JP2633018B2 - Carbon containing refractories - Google Patents

Carbon containing refractories

Info

Publication number
JP2633018B2
JP2633018B2 JP1103413A JP10341389A JP2633018B2 JP 2633018 B2 JP2633018 B2 JP 2633018B2 JP 1103413 A JP1103413 A JP 1103413A JP 10341389 A JP10341389 A JP 10341389A JP 2633018 B2 JP2633018 B2 JP 2633018B2
Authority
JP
Japan
Prior art keywords
weight
parts
refractory
graphite
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1103413A
Other languages
Japanese (ja)
Other versions
JPH02283656A (en
Inventor
健治 市川
禎一 藤原
英昭 西山
裕次 吉村
重生 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinagawa Shiro Renga KK
Original Assignee
Shinagawa Shiro Renga KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinagawa Shiro Renga KK filed Critical Shinagawa Shiro Renga KK
Priority to JP1103413A priority Critical patent/JP2633018B2/en
Publication of JPH02283656A publication Critical patent/JPH02283656A/en
Application granted granted Critical
Publication of JP2633018B2 publication Critical patent/JP2633018B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭素含有耐火物の酸化防止を図り、同時に
耐スポーリング性と耐食性を向上させた炭素含有耐火物
に関し、更に詳細には、溶銑予備処理炉用またはスライ
ディングノズルプレート用炭素含有耐火物(Al3O3−C
質耐火物)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a carbon-containing refractory which prevents oxidation of a carbon-containing refractory and at the same time improves spalling resistance and corrosion resistance. Carbon-containing refractories for hot metal pretreatment furnaces or sliding nozzle plates (Al 3 O 3 -C
Quality refractories).

[従来の技術] 従来、溶銑取鍋、溶銑搬送用混銑車等の溶銑予備処理
炉用内張り材として高アルミナ質、Al3O3−SiC−C質、
Al3O3−スピネル−C質及びMgO−C質等の炭素含有耐火
物が使用されている。
[Prior art] Conventionally, high-alumina, Al 3 O 3 -SiC-C,
Carbon-containing refractories such as Al 3 O 3 -spinel-C and MgO-C are used.

また、熱間吹付けによる炉の中間補修も実施されてお
り、炉の内張り材の使用寿命はかなり長くなっており、
更に、近年、不焼成の炭素結合れんがが熱衝撃抵抗性、
スラグの侵入抑制、スラグ侵入抵抗性を向上させる特性
を有するものとして好結果を収めている。
In addition, intermediate repair of the furnace by hot spraying has been carried out, and the service life of the furnace lining material has been considerably long,
Furthermore, in recent years, unfired carbon-bonded bricks have thermal shock resistance,
Good results have been obtained as those having characteristics of suppressing slag intrusion and improving slag intrusion resistance.

しかし、上記のような炭素含有耐火物は炭素の酸化に
よって組織が劣化し、著しく強度が低下するため、炭素
の酸化を何らかの方法で防止しなければ、溶銑予備処理
炉の如く酸化や機械的衝撃を受ける炉の内張り材として
の耐用性に対する要求に対して不充分であるという問題
点があった。
However, since the structure of carbon-containing refractories as described above deteriorates due to oxidation of carbon and the strength is significantly reduced, unless oxidation of carbon is prevented in some way, oxidation or mechanical impact as in a hot metal pretreatment furnace is required. However, there is a problem that the requirement for durability as a lining material of the furnace subjected to the heat treatment is insufficient.

この改善策として金属シリコン、金属アルミニウムの
添加あるいは成形圧を高め緻密化を図る等の手段によっ
て耐酸化性の向上を図っている。
As an improvement measure, the oxidation resistance is improved by adding metallic silicon or metallic aluminum or increasing the molding pressure to increase the density.

例えば耐火骨材に対して30%以下の炭素を含有せしめ
てなる耐火骨材配合物に珪素とアルミニウムを重量比で
3〜10:10〜3の割合で添加してなる耐火材料が提唱さ
れている(特公昭60−59184号公報)。
For example, a refractory material is proposed in which silicon and aluminum are added at a weight ratio of 3 to 10:10 to 3 in a refractory aggregate composition containing not more than 30% of carbon with respect to the refractory aggregate. (Japanese Patent Publication No. 60-59184).

また、炭化珪素または/及び高アルミナ質原料の粗粒
部材にアルミニウム粉末10〜30%、結合粘土20〜50%、
金属シリコンまたは/及びフェロシリコン10〜50%及び
黒鉛または/及び炭素物質1〜20%からなる微粉部材及
び有機質バインダーを添加して混練してなる耐火性スタ
ンプ材が提唱されている(特開昭52−9011号公報)。
In addition, aluminum powder 10-30%, binding clay 20-50%,
A fire-resistant stamping material has been proposed in which a fine powder member composed of 10 to 50% of metallic silicon or / and ferrosilicon and 1 to 20% of graphite or / and a carbon substance and an organic binder are added and kneaded (Japanese Patent Application Laid-open No. Sho. 52-9011).

更に、重量比にてMgO43〜87%、黒鉛8〜42%、SiC、
SiO2、SiあるいはFe−Siからなる珪素成分3〜12%とか
らなる鋳造用浸漬ノズル組成物も提唱されている(特公
昭55−10340号公報)。
Furthermore, MgO 43-87%, graphite 8-42%, SiC,
A casting immersion nozzle composition comprising 3 to 12% of a silicon component composed of SiO 2 , Si or Fe—Si has also been proposed (Japanese Patent Publication No. 55-10340).

また、β−アルミナ−炭化珪素−黒鉛を所定範囲内の
配合量で配合した耐火材料に更に金属珪素を2〜10%含
み、粒子間が炭化珪素結合もしくは炭素結合された溶鉱
炉用耐火物が提唱されている(特開昭52−76313号公
報)。
In addition, a refractory material for a blast furnace in which β-alumina-silicon carbide-graphite is blended within a predetermined range and further contains 2 to 10% of metallic silicon and silicon carbide or carbon bond between particles is proposed. (JP-A-52-76313).

更に、炭化珪素、カーボン、耐火粘土系原料にフェロ
シリコン(Fe−Si2)を5〜50重量%添加し、これをパ
ルプ廃液、糖蜜、樹脂などの結合剤で混練した出銑出鋼
用樋用スタンプ材も公知である(特公昭50−24970号公
報)。
Furthermore, silicon carbide, carbon, ferrosilicon refractory clay raw materials (Fe-Si 2) was added 5 to 50 wt%, which spent liquor, molasses, tapping tapping for trough were kneaded with a binder such as a resin Stamp materials are also known (Japanese Patent Publication No. 50-24970).

更に、重量比でアルミナ30〜80%、黒鉛3〜55%、溶
融石英0〜50%、アルカリ成分を少なくとも2.5%以上
含有する長石または陶石の1種または2種の1.5〜30%
と、フェロシリコン0.5〜20%及び有機バインダーを含
有してなる黒鉛質鋳造ノズルも提唱されている(特開昭
56−14061号公報)。
Furthermore, 30 to 80% by weight of alumina, 3 to 55% of graphite, 0 to 50% of fused quartz, and 1.5 to 30% of one or two types of feldspar or pottery stone containing at least 2.5% or more of an alkali component by weight ratio.
Also, a graphite casting nozzle containing 0.5 to 20% ferrosilicon and an organic binder has been proposed (Japanese Patent Application Laid-Open No.
No. 56-14061).

[発明が解決しようとする課題] しかし、上述のいずれのものも不焼成炭素結合れんが
のもつ上述の欠陥を根本的に改良するものではない。
[Problems to be Solved by the Invention] However, none of the above-mentioned ones fundamentally improves the above-mentioned defects of the unfired carbon-bonded brick.

すなわち、従来の炭素含有耐火物は黒鉛とシリコンを
反応させて粒子間を炭化珪素結合及び炭素結合としたも
のであるが、Siと黒鉛を反応させてSiを生成せしめる条
件としては温度と反応時間が必要である。
That is, the conventional carbon-containing refractory is a material in which graphite and silicon are reacted to form a silicon carbide bond and a carbon bond between particles, but the conditions for reacting Si and graphite to form Si include temperature and reaction time. is required.

しかし、炭化珪素が充分形成される前のスラグとの接
触や耐火物内部で応力破壊が起こる場合が多く、期待に
反する点が多々存在する。
However, in many cases, contact with slag before the silicon carbide is sufficiently formed or stress breakdown occurs inside the refractory, and there are many points contrary to expectations.

また、前記長石とフェロシリコンを必須とした黒鉛質
鋳造ノズルは低融点高粘性のガラスの生成によって炭素
含有耐火物の耐食性を低下することがある。
In addition, the graphite-based casting nozzle which essentially requires feldspar and ferrosilicon may lower the corrosion resistance of the carbon-containing refractory due to the formation of a glass having a low melting point and a high viscosity.

従って、本発明の目的は、炭化珪素の生成速度を早
め、しかも強度を高めることができる炭素含有耐火物を
提供するにある。
Accordingly, an object of the present invention is to provide a carbon-containing refractory that can increase the production rate of silicon carbide and increase the strength.

[課題を解決するための手段] 本発明者らは、Si金属と黒鉛の反応からSiCの生成量
よりFe−Si合金を使用する方が黒鉛との反応は促進さ
れ、SiCの生成量は多くなるということを知見し、本発
明を完成するに到った。
Means for Solving the Problems The present inventors have found that the use of an Fe-Si alloy promotes the reaction with graphite rather than the amount of SiC generated from the reaction between Si metal and graphite, and the amount of SiC generated is larger. That is, the present invention has been completed.

即ち、本発明は、黒鉛5〜20重量部、及びアルミナ、
ムライト、スピネル、シリカ、ジルコン、ジルコニア、
炭化珪素、窒化珪素及び窒化硼素からなる群から選択さ
れた1種または2種以上から構成される耐火原料80〜97
重量部からなる耐火骨材100重量部に対し1〜6重量部
のFeを15〜45重量%含有するFe−Si合金を含有してなる
炭素含有耐火物に係る。
That is, the present invention, 5-20 parts by weight of graphite, and alumina,
Mullite, spinel, silica, zircon, zirconia,
Refractory raw materials 80 to 97 composed of one or more selected from the group consisting of silicon carbide, silicon nitride and boron nitride
The present invention relates to a carbon-containing refractory containing an Fe-Si alloy containing 1 to 6 parts by weight of Fe to 15 to 45% by weight based on 100 parts by weight of a refractory aggregate consisting of parts by weight.

[作用] 本発明の炭素含有耐火物の特徴とするところは、耐火
原料と黒鉛とからなる耐火骨材にFe−Si合金を添加する
ことにある。これによって結合形態の詳細は未だ充分に
明らかにされていないが、酸素が乏しいと考えられる耐
火物の微粉部は加熱によってFe−Si合金と黒鉛とが反応
してFe−C系のFe3を生成する。また、Si−C系のβ−S
iCを生成し、気孔率を低下させ、耐火材料と黒鉛と強固
な結合を形成していると考えられる、しかも、黒鉛−Fe
−Si合金はSi金属の場合よりも活性でSiC生成量が大で
ある。
[Function] A feature of the carbon-containing refractory of the present invention is that an Fe-Si alloy is added to a refractory aggregate comprising a refractory raw material and graphite. Although the details of the bonding form have not been sufficiently clarified by this, the fine powder portion of the refractory, which is considered to be low in oxygen, reacts with the Fe-Si alloy and graphite by heating to form Fe-C-based Fe 3 . Generate. Also, the Si-C based β-S
Generates iC, reduces porosity, and is thought to form a strong bond between the refractory material and graphite.
-Si alloys are more active and produce more SiC than Si metal.

まず、黒鉛とFe−Siの反応性について述べると、Fe含
量22.5重量%、Si含量77.5重量%の粒度0.149mm以下のF
e−Si合金粉末とC含量98.5%の粒度0.14mm以下の黒鉛
粉末をSi:Cモル比1:1に配合し、成形したC−Fe・Si試
料、また、Si含量99.5重量%の粒度0.149mm以下のSi金
属を用い、黒鉛粉末をSi:Cモル比1:1に配合し、成形し
たC−Si試料をブリーズ詰の還元雰囲気で加熱する。
First, the reactivity between graphite and Fe-Si will be described. The F content having a particle size of 0.149 mm or less with an Fe content of 22.5% by weight and a Si content of 77.5% by weight is described.
An e-Si alloy powder and a graphite powder having a C content of 98.5% and a particle size of 0.14 mm or less were blended in a Si: C molar ratio of 1: 1 to form a C-Fe.Si sample, and a particle size of 0.149 having a Si content of 99.5% by weight. Graphite powder is blended in a Si: C molar ratio of 1: 1 using Si metal of less than mm, and the formed C-Si sample is heated in a reducing atmosphere filled with breathe.

加熱後のSiC生成量を第1表に示す。 Table 1 shows the amount of SiC generated after heating.

第1表から明らかなように、Fe−Si合金がSi金属より
活性で、反応性に優れ、SiC生成量も多くなっている。
なお、一定温度で保持時間を変えても同様にFe−Si合金
の方がSiC生成量は大である。
As is clear from Table 1, the Fe-Si alloy is more active than Si metal, has excellent reactivity, and has a large amount of SiC generated.
In addition, even when the holding time is changed at a constant temperature, the amount of generated SiC is larger in the Fe-Si alloy.

このような特性を発揮するFe−Si合金粉末としてはFe
量として15〜45重量%含有するFe−Si合金粉末が好まし
く、また、更に好ましくは20〜40重量%である。Fe−Si
合金粉末中のFe量が45重量%を超えるとFe3Cの生成量が
増加し、黒鉛の耐酸化正は良いが、耐食性が低下するた
めに好ましくない。
Fe-Si alloy powders exhibiting such characteristics include Fe
An Fe-Si alloy powder containing 15 to 45% by weight as an amount is preferable, and more preferably 20 to 40% by weight. Fe-Si
If the amount of Fe in the alloy powder exceeds 45% by weight, the amount of Fe 3 C generated increases, and the graphite has good oxidation resistance, but is not preferred because the corrosion resistance decreases.

本発明に使用するFe−Si合金粉の品質としては製鋼用
脱酸剤用として一般に市販されているものを使用するこ
とができ、該合金粉末の粒度は反応性及び均一分散性の
点から0.125mm以下のものを使用するのが好ましい。
As the quality of the Fe-Si alloy powder used in the present invention, those generally commercially available for steelmaking deoxidizers can be used, and the particle size of the alloy powder is 0.125 from the viewpoint of reactivity and uniform dispersibility. It is preferable to use one having a diameter of not more than mm.

該Fe−Si合金粉末の配合割合は耐火原料及び黒鉛の耐
火骨材部100重量部に対し1〜6重量部が配合されるも
のであり、更に好ましくは1〜5重量部である。該配合
量が1重量部未満では添加効果が少ないために好ましく
なく、また、6重量部を超えると耐酸化性はあるが、熱
間強度が低下し、耐用性が低下するために好ましくな
い。
The compounding ratio of the Fe-Si alloy powder is 1 to 6 parts by weight, more preferably 1 to 5 parts by weight, based on 100 parts by weight of the refractory raw material and the refractory aggregate of graphite. If the amount is less than 1 part by weight, the effect of addition is small, so that it is not preferable. If the amount exceeds 6 parts by weight, oxidation resistance is obtained, but hot strength is reduced and durability is reduced, which is not preferable.

なお、焼結助剤としてB4C、Al、Al−Si、Al−Mgの1
種または2種以上を適宜添加することができるが、その
耐火骨材100重量部に対して配合量は6重量部未満であ
る。
As a sintering aid, one of B 4 C, Al, Al-Si, and Al-Mg
Seeds or two or more kinds can be appropriately added, but the amount is less than 6 parts by weight based on 100 parts by weight of the refractory aggregate.

本発明に使用する耐火原料としては、マグネシア、ス
ピネル、アルミナ、シリカ、ジルコン、ジルコニア、ム
ライト等の酸化物や炭化珪素、窒化珪素、窒化硼素等の
非酸化物を使用することができるが、これらに特に限定
されるものではなく、本発明の炭素含有耐火物の使用目
的によって異なるが、マグネシア、スピネル、アルミナ
を主体としたものが好ましい。
Examples of the refractory raw material used in the present invention include oxides such as magnesia, spinel, alumina, silica, zircon, zirconia, and mullite, and non-oxides such as silicon carbide, silicon nitride, and boron nitride. The carbon-containing refractory of the present invention is not particularly limited, but it is preferably one mainly composed of magnesia, spinel, or alumina, although it depends on the intended use of the carbon-containing refractory of the present invention.

本発明の炭素含有耐火物を溶銑予備処理炉用に使用す
る場合を説明すると、耐火骨材としては原料自体に含有
されるAl2O3量が50重量%以上ならば使用することが可
能であり、例えばボーキサイト、焼結アルミナ、電融ア
ルミナ、焼結ムライト、電融ムライト、焼結スピネルで
あり、これらは単独で使用しても、2種以上を混合して
使用することもできる。これらの耐火原料の配合量は60
〜85重量部が好ましい。上述の耐火原料の配合量が60重
量部未満では耐食性が低下し、また、85重量部を超える
と耐スポーリング性が低下するために好ましくない。
The case where the carbon-containing refractory of the present invention is used for a hot metal pretreatment furnace will be described. The refractory aggregate can be used if the amount of Al 2 O 3 contained in the raw material itself is 50% by weight or more. There are, for example, bauxite, sintered alumina, fused alumina, sintered mullite, fused mullite, and sintered spinel. These can be used alone or in combination of two or more. The amount of these refractory raw materials is 60
~ 85 parts by weight are preferred. If the amount of the above-mentioned refractory raw material is less than 60 parts by weight, the corrosion resistance is lowered, and if it is more than 85 parts by weight, the spalling resistance is lowered.

更に、他の耐火原料としてSiCを用いることができる
が、SiCとしては純度80重量%以上のものを使用するこ
とが好ましく、純度90重量%以上のものがより好まし
い。SiCの配合量は5〜20重量部が好ましい。SiCの配合
量が5重量部未満では黒鉛の酸化防止効果が減少するた
めに添加効果がなく、また、20重量部を超えると耐食性
が低下するために好ましくない。
Further, SiC can be used as another refractory raw material, but it is preferable to use SiC having a purity of 80% by weight or more, more preferably 90% by weight or more. The amount of SiC is preferably 5 to 20 parts by weight. If the amount of SiC is less than 5 parts by weight, the effect of adding graphite is reduced because the effect of preventing oxidation of graphite is reduced, and if it exceeds 20 parts by weight, the corrosion resistance is undesirably reduced.

次に、本発明の炭素含有耐火物をスライディングノズ
ルプレートれんが用に使用する場合を説明すると、耐火
骨材としては焼結アルミナ、電融アルミナ、ムライト等
が使用できる。これらの耐火骨材の純度はできるだけ高
純度であることが好ましく、アルミナまたはムライトと
しての純度が98%以上であることが好ましい。
Next, the case where the carbon-containing refractory of the present invention is used for a sliding nozzle plate brick will be described. As the refractory aggregate, sintered alumina, fused alumina, mullite, or the like can be used. The purity of these refractory aggregates is preferably as high as possible, and the purity as alumina or mullite is preferably 98% or more.

耐火骨材のアルミナの配合量は75〜90重量部である。
また、ムライトの配合量は5〜15重量部である。
The amount of alumina in the refractory aggregate is 75 to 90 parts by weight.
The amount of mullite is 5 to 15 parts by weight.

本発明に使用する黒鉛としては土状黒鉛、鱗状黒鉛等
の天然黒鉛ないし電極屑、石油コークス、カーボンブラ
ック等の人造黒鉛が任意に使用可能であるが、不純物の
少ない石油コークスの使用が好ましい。該黒鉛の配合割
合は耐火原料と黒鉛からなる耐火骨材100重量部中5〜2
0重量部が好ましい。
As the graphite used in the present invention, natural graphite such as earth graphite and scale graphite or electrode waste, artificial graphite such as petroleum coke and carbon black can be arbitrarily used, but petroleum coke containing few impurities is preferably used. The mixing ratio of the graphite is 5 to 2 in 100 parts by weight of the refractory raw material and the refractory aggregate composed of graphite.
0 parts by weight is preferred.

黒鉛が5重量部未満になると、黒鉛がスラグに対して
濡れにくいという特性と耐スポール性の向上が充分発揮
できない。逆に、20重量部を超えると、強度的にも充分
なものが望めなく、組織の緻密なものが得られ難い。
If the amount of graphite is less than 5 parts by weight, the characteristics that graphite is hardly wetted by slag and the improvement in spall resistance cannot be sufficiently exhibited. On the other hand, if it exceeds 20 parts by weight, a material having sufficient strength cannot be expected, and it is difficult to obtain a fine structure.

本発明の炭素含有耐火物はこれらの粒度調整した耐火
原料と黒鉛及びFe−Si合金を所定の配合割合で調整し、
タール、ピッチ、フェノール樹脂、フラン樹脂などの結
合剤を加え、常法によって混練、成形し、200℃程度に
乾燥すれば、不焼成のものが得られる。また、900〜150
0℃程度の還元雰囲気で焼成し、焼成耐火物として使用
に供することができる。
The carbon-containing refractory of the present invention adjusts the refractory raw material, graphite and Fe-Si alloy at a predetermined blending ratio with these particle size adjusted,
A binder such as tar, pitch, phenolic resin, and furan resin is added, kneaded and molded by a conventional method, and dried at about 200 ° C. to obtain an unfired product. Also, 900-150
It can be fired in a reducing atmosphere at about 0 ° C. and used as a fired refractory.

[実 施 例] 次に、本発明の炭素含有耐火物を実施例により具体的
に説明する。
[Examples] Next, the carbon-containing refractories of the present invention will be specifically described with reference to examples.

実施例1 第2表に重量部で示す配合割合をもつ配合物をレゾー
ル型フェノール樹脂4重量部と共に混練し、1000kg/cm2
の成形圧で230×114×65mmの定形に成形してから200℃
で5時間乾燥した。
Example 1 A mixture having a mixing ratio shown in parts by weight in Table 2 was kneaded with 4 parts by weight of a resole type phenol resin, and 1000 kg / cm 2
200 ° C after forming into a standard shape of 230 × 114 × 65mm with a molding pressure of
For 5 hours.

得られた不焼成炭素含有耐火物の特性を第2表に併記
する。第2表から明らかなように、本発明品は比較品に
比し、曲げ強度、弾性率が高く優れている。
The properties of the resulting unfired carbon-containing refractory are also shown in Table 2. As is evident from Table 2, the product of the present invention has higher flexural strength and elastic modulus than the comparative product and is excellent.

次に、本発明品3と比較品1を200トン溶銑予備処理
炉に内張りし、主に溶銑の脱流、脱燐処理した場合、Si
金属を添加した比較品1の損耗量100に対し、本発明品
3は73であり、実炉における損耗量を減少させることが
可能となった。
Next, the product 3 of the present invention and the comparative product 1 were lined in a 200-ton hot metal pretreatment furnace, and the hot metal was mainly deflowed and dephosphorized.
The amount of wear of the product 3 of the present invention was 73 compared with the amount of wear of the comparative product 1 to which metal was added, and thus the amount of wear in the actual furnace could be reduced.

実施例2 第3表に重量部で示す配合割合をもつ配合物をレゾー
ル型フェノール樹脂4重量部と共に混練し、1000kg/cm2
の成形圧で230×114×65mmの定形に成形してから200℃
で5時間乾燥した。
Example 2 A mixture having a compounding ratio shown in parts by weight in Table 3 was kneaded together with 4 parts by weight of a resole type phenol resin, and 1000 kg / cm 2
200 ° C after forming into a standard shape of 230 × 114 × 65mm with a molding pressure of
For 5 hours.

得られた不焼成炭素含有耐火物の特性を第3表に併記
する。第3表から明らかなように、本発明品は比較品に
比し、耐食性に優れている。
The properties of the obtained unfired carbon-containing refractory are also shown in Table 3. As is clear from Table 3, the product of the present invention is superior in corrosion resistance to the comparative product.

[発明の効果] 耐火原料と黒鉛とからなる耐火骨材にFe−Si合金を添
加し、SiC生成によって炭素含有耐火物は曲げ強さ、弾
性率は大きくなり、耐酸化性、耐食性は向上する。
[Effects of the Invention] A Fe-Si alloy is added to a refractory aggregate composed of a refractory raw material and graphite, and the carbon-containing refractory increases in bending strength and elastic modulus by SiC generation, and oxidation resistance and corrosion resistance improve. .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷口 重生 岡山県備前市東片上390 (56)参考文献 特開 昭56−14061(JP,A) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Shigeo Taniguchi 390 Higashi Katakami, Bizen City, Okayama Prefecture (56) References JP-A-56-14061 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】黒鉛5〜20重量部、及びアルミナ、ムライ
ト、スピネル、シリカ、ジルコン、ジルコニア、炭化珪
素、窒化珪素及び窒化硼素からなる群から選択された1
種または2種以上から構成される耐火原料80〜97重量部
からなる耐火骨材100重量部に対し1〜6重量部のFeを1
5〜45重量%含有するFe−Si合金を含有してなる炭素含
有耐火物。
1-5 parts by weight of graphite and one selected from the group consisting of alumina, mullite, spinel, silica, zircon, zirconia, silicon carbide, silicon nitride and boron nitride.
1 to 6 parts by weight of Fe per 100 parts by weight of refractory aggregate consisting of 80 to 97 parts by weight of a refractory raw material composed of one or more kinds
A carbon-containing refractory containing an Fe-Si alloy containing 5 to 45% by weight.
【請求項2】黒鉛5〜20重量部、アルミナ60〜85重量部
及びSiC5〜20重量部からなる耐火骨材100重量部に対し
1〜6重量部のFeを15〜45重量%含有するFe−Si合金を
含有してなる溶銑予備処理炉用炭素含有耐火物。
2. An Fe containing 15 to 45% by weight of 1 to 6 parts by weight of Fe based on 100 parts by weight of a refractory aggregate comprising 5 to 20 parts by weight of graphite, 60 to 85 parts by weight of alumina and 5 to 20 parts by weight of SiC. -A carbon-containing refractory for a hot metal pretreatment furnace containing a Si alloy.
【請求項3】黒鉛5〜20重量部、アルミナ75〜90重量部
及びムライト5〜15重量部からなる耐火骨材100重量部
に対し1〜6重量部のFeを15〜45重量%含有するFe−Si
合金を含有してなるスライディングノズルプレート用炭
素含有耐火物。
3. A refractory aggregate composed of 5 to 20 parts by weight of graphite, 75 to 90 parts by weight of alumina and 5 to 15 parts by weight of mullite, containing 1 to 6 parts by weight of Fe in an amount of 15 to 45% by weight. Fe-Si
Carbon-containing refractory for sliding nozzle plate containing alloy.
JP1103413A 1989-04-25 1989-04-25 Carbon containing refractories Expired - Lifetime JP2633018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1103413A JP2633018B2 (en) 1989-04-25 1989-04-25 Carbon containing refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1103413A JP2633018B2 (en) 1989-04-25 1989-04-25 Carbon containing refractories

Publications (2)

Publication Number Publication Date
JPH02283656A JPH02283656A (en) 1990-11-21
JP2633018B2 true JP2633018B2 (en) 1997-07-23

Family

ID=14353362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1103413A Expired - Lifetime JP2633018B2 (en) 1989-04-25 1989-04-25 Carbon containing refractories

Country Status (1)

Country Link
JP (1) JP2633018B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672764A (en) * 1992-08-24 1994-03-15 Tokyo Yogyo Co Ltd Plate brick for slide gate
JP5388268B2 (en) * 2008-03-31 2014-01-15 黒崎播磨株式会社 Refractory for sliding nozzle plate and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5842144B2 (en) * 1979-07-17 1983-09-17 品川白煉瓦株式会社 graphite casting nozzle

Also Published As

Publication number Publication date
JPH02283656A (en) 1990-11-21

Similar Documents

Publication Publication Date Title
EP0198925A1 (en) Composition which is capable of being converted into an aluminium oxynitride refractory
JPS6343342B2 (en)
JPH0196070A (en) Unfixed shape refractory to be used for spout for molten metal
JP2006056735A (en) Magnesia-graphite brick
JPH05330904A (en) Highly spalling-resistant magnesia carbon brick
JP2633018B2 (en) Carbon containing refractories
JP4187183B2 (en) Magnesia-carbon brick
EP0116194B1 (en) A carbon-containing refractory
JPH08259340A (en) Magnesia-carbon-based castable refractory
JP4160796B2 (en) High thermal shock resistant sliding nozzle plate brick
JPH05262559A (en) Unburned carbon-containing brick
JPH08259339A (en) Monolithic refractory for lining torpedo car
JP2552987B2 (en) Refractory for casting
JP4471254B2 (en) Magnesia-carbon brick
JPH0585805A (en) Carbon-containing fire-resistant material
JP2868809B2 (en) Magnesia carbon brick
JPH085718B2 (en) Silicon Carbide for Blast Furnace Wall-Method for Manufacturing Carbonaceous Brick
JPH085717B2 (en) Method for producing silicon carbide-carbonaceous brick for ore reduction furnace furnace wall
JPS6152099B2 (en)
JPH07108804B2 (en) Process for producing unfired magnesia-carbon brick
JPH06172044A (en) Castable refractory of alumina spinel
JPH03141152A (en) Carbon-containing unburned refractory brick
JP2614115B2 (en) Basic refractories containing carbon
JP2687214B2 (en) Carbon containing refractories
JPH05319902A (en) Carbon-containing basic refractory