JP2644432B2 - Hot extrusion method of superconducting composite billet - Google Patents

Hot extrusion method of superconducting composite billet

Info

Publication number
JP2644432B2
JP2644432B2 JP5273097A JP27309793A JP2644432B2 JP 2644432 B2 JP2644432 B2 JP 2644432B2 JP 5273097 A JP5273097 A JP 5273097A JP 27309793 A JP27309793 A JP 27309793A JP 2644432 B2 JP2644432 B2 JP 2644432B2
Authority
JP
Japan
Prior art keywords
superconducting
composite billet
hot extrusion
superconducting composite
extrusion method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5273097A
Other languages
Japanese (ja)
Other versions
JPH07134920A (en
Inventor
秀樹 伊井
欽也 小川
卓哉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP5273097A priority Critical patent/JP2644432B2/en
Publication of JPH07134920A publication Critical patent/JPH07134920A/en
Application granted granted Critical
Publication of JP2644432B2 publication Critical patent/JP2644432B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、高品質の押出材が得ら
れる超電導複合ビレットの熱間押出方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for hot extrusion of a superconducting composite billet from which a high-quality extruded material can be obtained.

【0002】[0002]

【従来の技術】超電導線は、フラックスフローに伴う急
激な温度上昇(クエンチ)を防止する為に、NbTi合
金フィラメントやNb3 Sn金属間化合物フィラメント
等の超電導体を銅等の熱伝導性に優れた金属材料で複合
して用いられている。このような構造の超電導線は、N
bTi合金等の超電導金属棒材を金属製パイプ内に充填
して複合ビレットとなし、これに熱間押出と伸線加工を
施して製造されていた。前記超電導線はその多数本を再
び銅製パイプに充填して複合ビレットとなし、これを前
述と同様に加工して多芯超電導線が製造されていた。
BACKGROUND ART superconducting wire, in order to prevent the rapid increase in temperature (quench) due to the flux flow, high thermal conductivity such as copper and NbTi alloy filaments and Nb 3 Sn intermetallic compound filaments such superconductors It is used in combination with a metal material. A superconducting wire having such a structure has N
A superconducting metal rod such as a bTi alloy is filled in a metal pipe to form a composite billet, which is subjected to hot extrusion and wire drawing. Many of the superconducting wires were again filled into a copper pipe to form a composite billet, which was processed in the same manner as described above to produce a multi-core superconducting wire.

【0003】[0003]

【発明が解決しようとする課題】このような超電導複合
ビレットから熱間押出と伸線加工により製造した超電導
線は、伸線加工中に断線したり、内部の超電導フィラメ
ントが多数断線してJcが低下したり、表面品質が悪い
為ホルマール被覆時に所定の絶縁特性が得られないとい
う問題があった。
The superconducting wire manufactured from such a superconducting composite billet by hot extrusion and wire drawing is broken during wire drawing or a large number of internal superconducting filaments are broken and Jc is reduced. There has been a problem that a predetermined insulating property cannot be obtained at the time of formal coating due to deterioration or poor surface quality.

【0004】[0004]

【課題を解決するための手段】本発明は、このような状
況に鑑み鋭意研究を行い、前記品質不良の原因は、熱間
押出前のハンドリング中に付着した鉄片、アルミ片、A
2 3,SiO2 、或いはコンテナスリーブの耐熱鋼
剥離片等の異物が、熱間押出の際に超電導複合ビレット
の外周部に押込まれ、後の伸線加工中に断線や絶縁不良
を惹き起こすことを知見し、更に研究を進めて本発明を
完成するに至ったものである。即ち、本発明は、安定化
材となす金属製パイプ内に超電導素材を充填した超電導
複合ビレットを所定温度に加熱して、前方にダイスを配
置したコンテナスリーブ内に装入し、前記所定温度に加
熱した超電導複合ビレットを、後方よりステムにて押圧
して、前記ダイスから押出す超電導複合ビレットの熱間
押出方法において、前記コンテナスリーブ内周面とステ
ム外周面との間に2mm〜10mmのクリアランスを設けた
ことを特徴とする超電導複合ビレットの熱間押出方法で
ある。
SUMMARY OF THE INVENTION The present invention has been studied diligently in view of such circumstances, and the causes of the above-mentioned poor quality are iron pieces, aluminum pieces, A pieces attached during handling before hot extrusion.
Foreign matter, such as l 2 O 3 , SiO 2 , or heat-resistant steel peeling pieces of the container sleeve, is pushed into the outer periphery of the superconducting composite billet during hot extrusion, causing disconnection and poor insulation during subsequent drawing. The inventor of the present invention has found that this occurs, and has conducted further research to complete the present invention. That is, the present invention heats a superconducting composite billet filled with a superconducting material in a metal pipe serving as a stabilizing material to a predetermined temperature, and charges the superconducting billet into a container sleeve in which a die is arranged in front, and reaches the predetermined temperature. In a method of hot extrusion of a superconducting composite billet, in which a heated superconducting composite billet is pressed from behind by a stem and extruded from the die, a clearance of 2 mm to 10 mm is provided between the inner peripheral surface of the container sleeve and the outer peripheral surface of the stem. And a hot extrusion method for a superconducting composite billet.

【0005】本発明を図を参照して具体的に説明する。
図1イ,ロは本発明方法の態様を示す工程説明図であ
る。図において、1はダイス、2はコンテナスリーブ、
3は超電導複合ビレット、4はステムである。前方にダ
イス1を配置したコンテナスリーブ2内に超電導複合ビ
レット3を装入し、前記複合ビレット3を後方からステ
ム4にて押圧して、前記ダイス1から押出す。コンテナ
スリーブ2内周面とステム4外周面との間には所定のク
リアランスが設けてある(図イ)。このクリアランスに
より、異物が押込まれた複合ビレット3の外周部分がコ
ンテナスリーブ2内周面にシェル5として残り、従って
異物の無い高品質の押出材6が得られる(図ロ)。
The present invention will be specifically described with reference to the drawings.
FIGS. 1A and 1B are process explanatory views showing an embodiment of the method of the present invention. In the figure, 1 is a die, 2 is a container sleeve,
3 is a superconducting composite billet, and 4 is a stem. A superconducting composite billet 3 is inserted into a container sleeve 2 in which a die 1 is disposed in front, and the composite billet 3 is pressed from behind by a stem 4 and extruded from the die 1. A predetermined clearance is provided between the inner peripheral surface of the container sleeve 2 and the outer peripheral surface of the stem 4 (FIG. 1A). Due to this clearance, the outer peripheral portion of the composite billet 3 into which the foreign matter has been pushed remains as the shell 5 on the inner peripheral surface of the container sleeve 2, and thus a high-quality extruded material 6 free of foreign matter can be obtained (FIG. 2B).

【0006】本発明方法において、前記クリアランスを
2mm〜10mmに限定した理由は、2mm未満ではシェル量
が少なく異物が十分除去されず、10mmを超えると異物
除去効果が飽和する上、押出歩留りが低下する為であ
る。コンテナスリーブとステムとは同軸上に配置し、両
者間のクリアランスは周囲均等にする。クリアランスの
大きさは超電導複合ビレットの径、押出材の径、押出温
度等を勘案して決められる。コンテナスリーブと超電導
複合ビレットとのクリアランスは小さい方が押出圧力が
安定して好ましい。
In the method of the present invention, the reason for limiting the clearance to 2 mm to 10 mm is that if the clearance is less than 2 mm, the amount of shell is small and foreign matter is not sufficiently removed. If the clearance exceeds 10 mm, the effect of removing foreign matter is saturated and the extrusion yield decreases. To do that. The container sleeve and the stem are arranged coaxially, and the clearance between them is made equal around the circumference. The size of the clearance is determined in consideration of the diameter of the superconducting composite billet, the diameter of the extruded material, the extrusion temperature, and the like. A smaller clearance between the container sleeve and the superconducting composite billet is preferable because the extrusion pressure is stable.

【0007】安定化材となす金属製パイプ内に充填する
超電導素材には、超電導棒材、又は安定化金属を複合し
た単芯或いは多芯超電導線を多数本束ねた超電導線集合
体が適用される。又安定化材となす金属製パイプ内に充
填する超電導素材には、Nb金属又はNbTi合金のい
ずれかを含むものが適用される。
As the superconducting material to be filled in the metal pipe serving as a stabilizing material, a superconducting rod material or a superconducting wire aggregate obtained by bundling a large number of single-core or multi-core superconducting wires in which a stabilizing metal is combined is applied. You. As the superconducting material to be filled in the metal pipe serving as the stabilizing material, a material containing either Nb metal or NbTi alloy is applied.

【0008】[0008]

【作用】本発明では、超電導複合ビレットの熱間押出方
法において、前記コンテナスリーブ内周面とステム外周
面との間に2mm〜10mmのクリアランスを設けたので、
超電導複合ビレットの外周に押込まれた金属片等の異物
は、コンテナスリーブ内周面に付着したシェル内に残
り、押出材は異物のない高品質なものとなる。
According to the present invention, in the method for hot extrusion of a superconducting composite billet, a clearance of 2 mm to 10 mm is provided between the inner peripheral surface of the container sleeve and the outer peripheral surface of the stem.
Foreign matter such as metal pieces pressed into the outer periphery of the superconducting composite billet remains in the shell adhered to the inner peripheral surface of the container sleeve, and the extruded material is of high quality without foreign matter.

【0009】[0009]

【実施例】以下に本発明を実施例により詳細に説明す
る。 実施例1 150mmφのNbTi合金ビレットを、 1.5mm厚さのNb
管を内接させた外径 210mmφ,内径 157mmφの無酸素銅
管に装入し、次いでこのパイプの両端に無酸素銅製の蓋
を電子ビーム溶接により真空封止して被せた。次いでこ
れにHIP処理(熱間静水圧圧縮、 800℃×1500atm ×
1hr)を施したのち、外径 200mmφに外削して超電導複
合ビレットを作製した。次に前記超電導複合ビレット
を、前方にダイスを配置したコンテナスリーブ内に装入
し、後方よりステムで押圧して25mmφの押出材を製出し
た。押出温度は 800℃、コンテナスリーブの内径は 207
mmφとした。ステムには種々外径のものを用いた。次に
前記押出材を伸線加工して3mmφの単芯超電導線材とな
した。
The present invention will be described below in detail with reference to examples. Example 1 A 150 mmφ NbTi alloy billet was replaced with a 1.5 mm thick Nb
The pipe was inserted into an oxygen-free copper pipe having an outer diameter of 210 mmφ and an inner diameter of 157 mmφ in which the pipe was inscribed. Then, both ends of the pipe were covered by vacuum sealing by electron beam welding on both ends of the pipe. Next, this is subjected to HIP treatment (hot isostatic pressing, 800 ° C × 1500atm ×
After 1 hour), a superconducting composite billet was produced by external cutting to an outer diameter of 200 mmφ. Next, the superconducting composite billet was placed in a container sleeve in which a die was arranged in front, and pressed with a stem from the rear to produce an extruded material of 25 mmφ. Extrusion temperature 800 ° C, inner diameter of container sleeve 207
mmφ. Stems of various outer diameters were used. Next, the extruded material was drawn into a 3 mmφ single core superconducting wire.

【0010】実施例2 実施例1で製造した3mmφの超電導線材を0.4 mmφに伸
線し、これにホルマールを10μm厚さに被覆し、ホルマ
ール被覆層に発生した気泡の数を数えた。
Example 2 The superconducting wire of 3 mmφ produced in Example 1 was drawn to 0.4 mmφ and coated with formal to a thickness of 10 μm, and the number of bubbles generated in the formal coating layer was counted.

【0011】[0011]

【表1】 クリアランスは、コンテナスリーブの内径(207mmφ)
とステム外径の差。1,000 m当たり。 10,000 m当
たり。
[Table 1] Clearance is inner diameter of container sleeve (207mmφ)
And stem outer diameter difference. Per 1,000 m. Per 10,000m.

【0012】表1より明らかなように、本発明方法品
(No1〜6)は渦流探傷数がゼロであり、ホルマール被
覆層の気泡数も少なかった。コンテナスリーブとステム
間のクリアランスが大きい程品質が向上した。これに対
し比較例品(No7,8)は渦流探傷数も気泡数も多く品
質不良であった。これは前記クリアランスが小さい為、
超電導複合ビレット外周部に押込まれた異物が押出材に
混入した為である。本発明方法品について、押出後のコ
ンテナスリーブ内面に付着したシェルを硝酸に溶解して
残渣を分析した。Al2 3、SiO2 、鉄片、耐熱鋼
片等が多数検出された。
As is clear from Table 1, the method articles of the present invention (Nos. 1 to 6) had no eddy current detection number and a small number of bubbles in the formal coating layer. The larger the clearance between the container sleeve and the stem, the better the quality. On the other hand, the products of Comparative Examples (Nos. 7 and 8) had a large number of eddy current flaws and a large number of bubbles, and were of poor quality. This is because the clearance is small,
This is because foreign matter pushed into the outer periphery of the superconducting composite billet was mixed into the extruded material. Regarding the method product of the present invention, the shell adhered to the inner surface of the container sleeve after extrusion was dissolved in nitric acid, and the residue was analyzed. Many Al 2 O 3 , SiO 2 , iron pieces, heat-resistant steel pieces, etc. were detected.

【0013】実施例3 実施例1で得られた3mmφの超電導線を多数本束ねて無
酸素銅管に充填して超電導複合ビレットとなした他は、
実施例1と同じ方法により3mmφの多芯超電導線を製造
した。得られた多芯超電導線について、伸線加工中の断
線回数を調べた。又5テスラーにおける臨界電流密度
(Jc)とn値を測定した。結果を表2に示した。尚、
n値とは、臨界電流Iとその時の両端電圧Vとの間に成
り立つV∝In の関係式中の指数である。n値が大きい
程、クエンチが起き難い。
Example 3 A number of superconducting wires of 3 mmφ obtained in Example 1 were bundled and filled in an oxygen-free copper tube to form a superconducting composite billet.
A multicore superconducting wire having a diameter of 3 mm was manufactured in the same manner as in Example 1. About the obtained multifilamentary superconducting wire, the number of disconnections during wire drawing was examined. The critical current density (Jc) and n value at 5 Tesla were measured. The results are shown in Table 2. still,
The n value is an index in the relational expression VarufaI n that holds between the critical current I and the voltage V across time. Quenching is less likely to occur as the value of n increases.

【0014】[0014]

【表2】 40Km当たり。単位:A/mm2 [Table 2] Per 40km. Unit: A / mm 2 .

【0015】表2より明らかなように、本発明方法品(9
〜11) は断線頻度が低く、又Jcが高い値を示した。こ
れに対し、比較例品(No12)は断線頻度が高く、又Jc
及びn値が低下した。これは超電導フィラメントが不均
一に変形し又多数断線したことによる。
As is apparent from Table 2, the product of the present invention (9
11) showed a low value of the disconnection frequency and a high value of Jc. On the other hand, the comparative example product (No. 12) has a high disconnection frequency, and Jc
And the n value decreased. This is due to the non-uniform deformation of the superconducting filament and a large number of broken wires.

【0016】以上、NbTi超電導線の場合について説
明したが、本発明方法はNb3 Sn超電導線の製造に適
用しても同様の効果が得られる。
Although the case of the NbTi superconducting wire has been described above, the same effect can be obtained by applying the method of the present invention to the production of an Nb 3 Sn superconducting wire.

【0017】[0017]

【効果】以上述べたように、本発明方法によれば、超電
導複合ビレットを高品質に押出すことができ、得られる
超電導線は品質良好であり又Jc等の超電導特性にも優
れ、工業上顕著な効果を奏する。
As described above, according to the method of the present invention, a superconducting composite billet can be extruded with high quality, and the superconducting wire obtained has good quality and excellent superconducting properties such as Jc. Has a remarkable effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の態様を示す工程説明図である。FIG. 1 is a process explanatory view showing an embodiment of the method of the present invention.

【符号の説明】[Explanation of symbols]

1 ダイス 2 コンテナスリーブ 3 超電導複合ビレット 4 ステム 5 シェル 6 押出材 Reference Signs List 1 die 2 container sleeve 3 superconducting composite billet 4 stem 5 shell 6 extruded material

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 安定化材となす金属製パイプ内に超電導
素材を充填した超電導複合ビレットを所定温度に加熱し
て、前方にダイスを配置したコンテナスリーブ内に装入
し、前記所定温度に加熱した超電導複合ビレットを、後
方よりステムにて押圧して、前記ダイスから押出す超電
導複合ビレットの熱間押出方法において、前記コンテナ
スリーブ内周面とステム外周面との間に2mm〜10mmの
クリアランスを設けたことを特徴とする超電導複合ビレ
ットの熱間押出方法。
1. A superconducting composite billet in which a superconducting material is filled in a metal pipe serving as a stabilizing material is heated to a predetermined temperature, charged into a container sleeve in which a die is arranged in front, and heated to the predetermined temperature. The superconducting composite billet is pressed from behind by a stem, and the superconducting composite billet is extruded from the die. In the hot extrusion method, a clearance of 2 mm to 10 mm is provided between the inner peripheral surface of the container sleeve and the outer peripheral surface of the stem. A hot extrusion method for a superconducting composite billet, the method comprising:
【請求項2】 安定化材となす金属製パイプ内に充填す
る超電導素材が、超電導棒材、又は安定化金属を複合し
た単芯或いは多芯超電導線を多数本束ねた超電導線集合
体であることを特徴とする請求項1記載の超電導複合ビ
レットの熱間押出方法。
2. A superconducting material to be filled in a metal pipe serving as a stabilizing material is a superconducting rod material or a superconducting wire aggregate obtained by bundling a large number of single-core or multi-core superconducting wires obtained by combining a stabilizing metal. The hot extrusion method for a superconducting composite billet according to claim 1, wherein:
【請求項3】 安定化材となす金属製パイプ内に充填す
る超電導素材が、Nb金属又はNbTi合金のいずれか
を含むものであることを特徴とする請求項1又は請求項
2記載の超電導複合ビレットの熱間押出方法。
3. The superconducting composite billet according to claim 1, wherein the superconducting material filled in the metal pipe serving as the stabilizing material contains one of Nb metal and NbTi alloy. Hot extrusion method.
JP5273097A 1993-10-05 1993-10-05 Hot extrusion method of superconducting composite billet Expired - Lifetime JP2644432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5273097A JP2644432B2 (en) 1993-10-05 1993-10-05 Hot extrusion method of superconducting composite billet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5273097A JP2644432B2 (en) 1993-10-05 1993-10-05 Hot extrusion method of superconducting composite billet

Publications (2)

Publication Number Publication Date
JPH07134920A JPH07134920A (en) 1995-05-23
JP2644432B2 true JP2644432B2 (en) 1997-08-25

Family

ID=17523102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5273097A Expired - Lifetime JP2644432B2 (en) 1993-10-05 1993-10-05 Hot extrusion method of superconducting composite billet

Country Status (1)

Country Link
JP (1) JP2644432B2 (en)

Also Published As

Publication number Publication date
JPH07134920A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
US3836404A (en) Method of fabricating composite superconductive electrical conductors
JP2644432B2 (en) Hot extrusion method of superconducting composite billet
US5434129A (en) Method for manufacturing high tc superconductor coils
CN112037996B (en) Preparation method of CuNb single core rod for superconducting wire
JP2019079672A (en) RAPID HEATING QUICK COOLING TREATED PRECURSOR WIRE FOR Nb3Al SUPERCONDUCTING WIRE, AND HEAT TREATMENT METHOD OF PRECURSOR WIRE FOR Nb3Al SUPERCONDUCTING WIRE
JP2004207013A (en) Manufacturing method of nb3al superconductive wire rod and nb3al superconductive wire rod obtained by the method
RU2159474C1 (en) Method for producing niobium-titanium base superconducting wires
JP3948291B2 (en) Nb3Al compound superconducting wire and method for producing the same
JP4434576B2 (en) Method for producing Nb3 (Al, Ge) or Nb3 (Al, Si) compound-based superconducting multi-core wire
JPH07114842A (en) Extruding method for nbti superconducting billet
JPS62259612A (en) Production of stainless steel fiber
JPS63102115A (en) Manufacture of superconductive alloy wire material
JP2001052547A (en) Nb3 COMPOUND-BASED SUPERCONDUCTIVE CABLE AND ITS MANUFACTURING METHOD
JP2002063816A (en) MANUFACTURING METHOD OF Nb3Al-SYSTEM SUPERCONDUCTING WIRE
JPH03108212A (en) Manufacture of superconductive alloy wire material
JPH04138820A (en) Manufacture of extremely fine multiple superconductive wire
JPS6047682B2 (en) Dumet line
JPH05266735A (en) Manufacture of compound superconducting wire
JPH04259709A (en) Superconductive wire manufacture method
JPH0381915A (en) Manufacture of composite superconductive material
JPH06203667A (en) Manufacture of superconducting composite billet
JPH0652740A (en) Manufacture of superconductive wire
JPH0569244B2 (en)
JPH0668725A (en) Manufacture of superconducting alloy wire
JPH0569243B2 (en)