JP2631554B2 - Laser wavelength controller - Google Patents

Laser wavelength controller

Info

Publication number
JP2631554B2
JP2631554B2 JP1129392A JP12939289A JP2631554B2 JP 2631554 B2 JP2631554 B2 JP 2631554B2 JP 1129392 A JP1129392 A JP 1129392A JP 12939289 A JP12939289 A JP 12939289A JP 2631554 B2 JP2631554 B2 JP 2631554B2
Authority
JP
Japan
Prior art keywords
wavelength
grating
laser
total reflection
reflection mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1129392A
Other languages
Japanese (ja)
Other versions
JPH02307285A (en
Inventor
理 若林
諭樹夫 小林
雅彦 小若
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15008442&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2631554(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP1129392A priority Critical patent/JP2631554B2/en
Publication of JPH02307285A publication Critical patent/JPH02307285A/en
Application granted granted Critical
Publication of JP2631554B2 publication Critical patent/JP2631554B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/08009Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1055Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length one of the reflectors being constituted by a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はステッパーの光源として使用されている狭帯
域発振エキシマレーザの波長制御装置に関するものであ
る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wavelength control device for a narrow-band oscillation excimer laser used as a light source for a stepper.

〔従来の技術〕[Conventional technology]

半導体装置製造用の縮小投影露光装置(以下、ステッ
パーという)の光源としてエキシマレーザの利用が注目
されている。これはエキシマレーザの波長が短い(KrF
の波長は約248.4nm)ことから光露光の限界を0.5μm以
下に延ばせる可能性があること、同じ解像度なら従来用
いていた水銀ランプのg線やi線に比較して焦点深度が
深いこと、レンズの開口数(NA)が小さくて済み、露光
領域を大きくできること、大きなパワーが得られること
等多くの優れ利点が期待できるからである。
Attention has been paid to the use of excimer lasers as light sources for reduction projection exposure apparatuses (hereinafter, referred to as steppers) for manufacturing semiconductor devices. This is due to the short wavelength of the excimer laser (KrF
Wavelength is about 248.4 nm), so that the limit of light exposure can be extended to 0.5 μm or less, and the depth of focus is deeper than the conventional mercury lamp g-line and i-line at the same resolution. This is because a number of excellent advantages such as a large numerical aperture (NA) of the lens, a large exposure area, and a large power can be expected.

ところで、ステッパーの光源として利用されるエキシ
マレーザとしては線幅3pm以下の狭帯化が要求され、し
かも大きな出力パワーが要求される。
By the way, as an excimer laser used as a light source of a stepper, a narrow band having a line width of 3 pm or less is required, and a large output power is required.

エキシマレーザの狭帯域化の技術としては従来インジ
ェンクションロック方式と呼ばれるものがある。このイ
ンジェンクションロック方式は、オキシレータ段のキャ
ピティ内に波長選択素子(エタロン,回折格子,プリズ
ム等)を配置し、ピンホールによって空間モードを制限
して単一モード発振させ、このレーザ光を増幅段によっ
て注入同期する。この方式によると比較的大きな出力パ
ワーが得られるが、ミスショットがあったり、ロッキン
グ効率を100%とすることが困難であったり、スペクト
ル純度が悪くなるという欠点がある。また、この方式の
場合その出力光はコヒーレンス性が高く、これを縮小露
光装置の光源に用いた場合は、スペックル・パターンが
発生する。一般にスペックル・パターンの発生はレーザ
光に含まれる空間横モードの数に依存すると考えられて
いる。すなわち、レーザ光に含まれる空間横モードの数
が少ないというスペックル・パターンが発生し易くな
り、逆に空間モードの数が多くなるとスペックル・パタ
ーンは発生しにくくなることが知られている。上述した
インジェクションロック方式は本質的には空間横モード
の数を著しく減らすことによって狭帯域化を行う技術で
あり、スペックル・パターンの発生が大きな問題となる
ため縮小投影露光装置には採用できない。
As a technique for narrowing the band of an excimer laser, there is a technique conventionally called an injection lock method. In this injection lock method, a wavelength selection element (etalon, diffraction grating, prism, etc.) is arranged in the oxylator stage capacity, the spatial mode is restricted by a pinhole, and single mode oscillation is performed. Inject synchronization. According to this method, a relatively large output power can be obtained, but there are disadvantages in that there are misshots, it is difficult to set the locking efficiency to 100%, and the spectral purity deteriorates. Also, in this method, the output light has high coherence. When this light is used as a light source of a reduction exposure apparatus, a speckle pattern is generated. It is generally considered that the generation of a speckle pattern depends on the number of spatial transverse modes included in a laser beam. That is, it is known that a speckle pattern in which the number of spatial transverse modes included in a laser beam is small is easily generated, and that a speckle pattern is hardly generated when the number of spatial modes is large. The above-described injection lock method is essentially a technique for narrowing the bandwidth by remarkably reducing the number of spatial transverse modes. Since the occurrence of a speckle pattern becomes a serious problem, it cannot be used in a reduced projection exposure apparatus.

エキシマレーザの狭帯域化の技術として他に有望なも
のは波長選択素子であるエアーギャップエタロンを用い
たものがある。このエアーギャップエタロンを用いた従
来技術としてはAT&Tベル研究所によるエキシマレーザ
のフロントミラーとレーザチャンバとの間にエアーギャ
ップエタロンを配置し、エキシマレーザの狭帯域化を図
ろうとする技術が提案されている。しかし、この方式は
スペクトル線幅をあまり狭くせず、かつ、エアーギャッ
プエタロン挿入によるパワーロスが大きいという問題が
あり、さらに空間横モードの数もあまり多くすることが
できないという欠点がある。またエアーギャップエタロ
ンは耐久性に問題がある。
Another promising technique for narrowing the band of an excimer laser is an air gap etalon that is a wavelength selection element. As a conventional technology using this air gap etalon, a technology has been proposed by AT & T Bell Laboratories in which an air gap etalon is arranged between a front mirror of an excimer laser and a laser chamber to narrow the band of the excimer laser. I have. However, this method has the problems that the spectral line width is not made too narrow, the power loss due to the insertion of the air gap etalon is large, and the number of spatial transverse modes cannot be made too large. The air gap etalon has a problem in durability.

そこで、比較的耐久性に優れたグレーティングを波長
選択素子として採用し、このグレーティングの角度を変
化させることにより、レーザ光の波長を狭帯化するよう
に構成したエキシマレーザが提案されている。
Therefore, an excimer laser has been proposed in which a grating having relatively excellent durability is used as a wavelength selection element, and the wavelength of the laser beam is narrowed by changing the angle of the grating.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、ステッパーに使用されるような狭帯域
発振エキシマレーザはレーザ光の波長を単一段で3pm以
下に狭帯域化する必要があり、また高速かつ高精度な波
長安定化が必要となる。このため、使用されるグレーテ
ィングとして大きな形状のものが必要となり、必然的に
その重量も非常に重いものとなる。このため、グレーテ
ィングを高速かつ高精度で変化させ、波長を安定して高
精度に制御することが非常に困難になっていた。
However, a narrow-band oscillation excimer laser used in a stepper needs to narrow the wavelength of a laser beam to 3 pm or less in a single stage, and requires high-speed and high-accuracy wavelength stabilization. For this reason, a large-sized grating is required as the grating to be used, and the weight of the grating is inevitably very heavy. For this reason, it has been very difficult to change the grating at high speed and with high accuracy and to control the wavelength stably with high accuracy.

本発明は、レーザ光の波長を高速かつ高精度に安定的
に制御することができるレーザ光の波長制御装置を提供
することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a laser light wavelength control device capable of stably controlling the wavelength of laser light with high speed and high accuracy.

〔課題を解決するための手段〕[Means for solving the problem]

本発明は、レーザチャンバーとグレーティングとの間
にプリズムやミラーなどの光学素子を配置し、この光学
素子の角度を変化させることにより波長を制御するもの
である。
In the present invention, an optical element such as a prism or a mirror is disposed between a laser chamber and a grating, and the wavelength is controlled by changing the angle of the optical element.

〔作用〕[Action]

レーザチャンバとグレーティングとの間にある光学素
子はグレーティングよりもかなり小さく、軽いため、非
常に速くまた正確に角度を変化させることができる。そ
のため波長の制御性および安定性がよくなる。
The optical element between the laser chamber and the grating is much smaller and lighter than the grating, so that the angle can be changed very quickly and accurately. Therefore, wavelength controllability and stability are improved.

〔実施例〕〔Example〕

以下、実施例に基づいて本発明を説明する。 Hereinafter, the present invention will be described based on examples.

第1図は第1実施例を示す構成図であり、両端にウイ
ンドウ2,3が設けられたレーザチャンバ1とグレーティ
ング5との間に、全反射ミラー6を配置し、この全反射
ミラー6のレーザ光7に対する角度を変化させることに
より波長を変化させるものである。なお、4はフロント
ミラーである。また、このようなリトロー配置の場合に
用いられるグレーティング5としては、ホログラフィ
ク、ルールドおよびエシェールタイプのグレーティング
等を用いるが、エキシマレーザの場合、特に単一段で高
効率で狭帯域化する必要があるので、高分解能かつ高効
率のエシェールタイプのグレーティングが最適である。
FIG. 1 is a block diagram showing a first embodiment, in which a total reflection mirror 6 is arranged between a grating 5 and a laser chamber 1 having windows 2 and 3 provided at both ends. The wavelength is changed by changing the angle with respect to the laser light 7. 4 is a front mirror. As the grating 5 used in such a Littrow arrangement, a holographic, ruled or escher type grating is used. In the case of an excimer laser, it is necessary to narrow the band with high efficiency in a single stage. Therefore, a high resolution and high efficiency shale type grating is most suitable.

第2図は第2の実施例を示すもので、レーザチャンバ
1とグレーティング5との間に、2つのプリズム8,9か
らなるビームエキスパンダを配設し、レーザ光をこのビ
ームエキスパンダで拡大してグレーティング5に入射さ
せるように構成し、波長はこのエキスパンダを構成する
プリズム8,9のいずれか一方の角度を変えることにより
制御するものである。
FIG. 2 shows a second embodiment, in which a beam expander comprising two prisms 8, 9 is disposed between the laser chamber 1 and the grating 5, and the laser beam is expanded by this beam expander. The wavelength is controlled by changing the angle of one of the prisms 8 and 9 constituting the expander.

第3図は第3の実施例を示すもので、第2図のプリズ
ム8とレーザチャンバ1との間に全反射ミラー6を挿入
し、この全反射ミラー6の角度を変えることにより、波
長を制御するものである。
FIG. 3 shows a third embodiment, in which a total reflection mirror 6 is inserted between the prism 8 and the laser chamber 1 in FIG. 2, and the wavelength of the total reflection mirror 6 is changed by changing the angle of the total reflection mirror 6. To control.

第4図は第4の実施例を示すもので、第3図のプリズ
ム8,9と全反射ミラー6の位置を逆にし、全反射ミラー
6の角度を変えることにより、波長を制御するものであ
る。
FIG. 4 shows a fourth embodiment, in which the wavelengths are controlled by reversing the positions of the prisms 8 and 9 and the total reflection mirror 6 and changing the angle of the total reflection mirror 6 in FIG. is there.

第5図は第5の実施例を示すもので、第1図の全反射
ミラー6とレーザチャンバ1との間に、コリメータレン
ズ10,11を挿入した構成で、全反射ミラー6の角度を変
えることにより、波長を制御するものである。
FIG. 5 shows a fifth embodiment, in which collimator lenses 10 and 11 are inserted between the total reflection mirror 6 and the laser chamber 1 in FIG. 1, and the angle of the total reflection mirror 6 is changed. Thus, the wavelength is controlled.

以上の実施例は全てリトロー配置であり、第1図の実
施例と同様な効果を得ることができる。
In all of the above embodiments, the Littrow arrangement is used, and the same effects as in the embodiment of FIG. 1 can be obtained.

次に斜入射配置の実施例について説明する。 Next, an embodiment of the oblique incidence arrangement will be described.

第6図は第6の実施例を示すものであり、レーザチャ
ンバ1とグレーティング5との間に、全反射ミラー6を
配置し、この全反射ミラー6のレーザ光7に対する角度
を変化させることにより波長を変化させるもので、グレ
ーティング5には全反射ミラー12が一体で取付けてあ
る。
FIG. 6 shows a sixth embodiment, in which a total reflection mirror 6 is arranged between the laser chamber 1 and the grating 5, and the angle of the total reflection mirror 6 with respect to the laser beam 7 is changed. The wavelength is changed, and a total reflection mirror 12 is integrally attached to the grating 5.

第7図は第7の実施例を示すもので、レーザチャンバ
1とグレーティング5との間に、2つのプリズム8,9か
らなるビームエキスパンダを配設し、レーザ光をこのビ
ームエキスパンダで拡大してグレーティング5に入射さ
せるように構成し、波長はこのエキスパンダを構成する
プリズム8,9のいずれか一方の角度を変えることにより
制御するものである。
FIG. 7 shows a seventh embodiment, in which a beam expander comprising two prisms 8, 9 is arranged between a laser chamber 1 and a grating 5, and a laser beam is expanded by this beam expander. The wavelength is controlled by changing the angle of one of the prisms 8 and 9 constituting the expander.

第8図は第8の実施例を示すもので、第7図のプリズ
ム8とレーザチャンバ1との間に全反射ミラー6を挿入
し、この全反射ミラー6の角度を変えることにより、波
長を制御するものである。
FIG. 8 shows an eighth embodiment, in which a total reflection mirror 6 is inserted between the prism 8 and the laser chamber 1 shown in FIG. 7, and the angle of the total reflection mirror 6 is changed to change the wavelength. To control.

第9図は第9の実施例を示すもので、第8図のプリズ
ム8,9と全反射ミラー6の位置を逆にし、全反射ミラー
6の角度を変えることにより、波長を制御するものであ
る。
FIG. 9 shows a ninth embodiment in which the wavelengths are controlled by reversing the positions of the prisms 8, 9 and the total reflection mirror 6 in FIG. 8 and changing the angle of the total reflection mirror 6. is there.

第10図は第10の実施例を示すもので、第6図の全反射
ミラー6とレーザチャンバ1との間に、コリメータレン
ズ10,11を挿入した構成で、全反射ミラー6の角度を変
えることにより、波長を制御するものである。
FIG. 10 shows a tenth embodiment, in which collimator lenses 10 and 11 are inserted between the total reflection mirror 6 and the laser chamber 1 in FIG. 6, and the angle of the total reflection mirror 6 is changed. Thus, the wavelength is controlled.

以上の第6図から第10図の斜入射配置の構成でも第1
図と同様な効果を得ることができる。
Even in the configuration of the oblique incidence arrangement shown in FIGS.
The same effect as in the drawing can be obtained.

なお、上記実施例において、全反射ミラー、ビームエ
キスパンダを構成するプリズム等の角度を変化させる手
段としてはパルスモータ、圧電素子等を用いることがで
きる。
In the above embodiment, a pulse motor, a piezoelectric element, or the like can be used as a means for changing the angle of a prism or the like constituting a total reflection mirror or a beam expander.

〔発明の効果〕〔The invention's effect〕

以上説明下用に本発明においては、グレーティングの角
度を変化させるのではなくて、グレーティングとレーザ
チャンバとの間に配設した小さな光学素子の角度を変化
させることによって波長を制御するため、高精度にかつ
高速に波長を制御でき、波長の安定性を向上させること
ができる。
In the present invention, the wavelength is controlled not by changing the angle of the grating but by changing the angle of a small optical element disposed between the grating and the laser chamber. The wavelength can be controlled quickly and quickly, and the stability of the wavelength can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1の実施例を示す構成図、第2図は
本発明の第2の実施例を示す構成図、第3図は本発明の
第3の実施例を示す構成図、第4図は本発明の第4の実
施例を示す構成図、第5図は本発明の第5の実施例を示
す構成図、第6図は本発明の第6の実施例を示す構成
図、第7図は本発明の第7の実施例を示す構成図、第8
図は本発明の第8の実施例を示す構成図、第9図は本発
明の第9の実施例を示す構成図、第10図は本発明の第10
の実施例を示す構成図である。 1……レーザチャンバ、2,3……ウインドウ、4……フ
ロントミラー、5……グレーティング、6,12……全反射
ミラー、7……レーザ光、8,9……プリズム、10,11……
コリメータレンズ。
FIG. 1 is a block diagram showing a first embodiment of the present invention, FIG. 2 is a block diagram showing a second embodiment of the present invention, and FIG. 3 is a block diagram showing a third embodiment of the present invention. FIG. 4 is a block diagram showing a fourth embodiment of the present invention, FIG. 5 is a block diagram showing a fifth embodiment of the present invention, and FIG. 6 is a block diagram showing a sixth embodiment of the present invention. FIG. 7 is a block diagram showing a seventh embodiment of the present invention.
FIG. 12 is a block diagram showing an eighth embodiment of the present invention, FIG. 9 is a block diagram showing a ninth embodiment of the present invention, and FIG.
FIG. 3 is a configuration diagram showing an example of the embodiment. 1 ... laser chamber, 2,3 ... window, 4 ... front mirror, 5 ... grating, 6,12 ... total reflection mirror, 7 ... laser beam, 8,9 ... prism, 10,11 ... …
Collimator lens.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−253686(JP,A) 特開 平1−96619(JP,A) 特開 平2−16782(JP,A) 特開 平2−276283(JP,A) ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-63-253686 (JP, A) JP-A-1-96619 (JP, A) JP-A-2-16782 (JP, A) JP-A-2- 276283 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】波長選択素子としてグレーティングを用い
たエキシマレーザにおいて、 レーザチャンバと前記グレーティングとの間に配設さ
れ、その角度を変化させることにより前記グレーティン
グの選択波長波長を制御する光学素子 を具えたレーザの波長制御装置。
1. An excimer laser using a grating as a wavelength selecting element, comprising: an optical element disposed between a laser chamber and the grating, for controlling a selected wavelength wavelength of the grating by changing an angle thereof. Laser wavelength control device.
【請求項2】前記光学素子は、ミラーである請求項
(1)記載のレーザの波長制御装置。
2. The laser wavelength control device according to claim 1, wherein said optical element is a mirror.
【請求項3】前記光学素子は、ビームエキスパンダを形
成するプリズムである請求項(1)記載のレーザの波長
制御装置。
3. The laser wavelength control device according to claim 1, wherein said optical element is a prism forming a beam expander.
JP1129392A 1989-05-23 1989-05-23 Laser wavelength controller Expired - Fee Related JP2631554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1129392A JP2631554B2 (en) 1989-05-23 1989-05-23 Laser wavelength controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1129392A JP2631554B2 (en) 1989-05-23 1989-05-23 Laser wavelength controller

Publications (2)

Publication Number Publication Date
JPH02307285A JPH02307285A (en) 1990-12-20
JP2631554B2 true JP2631554B2 (en) 1997-07-16

Family

ID=15008442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1129392A Expired - Fee Related JP2631554B2 (en) 1989-05-23 1989-05-23 Laser wavelength controller

Country Status (1)

Country Link
JP (1) JP2631554B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6580517B2 (en) 2000-03-01 2003-06-17 Lambda Physik Ag Absolute wavelength calibration of lithography laser using multiple element or tandem see through hollow cathode lamp
US6597462B2 (en) 2000-03-01 2003-07-22 Lambda Physik Ag Laser wavelength and bandwidth monitor
US6608848B2 (en) 1998-06-01 2003-08-19 Lambda Physik Ag Method and apparatus for wavelength calibration
US6747741B1 (en) 2000-10-12 2004-06-08 Lambda Physik Ag Multiple-pass interferometric device
US6807205B1 (en) 2000-07-14 2004-10-19 Lambda Physik Ag Precise monitor etalon calibration technique
US7006541B2 (en) 1998-06-01 2006-02-28 Lambda Physik Ag Absolute wavelength calibration of lithography laser using multiple element or tandem see through hollow cathode lamp

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2550865B2 (en) * 1993-06-24 1996-11-06 日本電気株式会社 Laser resonator
KR0128528B1 (en) * 1994-03-22 1998-04-07 신재인 Apparatus and method for precisely wavelength-tuning single longitudinal mode tunable laser beams by utiling wedge prism
US6014398A (en) * 1997-10-10 2000-01-11 Cymer, Inc. Narrow band excimer laser with gas additive
US6067197A (en) * 1998-12-23 2000-05-23 Spectronic Instruments, Inc. Difraction grating having enhanced blaze performance at two wavelengths
US6882674B2 (en) * 1999-12-27 2005-04-19 Cymer, Inc. Four KHz gas discharge laser system
JP2004191551A (en) * 2002-12-10 2004-07-08 Megaopto Co Ltd Laser device and wavelength selection method for laser device
US7366219B2 (en) * 2004-11-30 2008-04-29 Cymer, Inc. Line narrowing module
JP2008227407A (en) * 2007-03-15 2008-09-25 Yokogawa Electric Corp External-resonator wavelength variable light source and light source device
US7659529B2 (en) * 2007-04-13 2010-02-09 Cymer, Inc. Method and apparatus for vibration reduction in laser system line narrowing unit wavelength selection optical element
WO2018061210A1 (en) 2016-09-30 2018-04-05 ギガフォトン株式会社 Laser device
US11526083B2 (en) 2018-03-30 2022-12-13 Cymer, Llc Spectral feature selection and pulse timing control of a pulsed light beam
WO2023233628A1 (en) * 2022-06-02 2023-12-07 ギガフォトン株式会社 Line narrowing module, method for manufacturing line narrowing module, and method for manufacturing electronic device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63253686A (en) * 1987-04-10 1988-10-20 Nikon Corp Pulse laser device
JPH0196619A (en) * 1987-10-08 1989-04-14 Toshiba Corp Wavelength sweeping device
JPH0216782A (en) * 1988-07-04 1990-01-19 Toshiba Corp Narrow band laser device
JPH02276283A (en) * 1989-04-18 1990-11-13 Toshiba Corp Narrow band laser device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6608848B2 (en) 1998-06-01 2003-08-19 Lambda Physik Ag Method and apparatus for wavelength calibration
US7006541B2 (en) 1998-06-01 2006-02-28 Lambda Physik Ag Absolute wavelength calibration of lithography laser using multiple element or tandem see through hollow cathode lamp
US6580517B2 (en) 2000-03-01 2003-06-17 Lambda Physik Ag Absolute wavelength calibration of lithography laser using multiple element or tandem see through hollow cathode lamp
US6597462B2 (en) 2000-03-01 2003-07-22 Lambda Physik Ag Laser wavelength and bandwidth monitor
US6807205B1 (en) 2000-07-14 2004-10-19 Lambda Physik Ag Precise monitor etalon calibration technique
US6747741B1 (en) 2000-10-12 2004-06-08 Lambda Physik Ag Multiple-pass interferometric device

Also Published As

Publication number Publication date
JPH02307285A (en) 1990-12-20

Similar Documents

Publication Publication Date Title
JP2631554B2 (en) Laser wavelength controller
JP2531788B2 (en) Narrowband oscillation excimer laser
US4937619A (en) Projection aligner and exposure method
US6101211A (en) Narrow-band laser apparatus
EP1240694B1 (en) Line narrowed laser with bidirection beam expansion
US4922290A (en) Semiconductor exposing system having apparatus for correcting change in wavelength of light source
JPH11177173A (en) Excimer laser and its optical parts
JP2619473B2 (en) Reduction projection exposure method
JP2631567B2 (en) Narrow-band oscillation excimer laser
JP3360078B2 (en) Narrow band oscillation laser
JP2631553B2 (en) Laser wavelength controller
JP2688991B2 (en) Narrow-band oscillation excimer laser
JPH0480981A (en) Narrow bandwidth oscillation laser device
JP2002057098A (en) Illumination optical device, aligner comprising the same, and method for fabricating microdevice
JP2729447B2 (en) Narrow band laser device
JPH03157917A (en) Laser exposure apparatus
JP2961428B2 (en) Narrow-band oscillation excimer laser
JPH02288383A (en) Narrow band laser device
JPH10112570A (en) Excimer laser oscillating in narrow band
JPH03250777A (en) Narrow-band oscillation excimer laser
US20220385028A1 (en) Line narrowing device and electronic device manufacturing method
JP2000357836A (en) Super narrow frequency band fluorine laser device
US20230064314A1 (en) Line narrowing gas laser device, wavelength control method, and electronic device manufacturing method
US20240111219A1 (en) Wavelength control method, laser apparatus, and method for manufacturing electronic devices
WO2023007545A1 (en) Ultraviolet laser device and method for producing electronic device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees