JP2636416C - - Google Patents

Info

Publication number
JP2636416C
JP2636416C JP2636416C JP 2636416 C JP2636416 C JP 2636416C JP 2636416 C JP2636416 C JP 2636416C
Authority
JP
Japan
Prior art keywords
lead
active material
expanding
electrode plate
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Publication date

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は密閉形鉛蓄電池に関するもので、特にコンピュータ、通信機器等のバ
ックアップ電源として、或は建物等の非常用電源として使用される大容量の背の
高い密閉形鉛蓄電池に関するものである。 〔従来技術とその問題点〕 密閉形鉛蓄電池は通常、充電終期に正極で発生する酸素ガスを負極に移動させ
、負極活物質と反応させてこれを消費すると共に負極板を放電状態にして負極か
らの水素ガスの発生を抑制するいわゆる「O2サイクル」を使って密閉化してい
る。 一方、格子の製造方法としては従来の鋳造法によるものの他、鉛又は鉛合金の
連続シートの一部を網目状に展開拡張してここに活物質を充填し、非展開部分を 集電部とするエキスパンド法が実用化されている。この方法は生産性が高く、極
板に占める格子の割合を小さく、活物質の割合を大きくできるので容量を増加さ
せることが可能であり、自動車用鉛蓄電池を中心に密閉形鉛蓄電池にも使われて
いる。従来実用化されている極板は、第1図に示すようにその巾(Pw)が40
〜150mm、高さ(H)が70〜140mm程度であり、この程度の大きさで
あれば、自動車用のように遊離した電解液が沢山存在する鉛蓄電池の極板として
は致命的な欠陥はなかった。しかしながら密閉形鉛蓄電池は遊離した電解液が存
在しないため、極群の熱容量が小さく、高率での充・放電で格子が溶断し、最悪
の場合には爆発することさえある。この防止のための1つの方法として、特開昭
64−19674号公報に記載されているように、格子耳部に単位断面積当たり
の活物質の理論容量を2.5Ah/mm2以下とすることが有効である。しかし
、これだけでは不十分であり、電池が誤って短絡された場合、網目部を形成して
いるストランド、特に集電部材直下のストランドが溶断することがあった。しか
も本発明の密閉形鉛蓄電池のように大容量になると、極板巾は約150mm程度
で従来のものと余り変りがないにも拘らず、高さが250〜500mmにもなる
。従って上部にある非展開の集電部直下のストランドには極めて大きな電流が流
れるためその安全性に問題が生じている。 更に極板下部と集電部との抵抗もストランドが従来のように細かいと極めて高
く、放電特性、特に高率放電特性を低下させるばかりでなく、極板下部の充電効
率をも著しく低下させて、負極のサルフェーションを招来し、電池の寿命が短く
なるという欠点がある。 また、密閉形鉛蓄電池が遊離した流動する電解液を有しないため、極板耳部は
気体中に露出するのでその耳部の断面積についてはそれが溶断しないよう特別な
配慮が必要であること、及びエキスパンド極板を使用するに当たってはシート厚
さが薄いために特にその配慮が重要であることは前に述べた通りである。集電耳
に関しては前記特開昭64−19674号公報に開示されている技術を用いれば
良いが、例え集電耳部にこのような配慮をしてもなお網目部を構成するストラン
ド、特に集電部直下のストランド断面積に関して配慮がないと溶断、爆発の危険
があることが明らかになった。この部分は、集電耳部のように電池空間内に露出 してはいなく、そのまわりは活物質、セパレータ及びその孔内に存在する電解液
によって囲まれているので所要断面積は耳部よりは少なくても良いが、本発明の
密閉形鉛蓄電池のように極板が大きく、縦長になるとその値は大変限定されるこ
とが明らかになった。 〔発明の目的〕 本発明は上記欠点を解消したもので、放電特性にすぐれた安全性の高い密閉形
鉛蓄電池を提供することにある。 〔発明の構成〕 本発明は、その特許請求の範囲に記載した通りの密閉形鉛蓄電池である。 〔実施例〕 以下、本発明の実施例について述べる。 実施例1. 第2図に示すように、鉛−カルシウム合金からなる種々の厚さ(ST)の連続
シートを種々の刻み巾(Cw)でエキスパンド加工して巾(Pw)150mm、高
さ(H)330mmの大きさの格子を得た。この格子の網目部に活物質ペースト
を充填し、負極板としたが、網目部を構成するストランド1の刻み巾(Cw)は
シート厚さ(ST)と同じにし、非展開部2に接するストランド1の数は12本
、極板厚さは2mm、そして活物質量は1枚当たり290gで一定とした。なお
、第3図は第2図のA部(ストランド)の断面拡大図である。 このようにして得た種々の負極板を用いて、鋳造格子による正極板及びセパレ
ータと積層し、常法により密閉形鉛蓄電池を組立てた。負極板の数はセル当たり
12枚、正極板のそれは11枚で、組立てられた密閉形鉛蓄電池の容量は300
Ah/10HRである。 組立てた密閉形鉛蓄電池の容量試験、短絡試験、放電深度50%での寿命試験
を実施したところ第1表のNo.1〜5に示す結果を得た。 実施例2. 第4図に示すように、集電親骨3を網目部4の展開方向DMと平行に配置し、
実施例1に示した手順により種々の密閉形鉛蓄電池を製作し、各種の試験を実施
した。その結果を第1表のNo.6〜11に示すが、ストランドの刻み巾はシート
さと同じにし、非展開部(集電親骨)に接するストランドの数は26本であり、
極板厚さ、活物質量等は上記実施例1と同じであった。 第1表の結果から明らかなように、非展開部直下のストランド断面積に対する
負極活物質量の割合を10g/mm2以下にすれば、容量は大きく、電池が誤っ
て短絡されたとしても、ストランドが溶断し、爆発したりすることがない。その
上、特に6g/mm2以下にすれば、ストランド部の抵抗が小さくなるので、極
板下部にまで充電々流が良く流れるので、負極板がサルフェーションして短寿命
になることもなく、長寿命の電池になる。 網目部の展開方向と平行に非展開集電耳部を配置するのが、本発明の達成には
最も容易で効果が大きい。このようにすれば、鉛または鉛合金の連続シートの厚
さが薄くても本発明の目的が達成され、その分多くの活物質を充填することがで
き、しかも経済的である。このような格子は、第5図に示すように、 i)鉛又は鉛合金の連続シートの巾方向に平行にスリットを入れる工程 ii)該スリットを展開拡張し、連続した網状部を形成する工程 iii)網状部の長さ方向に少なくとも1本の非展開の鉛又は鉛合金からなる連続
シートを連続して接合する工程 iv)網状部に鉛ペーストを塗着する工程 v)鉛ペースト塗着後その両面を紙状体にて補強し連続した極板にする工程 vi)連続した極板の巾方向が極板の高さ方向になるように、そして非展開の鉛又
は鉛合金からなる連続シートに集電耳部を形成するように切断し、独立した極板
とする工程 によって製造することが可能である。 極板高さが、低い場合には本発明の構成は特に有効ではない。極板高さが実施
例の如く、200mmを超える場合であって、かつその巾が150mm位よりも
狭い場合に有効である。 〔発明の効果〕 このように本発明によれば大容量の背の高い、放電特性にすぐれた、安全性の
高い密閉形鉛蓄電池を提供できるので、その工業的価値は大きい。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sealed lead-acid battery, and particularly to a large-capacity lead-acid battery used as a backup power source for a computer, a communication device or the like, or as an emergency power source for a building or the like. And a tall sealed lead-acid battery. [Prior art and its problems] A sealed lead-acid battery usually transfers oxygen gas generated at the positive electrode at the end of charging to the negative electrode, reacts with the negative electrode active material, consumes it, and discharges the negative electrode plate to the negative electrode. It is sealed using a so-called “O 2 cycle” that suppresses the generation of hydrogen gas from the atmosphere. On the other hand, as a method of manufacturing a lattice, in addition to a conventional casting method, a part of a continuous sheet of lead or a lead alloy is expanded and expanded in a mesh shape, filled with an active material, and a non-deployed part is formed as a current collector. Expanding method has been put to practical use. This method has a high productivity and can reduce the ratio of the grid to the electrode plate and the ratio of the active material, so that the capacity can be increased, and it can be used for sealed lead-acid batteries mainly for automotive lead-acid batteries. Have been done. Conventionally, a pole plate which has been put into practical use has a width (Pw) of 40 as shown in FIG.
150150 mm and the height (H) is about 70-140 mm. With such a size, a fatal defect as an electrode plate of a lead-acid battery in which a large amount of free electrolyte exists, such as for an automobile, Did not. However, since a sealed lead-acid battery does not have a free electrolyte solution, the heat capacity of the electrode group is small, and the grid is melted at a high rate of charge / discharge, and in the worst case, it may even explode. As one method for preventing this, as described in JP-A-64-19674, the theoretical capacity of the active material per unit cross-sectional area at the grid ears is set to 2.5 Ah / mm 2 or less. It is effective. However, this is not enough, and when the battery is short-circuited by mistake, the strand forming the mesh part, particularly the strand immediately below the current collecting member, may be melted. Moreover, when the capacity is large as in the sealed lead-acid battery of the present invention, the electrode plate width is about 150 mm, which is not much different from the conventional one, but the height is 250 to 500 mm. Therefore, an extremely large current flows through the strand immediately below the undeployed current collector at the upper part, which poses a problem in safety. Furthermore, the resistance between the lower part of the electrode plate and the current collector is extremely high when the strand is as fine as before, which not only lowers the discharge characteristics, especially the high-rate discharge characteristics, but also significantly lowers the charging efficiency of the lower part of the electrode plate. However, there is a disadvantage that sulfation of the negative electrode is caused and the life of the battery is shortened. In addition, since the sealed lead-acid battery does not have a free flowing electrolyte, the ears of the electrode plate are exposed to the gas, and special consideration must be given to the cross-sectional area of the ears so that they do not melt. As described above, when using the expanded electrode plate, it is particularly important to consider the thickness of the sheet because the sheet thickness is small. For the collecting ear, the technique disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 64-19674 may be used. However, even if such consideration is given to the collecting ear part, the strands constituting the mesh part, especially the collecting part, It became clear that there was a danger of fusing and explosion if there was no consideration for the cross-sectional area of the strand just below the electrical part. This part is not exposed in the battery space like the current collecting ear part, and its surrounding area is surrounded by the active material, the separator and the electrolyte present in the hole, so that the required cross-sectional area is smaller than that of the ear part. It is clear that the value may be small, but the value is very limited when the electrode plate is large and vertically long like the sealed lead storage battery of the present invention. [Object of the invention] An object of the present invention is to solve the above-mentioned disadvantages and to provide a highly safe sealed lead-acid battery having excellent discharge characteristics. [Constitution of the Invention] The present invention is a sealed lead-acid battery as described in the claims. EXAMPLES Hereinafter, examples of the present invention will be described. Embodiment 1 FIG. As shown in Figure 2, lead - various thicknesses made of calcium alloy (S T) expansion work to width (P w) in a continuous sheet of various increments width (C w) of 150 mm, a height (H ) A grid with a size of 330 mm was obtained. The active material paste was filled in meshes of the lattice, has been a negative electrode plate, increment width (C w) of the strand 1 which constitute the mesh portion is the sheet thickness (S T) and the same west, the non-development part 2 The number of the contacting strands 1 was 12, the thickness of the electrode plate was 2 mm, and the amount of the active material was constant at 290 g per sheet. FIG. 3 is an enlarged cross-sectional view of part A (strand) of FIG. Using the various negative plates obtained in this manner, a positive plate and a separator using a casting grid were laminated, and a sealed lead-acid battery was assembled by a conventional method. The number of negative plates is 12 per cell and that of positive plates is 11, and the capacity of the assembled sealed lead-acid battery is 300
Ah / 10HR. When a capacity test, a short-circuit test, and a life test at a discharge depth of 50% were performed on the assembled sealed lead-acid battery, the results shown in Table 1 Nos. 1 to 5 were obtained. Embodiment 2. FIG. As shown in FIG. 4, the current collecting ribs 3 arranged in parallel to the expansion direction D M of the mesh portion 4,
Various sealed lead-acid batteries were manufactured according to the procedure shown in Example 1, and various tests were performed. The results are shown in Table 1 Nos. 6 to 11, where the step width of the strand is the sheet thickness. The number of strands in contact with the non-deployed part (collecting ribs) is 26,
The electrode plate thickness, the amount of the active material, and the like were the same as those in Example 1 above. As is clear from the results in Table 1, if the ratio of the amount of the negative electrode active material to the cross-sectional area of the strand immediately below the non-deployed portion is 10 g / mm 2 or less, the capacity is large, and even if the battery is short-circuited erroneously, The strand does not melt and does not explode. In addition, when the thickness is set to 6 g / mm 2 or less, the resistance of the strand portion is reduced, and the charged current flows well to the lower part of the electrode plate. It becomes a battery with a long life. Arranging the non-deployable current collecting ears in parallel with the direction in which the mesh is deployed is the easiest and most effective way to achieve the present invention. In this way, even if the thickness of the continuous sheet of lead or lead alloy is small, the object of the present invention is achieved, and more active material can be filled by that amount, and it is economical. As shown in FIG. 5, such a lattice is formed by: i) a step of forming a slit parallel to the width direction of a continuous sheet of lead or a lead alloy; ii) a step of expanding and expanding the slit to form a continuous mesh portion. iii) continuous joining of at least one continuous sheet of undeployed lead or lead alloy in the longitudinal direction of the mesh portion iv) applying lead paste to the mesh portion v) after applying the lead paste Vi) a step of reinforcing the both surfaces with a paper-like body to form a continuous electrode plate vi) A continuous sheet made of undeployed lead or lead alloy so that the width direction of the continuous electrode plate becomes the height direction of the electrode plate It can be manufactured by a process in which a current collecting ear portion is cut to form an independent electrode plate. When the electrode plate height is low, the configuration of the present invention is not particularly effective. This is effective when the electrode plate height exceeds 200 mm as in the embodiment and the width is smaller than about 150 mm. [Effects of the Invention] As described above, according to the present invention, a high-capacity sealed lead-acid battery having a large capacity and a high height, excellent discharge characteristics, and high safety can be provided, and thus has a great industrial value.

【図面の簡単な説明】 第1図は従来の格子の形状を示す平面図、第2図、第4図は本発明に用いた格
子を示す平面図、第3図は第2図のA部の断面拡大図、第5図は第4図の格子を
得る方法の1つを示す平面図である。 1:ストランド 2:非展開部 3:集電親骨 4:網目部
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view showing the shape of a conventional grating, FIG. 2 and FIG. 4 are plan views showing a grating used in the present invention, and FIG. 5 is a plan view showing one method of obtaining the grating of FIG. 1: Strand 2: Non-deployed part 3: Current collecting rib 4: Net

Claims (1)

【特許請求の範囲】 1)鉛又は鉛合金の連続シートをエキスパンド法により展開拡張して形成した
網目部と非展開部とからなる格子を備え、該網目部には活物質を充填し、該非展
開部に集電親骨兼集電耳を形成した、高さが200mmを越え、幅が150mm
よりも狭いエキスパンド極板を用いた密閉形鉛蓄電池において、該非展開部に接
するストランドの総断面積に対する活物質量の割合を10g/mm2以下とした
ことを特徴とする密閉形鉛蓄電池。 2)鉛又は鉛合金の連続シートをエキスパンド法により展開拡張して形成した
網目部と非展開部とからなる格子を備え、該網目部には活物質を充填し、該非展
開部に集電親骨兼集電耳を形成した、高さが200mmを越え、幅が150mm
よりも狭いエキスパンド極板を用いた密閉形鉛蓄電池において、該非展開部に接
するストランドの総断面積に対する活物質量の割合を6g/mm2以下としたこ
とを特徴とする密閉形鉛蓄電池。 3)網目部の展開拡張方向に対して平行に非展開部を配置することを特徴とす
る請求項1又は請求項2記載の密閉形鉛蓄電池。
Claims: 1) A grid comprising a mesh portion formed by expanding and expanding a continuous sheet of lead or a lead alloy by an expanding method and a non-expanded portion is filled with an active material. Formed current collecting ribs and current collecting ears on the developed part , height is over 200 mm and width is 150 mm
A sealed lead-acid battery using a narrower expanded electrode plate, wherein the ratio of the amount of active material to the total cross-sectional area of the strand in contact with the non-deployed portion is 10 g / mm 2 or less. 2) A grid consisting of a mesh portion formed by expanding and expanding a continuous sheet of lead or a lead alloy by an expanding method and a non-expanded portion is filled with an active material. Formed a current collecting ear , the height exceeded 200 mm and the width was 150 mm
A sealed lead-acid battery using a narrower expanded electrode plate, wherein the ratio of the amount of active material to the total cross-sectional area of the strand in contact with the non-deployed portion is 6 g / mm 2 or less. 3) The sealed lead-acid battery according to claim 1 or 2, wherein the non-deployable portion is arranged in parallel with the direction of expansion and expansion of the mesh portion.

Family

ID=

Similar Documents

Publication Publication Date Title
KR101159099B1 (en) Pouch-Type Battery Case Having Gas-Gathering Residue Portion
US20030059674A1 (en) Electrode having expanded surface area and inner chamber encapsulating a highly reactive material for use in a liquid electrolyte battery
JP2006156371A (en) Negative electrode collector for lead-acid battery
JPH06181069A (en) Nonaqueous electrolyte secondary battery
WO2002059986A2 (en) Electrode with flag-shaped tap
US5429894A (en) Silver-iron battery
JPH10334940A (en) Sealed type lead-acid battery and manufacture thereof
JP2636416B2 (en) Sealed lead-acid battery
JPS60220574A (en) Chargeable electrochemical apparatus
JP4356321B2 (en) Lead acid battery
JP2003123846A (en) Nonaqueous electrolyte secondary cell
JP2636416C (en)
KR20130134238A (en) Secondary battery and method for fabricating the same
JP4314805B2 (en) Lead acid battery
JP7203804B2 (en) Electrodes for solid-state batteries
JP4904674B2 (en) Lead acid battery
JP2011159551A (en) Lead-acid storage battery
JP3079008B2 (en) Nickel metal hydride battery
JP3146438B2 (en) Sealed lead-acid battery
JPH02250260A (en) Hydrogen storage electrode and manufacture thereof
JP2765020B2 (en) Manufacturing method of sealed lead-acid battery
WO2008085001A1 (en) Negative plate for nickel/metal hydride secondary battery and fabrication method thereof
JPH10241734A (en) Rolled secondary battery
JP4239229B2 (en) Cylindrical non-aqueous electrolyte secondary battery
JPH10270030A (en) Sealed lead-acid battery