JP2638081B2 - Thin-walled denitration catalyst - Google Patents

Thin-walled denitration catalyst

Info

Publication number
JP2638081B2
JP2638081B2 JP63134678A JP13467888A JP2638081B2 JP 2638081 B2 JP2638081 B2 JP 2638081B2 JP 63134678 A JP63134678 A JP 63134678A JP 13467888 A JP13467888 A JP 13467888A JP 2638081 B2 JP2638081 B2 JP 2638081B2
Authority
JP
Japan
Prior art keywords
catalyst
expanded metal
plate
catalytically active
active component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63134678A
Other languages
Japanese (ja)
Other versions
JPH01304051A (en
Inventor
孝司 道本
信義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP63134678A priority Critical patent/JP2638081B2/en
Publication of JPH01304051A publication Critical patent/JPH01304051A/en
Application granted granted Critical
Publication of JP2638081B2 publication Critical patent/JP2638081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、排ガス中の窒素酸化物(以下、NOxと略称
する)を低減するための脱硝触媒に係り、特に多孔の薄
板に触媒成分を塗布した薄肉板状脱硝触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a denitration catalyst for reducing nitrogen oxides (hereinafter abbreviated as NOx) in exhaust gas. The present invention relates to a coated thin plate-shaped denitration catalyst.

〔従来の技術〕[Conventional technology]

脱硝用板状触媒の製造方法の1つとして、金属製薄板
に千鳥配置に所定長さの線状の切れ目を入れ、この線状
切れ目と直角方向に薄板に引張り力を加え、網目状の薄
板(エキスパンドメタルという)を形成し、このエキス
パンドメタルに触媒活性成分の担持のための凹凸付与の
ためアルミなどを溶射後、触媒活性成分を塗布し、所望
の形状に成形し、乾燥、焼成工程を経て、板状触媒とす
る方法が米国特許第4285838号に提案されている。第7
図のように、エキスパンドメタル1に成形すると、材料
とした薄板の厚さTに比較して厚さT0のように厚くな
り、第5図に示すようにその厚さ分だけ触媒活性成分2
を多量に担持することになるため、厚い板状触媒4とな
り、活性が高くなると考えられていた。
As one method of producing a plate catalyst for denitration, a linear cut having a predetermined length is staggered in a metal thin plate, and a tensile force is applied to the thin plate in a direction perpendicular to the linear cut to form a mesh-like thin plate. (Expanded metal) is formed, and the expanded metal is sprayed with aluminum or the like to impart concavities and convexities for supporting the catalytically active component, then the catalytically active component is applied, formed into a desired shape, and dried and fired. After that, a method of using a plate catalyst has been proposed in US Pat. No. 4,258,838. Seventh
As shown, when forming the expanded metal 1, thick becomes as thick T 0 in comparison with the thickness T of the thin plate and the material, its thickness min as shown in Figure 5 only the catalytically active component 2
Was carried in a large amount, so that the catalyst was considered to be a thick plate-like catalyst 4 and to have a high activity.

第9図にエキスパンドメタル1の平面図を示し、その
断面図を第8図に示す。エキスパンドメタル1の表面に
溶射材3を溶射した様子を第10図に示す。そして、その
上に触媒活性成分2を塗布した様子を第11図に示し、エ
キスパンドメタル1の表面に溶射材3が凹凸を形成し、
この凹凸によって触媒活性成分2が保持される。触媒活
性成分2が塗布された状態を第12図に示し、その断面詳
細図を第13図に示す。触媒活性成分2は、エキスパンド
メタル1の表面および網目の間隙に保持されている。な
お、エキスパンドメタル1の詳細拡大図を第6図に示
し、そのB−B線断面図を第7図に示す。金属薄板をエ
キスパンドメタル1に成形すると、材料基板の厚さTと
比較すると、第7図に示すようにエキスパンドメタル1
の厚さは厚さT0のように厚くなり、その厚さ分だけ触媒
活性成分2を担持することとなる。
FIG. 9 shows a plan view of the expanded metal 1, and its sectional view is shown in FIG. FIG. 10 shows a state where the thermal spray material 3 is thermally sprayed on the surface of the expanded metal 1. FIG. 11 shows a state in which the catalytically active component 2 is applied thereon, and the thermal spray material 3 forms irregularities on the surface of the expanded metal 1.
The unevenness holds the catalytically active component 2. FIG. 12 shows a state where the catalytically active component 2 is applied, and FIG. 13 shows a detailed sectional view thereof. The catalytically active component 2 is held on the surface of the expanded metal 1 and the gaps of the mesh. FIG. 6 shows a detailed enlarged view of the expanded metal 1, and FIG. 7 shows a sectional view taken along the line BB. When the thin metal plate is formed into the expanded metal 1, the expanded metal 1 is compared with the thickness T of the material substrate as shown in FIG.
Becomes thick like the thickness T 0 , and the catalytically active component 2 is supported by the thickness.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

上述した従来技術になる板状触媒においては、基板と
なる金属の薄板を加工して、できるだけ見掛け厚さの厚
いエキスパンドメタルとし、担持できる触媒量を増加さ
せることにより触媒の活性を高くするとともに、塗布さ
れた触媒の剥離・脱落を防ぐことに注力していた。しか
しながら、触媒活性成分は高価であり、できるだけ担持
触媒量を節減して高い触媒活性を維持することが必要で
あり、この点に関しては従来技術では配慮がなされてい
なかった。また、上記した従来触媒では、薄板をエキス
パンドメタルに加工して触媒の担持力を増すとともに、
さらにエキスパンドメタルにアルミニウムなどの金属を
溶射して表面の凹凸を増し、触媒担持力を強化し、触媒
の運搬、取付けや使用時の加熱、冷却による膨脹、収縮
による触媒活性成分の脱落を少なくしていたが完全では
なかった。
In the above-mentioned conventional plate-shaped catalyst, a thin metal plate serving as a substrate is processed into an expanded metal having an apparent thickness as large as possible, and the activity of the catalyst is increased by increasing the amount of supported catalyst, The focus was on preventing the applied catalyst from peeling and falling off. However, the catalytically active component is expensive, and it is necessary to reduce the amount of the supported catalyst and maintain a high catalytic activity. This has not been considered in the prior art. In addition, in the above-mentioned conventional catalyst, a thin plate is processed into expanded metal to increase the supporting force of the catalyst,
In addition, metal such as aluminum is sprayed on the expanded metal to increase the unevenness of the surface, strengthening the catalyst carrying force, and reducing the loss of catalytically active components due to expansion and shrinkage due to heating, cooling during transport, installation and use of the catalyst. Was not perfect.

〔課題を解決するための手段〕[Means for solving the problem]

上記問題点は、薄板を加工して作ったエキスパンドメ
タルに触媒活性成分を担持させる板状の脱硝触媒におい
て、上記触媒活性成分を担持させる前のエキスパンドメ
タルを圧延加工したのち、触媒活性成分を塗布し、乾
燥、焼成して得られた厚さ0.4〜0.7mmの薄肉板状脱硝触
媒により解決される。
The above problem is that, in a plate-shaped denitration catalyst in which a catalytically active component is supported on an expanded metal formed by processing a thin plate, the expanded metal before supporting the catalytically active component is rolled, and then the catalytically active component is applied. Then, it is solved by a thin plate-shaped denitration catalyst having a thickness of 0.4 to 0.7 mm obtained by drying, baking and drying.

〔実施例〕〔Example〕

第14図に示すように、脱硝用板状触媒4は脱硝反応器
5の中に配置され、ボイラ等のNOxを含有する排ガス6
に還元剤としてのアンモニアを混合したのち、ダクト7
にて反応器5へ導き、排ガス中のNOxを除去している。
その詳細は、第15図に示すように、板状触媒4を排ガス
6の流れに沿って配置し、排ガス6がその板状触媒4、
4の間を流れ、触媒を媒介として排ガス中のNOxとアン
モニアが反応するようになっている。なお、板状触媒4
は、積層配置した場合、板状触媒4同士の間隔を保つた
め、第16図、第17図のように曲げ加工される。
As shown in FIG. 14, a plate catalyst 4 for denitration is disposed in a denitration reactor 5 and an exhaust gas 6 containing NOx such as a boiler.
After mixing ammonia as a reducing agent into the duct 7
To the reactor 5 to remove NOx in the exhaust gas.
In detail, as shown in FIG. 15, the plate catalyst 4 is arranged along the flow of the exhaust gas 6, and the exhaust gas 6
4, NOx and ammonia in the exhaust gas react via the catalyst. The plate-like catalyst 4
When they are stacked and arranged, they are bent as shown in FIGS. 16 and 17 in order to maintain an interval between the plate-like catalysts 4.

本発明による触媒の一実施例を第1図に示すが、第2
図、第3図に示すように圧延加工して見掛け厚さの薄く
なったエキスパンドメタル1に、触媒活性成分2が保持
されている。2点鎖線で示した範囲が板状触媒4の厚さ
となり、板状触媒4自体も薄肉になる。
One embodiment of the catalyst according to the invention is shown in FIG.
As shown in FIG. 3 and FIG. 3, a catalytically active component 2 is held in an expanded metal 1 whose apparent thickness has been reduced by rolling. The range shown by the two-dot chain line is the thickness of the plate catalyst 4, and the plate catalyst 4 itself is also thin.

第11図で示すように、圧延加工したエキスパンドメタ
ル1の表面にアルミニウム(溶射材3)を酸化雰囲気で
溶射し、その上に触媒活性成分2を塗布し、成形、乾
燥、焼成等の工程を経て、第16図に示すような板状触媒
4を得た。
As shown in FIG. 11, aluminum (sprayed material 3) is sprayed on the surface of the rolled expanded metal 1 in an oxidizing atmosphere, and a catalytically active component 2 is applied thereon. As a result, a plate catalyst 4 as shown in FIG. 16 was obtained.

以下に具体的な実施例を述べる。 Specific examples will be described below.

実施例1 ステンレスの薄板SUS304、0.2mm厚さの材料をきざみ
幅(第6図の符号8参照)=0.7mm、メッシュ長目方向
の中心間距離LW=7.0mm、メッシュ短目方向の中心間距
離SW=2.5mmのエキスパンドメタル1に成形後、その後
圧延加工して溶射、触媒活性成分(チタン酸化物を主成
分とし、これにモリブテンおよびバナジウム酸化物を添
加したもの)2を塗布、乾燥、焼成等の工程を経て得た
板状触媒4の性能を、エキスパンドメタル1を加工した
ままのもので上記同様の工程を経て製作したものと比較
すると、低ダスト用触媒のものについては第18図、第19
図および第20図のようになった。すなわち、触媒板厚は
従来0.8〜0.9mmであったものが、0.6mm、0.7mmとなっ
た。脱硝率については、第18図に示すように0.6mmまで
薄肉化しても、従来触媒と同等の脱硝率が得られた。第
19図は、触媒活性成分の重量割合で脱硝率を整理したも
のであるが、従来より触媒活性成分を40%低減しても同
等の脱硝率が得られた。第20図に落下剥離強度を示す
が、圧延することにより、加工硬化によりエキスパンド
メタル1の剛性が増加することと、エキスパンドメタル
1の表面が圧延により変形し、従来第5図のA部のよう
であったものが第3図A部のように変形し、触媒活性成
分2の保持力が増加したため、落下剥離強度は圧延する
ことにより強化されるものと考えられる。
Example 1 A stainless steel thin plate SUS304, 0.2 mm thick material, step size (see reference numeral 8 in FIG. 6) = 0.7 mm, mesh center-to-center distance LW = 7.0 mm, mesh center-to-center distance After forming into an expanded metal 1 having a distance SW = 2.5 mm, it is rolled and then subjected to thermal spraying, and a catalytically active component (containing titanium oxide as a main component, to which molybdenum and vanadium oxide are added) 2 is applied, dried, When the performance of the plate-like catalyst 4 obtained through a process such as calcination is compared with that produced through the same process as described above with the expanded metal 1 being processed, FIG. , 19th
The result is as shown in FIG. 20 and FIG. That is, the catalyst plate thickness was 0.6 mm and 0.7 mm instead of 0.8 to 0.9 mm conventionally. Regarding the denitration rate, as shown in FIG. 18, even if the thickness was reduced to 0.6 mm, the denitration rate equivalent to that of the conventional catalyst was obtained. No.
In FIG. 19, the denitration rate is arranged by the weight ratio of the catalytically active component. Even if the catalytically active component is reduced by 40%, the same denitrification rate is obtained. FIG. 20 shows the drop peel strength. The rolling increases the rigidity of the expanded metal 1 due to work hardening, and the surface of the expanded metal 1 is deformed by rolling. Is deformed as shown in part A of FIG. 3 and the holding power of the catalytically active component 2 is increased, and it is considered that the drop peel strength is enhanced by rolling.

実施例2 次に、同じ材料(SUS304、0.2mm厚さ)を用いてきざ
み幅0.59mm、メッシュ長目方向の中心間距離LW=7.0m
m、メッシュ短目方向の中心間距離SW=2.5mmの前記
(1)項のエキスパンドメタルより目の開孔率を30%増
加し、厚さを0.05mm薄くしたエキスパンドメタル1を成
形し、実施例1と同様に板状触媒4を製作し、前記従来
触媒(低ダクト用触媒)と性能を比較すると第21図、第
22図および第23図のようになった。脱硝率については、
第21図に示すように0.4mm厚さまで薄肉化しても、従来
触媒と同等の脱硝率が得られた。第22図は、触媒活性成
分の重量割合で脱硝率を整理したものであるが、従来よ
り50%低減しても同等の脱硝率が得られた。第23図に落
下剥離強度を示すが、前記エキスパンドメタルと同様、
圧延することにより、落下剥離強度が強化された。特
に、開孔率を30%増加したため、第23図に示すように圧
延をしないと落下剥離強度が従来触媒に較べ弱くなる
が、圧延することにより従来触媒以上の強度が得られ
た。
Example 2 Next, the same material (SUS304, 0.2 mm thick) was used, and the step width was 0.59 mm, and the center distance LW in the mesh length direction LW = 7.0 m
m, the expanded metal of the above-mentioned item (1) having a center-to-center distance SW of 2.5 mm in the short-side direction of the mesh was formed by increasing the opening ratio of the eyes by 30% and reducing the thickness by 0.05 mm by 30 mm. A plate-like catalyst 4 was manufactured in the same manner as in Example 1, and the performance was compared with that of the conventional catalyst (catalyst for a low duct).
The results are as shown in FIG. 22 and FIG. Regarding the denitration rate,
As shown in FIG. 21, even when the thickness was reduced to 0.4 mm, a denitration rate equivalent to that of the conventional catalyst was obtained. FIG. 22 shows the denitration rate arranged by the weight ratio of the catalytically active component. Even if the denitration rate was reduced by 50%, the same denitration rate was obtained. FIG. 23 shows the drop peel strength, similar to the expanded metal,
By rolling, the drop peel strength was enhanced. In particular, since the porosity was increased by 30%, as shown in FIG. 23, the drop peel strength was weaker than that of the conventional catalyst without rolling as shown in FIG. 23, but the rolling provided higher strength than the conventional catalyst.

実施例3 実施例2のエキスパンドメタルを用いて、ダスト含有
率の高い排ガス用触媒においても、前記同様に板状触媒
4を製作し、従来のダスト含有率の高い排ガス用触媒と
の性能比較を第24図および第25図に示す。ダストによる
触媒の摩耗があるので、触媒活性成分の塗布量を増加
し、完成後の板厚は低ダスト排ガス用より厚くなってい
る。脱硝率においては、0.6mmまで薄肉化しても従来触
媒と同様の脱硝率が得られた。また、触媒活性成分量に
おいても、50%低減しても同等の脱硝率が得られた。
Example 3 In the case of the exhaust gas catalyst having a high dust content using the expanded metal of Example 2, a plate-like catalyst 4 was produced in the same manner as described above, and the performance was compared with a conventional exhaust gas catalyst having a high dust content. This is shown in FIGS. 24 and 25. Since there is abrasion of the catalyst due to dust, the coating amount of the catalytically active component is increased, and the plate thickness after completion is larger than that for low dust exhaust gas. Regarding the denitration rate, the same denitration rate as that of the conventional catalyst was obtained even when the thickness was reduced to 0.6 mm. In addition, even when the amount of the catalytically active component was reduced by 50%, the same denitration ratio was obtained.

エキスパンドメタルを第4図のようにエキスパンドメ
タル加工前の基材厚さ程度までフラットに圧延したもの
を用いて低ダスト用触媒を前記と同様に製作し、従来触
媒と性能比較したものを第26図および第27図に示す。脱
硝率においては、従来触媒とほぼ同等の脱硝率が得られ
たが、落下剥離強度においては、フラット加工によりエ
キスパンドメタルの変形による触媒活性成分の保持力が
著しく低下するため、従来触媒より落下剥離強度が低下
したが、排ガス中のダストがないクリーンガスには使用
可能であり、クリーンガス用板状触媒としてこのフラッ
ト加工した薄肉板状触媒は有効である。
As shown in FIG. 4, a low-dust catalyst was manufactured in the same manner as described above using an expanded metal that was flat-rolled to the thickness of the base material before processing the expanded metal. This is shown in FIG. 27 and FIG. The denitration rate was almost the same as that of the conventional catalyst, but the drop peel strength was significantly lower than that of the conventional catalyst because flat processing significantly reduced the retention of catalytically active components due to deformation of the expanded metal. Although the strength is reduced, it can be used for a clean gas having no dust in the exhaust gas, and the flat processed thin plate catalyst is effective as a clean gas plate catalyst.

〔発明の効果〕〔The invention's effect〕

本発明を実施することにより、完成後の触媒厚さを薄
くして触媒使用量を40〜50%節減しても、同等の脱硝性
能のある板状触媒が得られた。しかも、落下テストによ
る触媒活性成分の剥離率も低下させることができた。
By carrying out the present invention, a plate-like catalyst having the same denitration performance was obtained even if the catalyst thickness after completion was reduced and the amount of catalyst used was reduced by 40 to 50%. In addition, the peeling rate of the catalytically active component in the drop test could be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明になる一実施例の板状触媒の断面図、
第2図は、圧延後のエキスパンドメタルの拡大斜視図、
第3図は、第2図のA−A線断面図、第4図は、本発明
による他の実施例の板状触媒断面図、第5図は、圧延加
工しないエキスパンドメタルの断面図、第6図は、圧延
加工していないエキスパンドメタルの斜視図、第7図
は、第6図のB−B線断面図、第8図および第9図は、
エキスパンドメタルの説明図、第10図は、金属材料を溶
射したエキスパンドメタルの断面図、第11図は、溶射部
の拡大説明図、第12図な、板状触媒平面図、第13図は、
第12図の断面図、第14図は脱硝装置の説明図、第15図
は、板状触媒の使用状況説明図、第16図および第17図
は、成形加工した板状触媒の斜視図、第18図、第21図、
第24図および第26図は、触媒板厚と脱硝率の関係を示す
図、第19図、第22図および第25図は、付着原料割合と脱
硝率の関係を示す図、第20図、第23図および第27図は、
触媒板厚と落下はくり量の関係を示す図である。 1……エキスパンドメタル、2……触媒活性成分、3…
…溶射材、4……板状触媒、10……圧延による湾曲部。
FIG. 1 is a cross-sectional view of a plate catalyst of one embodiment according to the present invention,
FIG. 2 is an enlarged perspective view of the expanded metal after rolling,
FIG. 3 is a cross-sectional view taken along line AA of FIG. 2, FIG. 4 is a cross-sectional view of a plate-shaped catalyst according to another embodiment of the present invention, FIG. 6 is a perspective view of the expanded metal that has not been rolled, FIG. 7 is a cross-sectional view taken along the line BB of FIG. 6, FIG. 8 and FIG.
Explanatory drawing of the expanded metal, FIG. 10 is a cross-sectional view of the expanded metal sprayed with a metal material, FIG. 11 is an enlarged explanatory view of the sprayed portion, FIG.
FIG. 12 is a cross-sectional view of FIG. 12, FIG. 14 is an explanatory diagram of a denitration apparatus, FIG. 15 is an explanatory diagram of a use state of a plate catalyst, FIG. 16 and FIG. 17 are perspective views of a formed plate catalyst, FIG. 18, FIG. 21,
24 and 26 are diagrams showing the relationship between the catalyst plate thickness and the denitration rate, FIG. 19, FIG. 22 and FIG. 25 are diagrams showing the relationship between the attached raw material ratio and the denitration ratio, Figures 23 and 27
It is a figure which shows the relationship between a catalyst plate thickness and a drop amount. 1 ... expanded metal, 2 ... catalytically active component, 3 ...
... thermal spray material, 4 ... plate catalyst, 10 ... curved part by rolling.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】薄板を加工して作ったエキスパンドメタル
に触媒活性成分を担持させる板状の脱硝触媒において、
上記触媒活性成分を担持させる前のエキスパンドメタル
を圧延加工したのち、触媒活性成分を塗布し、乾燥、焼
成して得られた厚さ0.4〜0.7mmの薄肉板状脱硝触媒。
1. A plate-shaped denitration catalyst in which a catalytically active component is supported on an expanded metal produced by processing a thin plate,
A thin plate-shaped denitration catalyst having a thickness of 0.4 to 0.7 mm, obtained by rolling the expanded metal before supporting the catalytically active component, applying the catalytically active component, drying and calcining the expanded metal.
JP63134678A 1988-06-01 1988-06-01 Thin-walled denitration catalyst Expired - Lifetime JP2638081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63134678A JP2638081B2 (en) 1988-06-01 1988-06-01 Thin-walled denitration catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63134678A JP2638081B2 (en) 1988-06-01 1988-06-01 Thin-walled denitration catalyst

Publications (2)

Publication Number Publication Date
JPH01304051A JPH01304051A (en) 1989-12-07
JP2638081B2 true JP2638081B2 (en) 1997-08-06

Family

ID=15134012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63134678A Expired - Lifetime JP2638081B2 (en) 1988-06-01 1988-06-01 Thin-walled denitration catalyst

Country Status (1)

Country Link
JP (1) JP2638081B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5792432A (en) * 1994-11-15 1998-08-11 Babcock-Hitachi Kabushiki Kaisha Catalyst unit and gas purifying apparatus
PL352343A1 (en) * 2002-02-20 2003-08-25 Zbigniew Tokarz Catalyst, in particular for therocatalytic transformation of plastified plastic wastes and method of obtaining a catalyst therefor

Also Published As

Publication number Publication date
JPH01304051A (en) 1989-12-07

Similar Documents

Publication Publication Date Title
US5431330A (en) Method and apparatus for applying brazing material to a metal honeycomb body
US4455281A (en) Plate-shaped catalyst unit for NOx reduction of exhaust gas
US4318888A (en) Wound foil structure comprising distinct catalysts
US4382323A (en) Method for manufacturing a wound foil structure comprising distinct catalysts
DE69722511D1 (en) nitrogen oxide
JP2638081B2 (en) Thin-walled denitration catalyst
EP3380233B1 (en) Method of preparation of a monolithic catalyst for selective catalytic reduction of nitrogen oxides
JPS63274455A (en) Plate-shaped catalyst for removing nitrogen oxide from exhaust gas and its production
JP5081420B2 (en) Catalyst production method and catalyst produced by the method
JP2725800B2 (en) Method for producing denitration catalyst
JPH06246176A (en) Production of plate catalyst and processing solution of metal substrate for the catalyst
JP2019503842A (en) Process for the preparation of monolith catalysts for selective catalytic reduction of nitrogen oxides
JPS6213054B2 (en)
JP2000117120A (en) Catalyst structure body
JPH0360739A (en) Supporting matrix for exhaust gas purifier and its production
JP7474854B2 (en) Denitrification catalyst and exhaust gas purification method
JP2533875B2 (en) Method for producing plate catalyst for removing nitrogen oxides
JP2001252574A (en) Catalyst structure for cleaning exhaust gas and reticulated material used for this
JPH0725226Y2 (en) Exhaust gas purification device
JPS63147548A (en) Preparation of catalyst for denitration
JP2002001129A (en) Method for producing plate type catalyst structure
JPH02152712A (en) Cutting method and device for plate catalyzer
JP2002336706A (en) Catalyst structure for cleaning exhaust gas and method for manufacturing the same
JPH0268145A (en) Preparation of plate-shaped catalyst for removing nitrogen oxide
JPH10156191A (en) Production of mutilayered plate catalyst and production device therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12