat insulating layer of the heat insulating container, the degree of vacuum of the heat insulating layer is maintained higher, and a good heat insulating effect can be maintained for a long time. As a result, flash evaporation can be more effectively prevented.

したがって、本発明によれば、低温液化ガスのフラッ
シュ蒸発に起因する断熱容器内の圧力変動を防止して、
容器内圧力を容易に且つ確実に制御することができ、そ
の結果、断熱容器内の圧力変動による影響を回避して、
低温液化ガスの定量流下を正確且つ安定して行うことが
できる。しかも、断熱容器内を従来技術と異なって大気
圧より高圧に維持することから、低温液化ガスを高速流
下させることができ、飲料罐の生産等を極めて効率よく
行うことができる。また、フラッシュ蒸発量の極少化に
伴い、第1気相領域の容積を小さくしても断熱容器内圧
力の制御を良好に行うことが可能となり、断熱容器の小
形化延いては流下装置の小形化を支障なく実現できる。
Therefore, according to the present invention, it is possible to prevent the pressure fluctuation in the heat insulating container due to the flash evaporation of the low-temperature liquefied gas,
It is possible to easily and reliably control the pressure in the container, and as a result, to avoid the effects of pressure fluctuations in the insulated container,
The constant flow of the low-temperature liquefied gas can be performed accurately and stably. Moreover, since the inside of the heat insulating container is maintained at a pressure higher than the atmospheric pressure, unlike the related art, the low-temperature liquefied gas can flow down at a high speed, and the production of beverage cans and the like can be performed extremely efficiently. Further, with the minimization of the flash evaporation amount, it is possible to control the pressure in the heat insulating container well even if the volume of the first gas phase region is reduced, and the heat insulating container can be downsized and the downflow device can be downsized. Can be realized without hindrance.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る低温液化ガスの流下装置の一実施
例を示す概略の縦断側面図であり、第2図及び第3図は
夫々その変形例を示す第1図同様図である。 1……断熱容器、1a……第1液相領域、1b……第1気相
領域、2……容器本体、2a……周壁、2b……真空断熱
層、3……蓋体、4……被流下液供給源(冷却液供給
源)、5……被流下液供給路、6……被流下液、7……
第1液位制御機構、11……流下通路、12……流下量制御
機構、15……第1気化ガス放出路、16……圧力制御機
構、17……圧力検出器(圧力制御機構)、18……圧力緩
衝槽(圧力制御機構)、19……圧力調整弁(圧力制御機
構)、20……圧力制御器(圧力制御機構)、21……冷却
液容器、21a……第2液相領域、21b……第2気相領域、
22……冷却液供給路、23……冷却液、24……第2液位制
御機構、28……第2気化ガス放出路、29……第3気化ガ
ス放出路、30……温度検出器、31……開閉弁。
FIG. 1 is a schematic longitudinal sectional side view showing an embodiment of a low-temperature liquefied gas flowing-down device according to the present invention, and FIGS. 2 and 3 are views similar to FIG. 1 showing modifications thereof. DESCRIPTION OF SYMBOLS 1 ... Heat insulation container, 1a ... 1st liquid phase area, 1b ... 1st gas phase area, 2 ... Container main body, 2a ... Peripheral wall, 2b ... Vacuum heat insulation layer, 3 ... Lid, 4 ... ... flowing down liquid supply source (cooling liquid supply source), 5 ... flowing down liquid supply path, 6 ... flowing down liquid, 7 ...
1st liquid level control mechanism, 11 ... downflow passage, 12 ... downflow amount control mechanism, 15 ... 1st vaporized gas discharge path, 16 ... pressure control mechanism, 17 ... pressure detector (pressure control mechanism), 18 ... pressure buffer tank (pressure control mechanism), 19 ... pressure regulating valve (pressure control mechanism), 20 ... pressure controller (pressure control mechanism), 21 ... coolant container, 21a ... second liquid phase Region, 21b ... second gas phase region,
22 ... coolant supply path, 23 ... coolant, 24 ... second liquid level control mechanism, 28 ... second vaporized gas discharge path, 29 ... third vaporized gas discharge path, 30 ... temperature detector , 31 ... On-off valve.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】液体窒素等の低温液化ガスである被流下液
を収容する第1液相領域と該被流下液の気化ガスが充満
する第1気相領域とを容れる密閉状の断熱容器と、第1
気相領域に配設され、前記被流下液と同種の低温液化ガ
スである冷却液を収容する第2液相領域と該冷却液の気
化ガスが充満する第2気相領域とを容れる密閉状の冷却
液容器と、被流下液供給源から断熱容器周壁内の真空断
熱層に第2液相領域を通過して断熱容器内に導かれ、被
流下液を冷却液容器内の冷却液と熱交換して冷却させた
後第1液相領域に供給する被流下液供給路と、第1液相
領域における液位を検出して、これに基づいて被流下液
供給路からの被流下液供給量を制御する第1液位制御機
構と、冷却液供給源から断熱容器周壁内の真空断熱層を
通過して冷却液容器内に導かれた冷却液供給路と、第2
液相領域における液位を検出して、これに基づいて冷却
液供給路からの冷却液供給量を制御する第2液位制御機
構と、第1液相領域から断熱容器外に導いた被流下液の
流下通路と、該流下通路からの被流下液の流下量を制御
する流下量制御機構と、第1気相領域から断熱容器外に
導いた第1気化ガス放出路と、断熱容器内の圧力を大気
圧より高圧の設定圧力に維持すべく、第1気化ガス放出
路を制御する圧力制御機構と、第2気相領域から断熱容
器外に導かれており、大気中に開口して冷却液容器内の
圧力を大気圧に維持する第2気化ガス放出路と、を具備
することを特徴とする低温液化ガスの流下装置
A hermetically sealed heat-insulating vessel containing a first liquid-phase region for containing a flowing liquid, which is a low-temperature liquefied gas such as liquid nitrogen, and a first gas-phase region filled with a vaporized gas of the flowing liquid; , First
A hermetically sealed state which is provided in the gas phase region and contains a second liquid phase region containing a cooling liquid which is the same kind of low temperature liquefied gas as the liquid to be flowed down, and a second gas phase region filled with the vaporized gas of the cooling liquid. And the liquid flowing down from the supply source of the liquid flowing down to the vacuum heat insulating layer in the peripheral wall of the heat insulating container through the second liquid phase region and guided into the heat insulating container. A downstream liquid supply path to be supplied to the first liquid phase region after being exchanged and cooled; and a liquid level supply from the downstream liquid supply path based on the detected liquid level in the first liquid phase area. A first liquid level control mechanism for controlling an amount, a cooling liquid supply passage guided from the cooling liquid supply source through the vacuum heat insulating layer in the peripheral wall of the heat insulating container into the cooling liquid container,
A second liquid level control mechanism for detecting the liquid level in the liquid phase region and controlling the supply amount of the cooling liquid from the cooling liquid supply path based on the detected liquid level; A flow path for the liquid, a flow rate control mechanism for controlling a flow rate of the liquid to be flowed down from the flow path, a first vaporized gas discharge path led from the first gas phase region to the outside of the heat insulating container, A pressure control mechanism for controlling the first vaporized gas discharge path so as to maintain the pressure at a set pressure higher than the atmospheric pressure, and a pressure control mechanism guided from the second gas phase region to the outside of the insulated container, and opened to the atmosphere for cooling. A low-pressure liquefied gas flow-down device, comprising: a second vaporized gas discharge path for maintaining the pressure in the liquid container at atmospheric pressure.
【請求項2】前記被流下液供給源と冷却液供給源とが同
一の低温液化ガス供給源であり、前記冷却供給路が前記
被流下液供給路に分岐接続されたものであることを特徴
とする、特許請求の範囲第1項に記載する低温液化ガス
の流下装置。
2. The apparatus according to claim 1, wherein the liquid supply source and the cooling liquid supply source are the same low-temperature liquefied gas supply source, and the cooling supply path is branched and connected to the liquid supply path. The low temperature liquefied gas flow-down device according to claim 1, wherein:
【請求項3】前記圧力制御機構が、第1気相領域におけ
るガス圧力を検出する圧力検出器と、第1気化ガス放出
路に介設した圧力緩衝槽及び圧力調製弁と、この圧力調
整弁を前記圧力検出器による検出値に基づいて制御する
圧力制御器とを具備することを特徴とする、特許請求の
範囲第1項又は第2項に記載する低温液化ガスの流下装
置。
3. A pressure detector for detecting a gas pressure in a first gas phase region, a pressure buffer tank and a pressure regulating valve interposed in a first vaporized gas discharge path, and a pressure regulating valve. And a pressure controller for controlling the temperature of the low-temperature liquefied gas based on a value detected by the pressure detector.
【請求項4】前記被流下液供給路が、路内温度を検出す
る温度検出器を装備すると共に、この温度検出器による
検出温度に基づいて開閉制御される開閉弁を備えた第3
気化ガス放出路を接続したものであることを特徴とす
る、特許請求の範囲第1項、第2項又は第3項に記載す
る低温液化ガスの流下装置。
4. A third liquid supply system according to claim 3, further comprising a temperature detector for detecting a temperature in the passage, and an on-off valve controlled to open and close based on the temperature detected by the temperature detector.
4. The low temperature liquefied gas flow-down device according to claim 1, wherein the vaporized gas discharge passage is connected.
JP22941587A 1987-09-11 1987-09-11 Low temperature liquefied gas flow-down device Expired - Fee Related JP2645239B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22941587A JP2645239B2 (en) 1987-09-11 1987-09-11 Low temperature liquefied gas flow-down device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22941587A JP2645239B2 (en) 1987-09-11 1987-09-11 Low temperature liquefied gas flow-down device

Publications (2)

Publication Number Publication Date
JPS6484821A JPS6484821A (en) 1989-03-30
JP2645239B2 true JP2645239B2 (en) 1997-08-25

Family

ID=16891868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22941587A Expired - Fee Related JP2645239B2 (en) 1987-09-11 1987-09-11 Low temperature liquefied gas flow-down device

Country Status (1)

Country Link
JP (1) JP2645239B2 (en)

Also Published As

Publication number Publication date
JPS6484821A (en) 1989-03-30

Similar Documents

Publication Publication Date Title
US5613366A (en) System and method for regulating the temperature of cryogenic liquids
US4715187A (en) Controlled cryogenic liquid delivery
US3696636A (en) Method and apparatus for cooling liquids
US4607489A (en) Method and apparatus for producing cold gas at a desired temperature
US20100044020A1 (en) Hydrogen gas-cooling device
US4592205A (en) Low pressure cryogenic liquid delivery system
US3864928A (en) All-attitude cryogenic vapor vent system
US5142874A (en) Cryogenic apparatus
US4590770A (en) Cryogenic liquid heat exchanger
US5123250A (en) Cryogenic apparatus
JP2645239B2 (en) Low temperature liquefied gas flow-down device
US5579646A (en) Cryogen delivery apparatus
US4783969A (en) Cryogenic withdrawal apparatus and method
JPH0199923A (en) Low temperature liquefied gas discharge apparatus
US4441327A (en) Temperature actuated valve and phase separation method
US5079925A (en) Cryogenic apparatus
US4422302A (en) Process for cooling and fluidizing
JP5715498B2 (en) Liquefied hydrogen storage and supply equipment
US4497178A (en) Method of preventing atmosphere from entering heat-insulating container
KR102506309B1 (en) Chemical recovery system
JP2011127754A (en) Hydrogen gas cooling device
JPH10332088A (en) Device to store multi-component low temperature mixture in container
NO127642B (en)
RU2171950C1 (en) Facility to store and feed cryogenic products
US4741166A (en) Liquified gas subcooler and pressure regulator

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees