JP2630392B2 - Ultrasonic flaw detector - Google Patents

Ultrasonic flaw detector

Info

Publication number
JP2630392B2
JP2630392B2 JP62091254A JP9125487A JP2630392B2 JP 2630392 B2 JP2630392 B2 JP 2630392B2 JP 62091254 A JP62091254 A JP 62091254A JP 9125487 A JP9125487 A JP 9125487A JP 2630392 B2 JP2630392 B2 JP 2630392B2
Authority
JP
Japan
Prior art keywords
ultrasonic
test material
vibrator
flaw detection
ultrasonic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62091254A
Other languages
Japanese (ja)
Other versions
JPS63256846A (en
Inventor
洋次 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62091254A priority Critical patent/JP2630392B2/en
Publication of JPS63256846A publication Critical patent/JPS63256846A/en
Application granted granted Critical
Publication of JP2630392B2 publication Critical patent/JP2630392B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、棒材・線材通円柱体の表皮下に存在する
欠陥、介在物等を超音波斜角探傷により検出する超音波
探傷装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic flaw detector which detects defects, inclusions, and the like existing under the skin beneath a rod / wire rod through an oblique angle flaw detection. Things.

[従来の技術] 第2図は例えば超音波探傷法(昭和49年日刊工業新聞
社発行)に示された従来の超音波探傷装置を示す図であ
る。
[Prior Art] FIG. 2 is a view showing a conventional ultrasonic flaw detector shown in, for example, an ultrasonic flaw detection method (published by Nikkan Kogyo Shimbun in 1974).

第2図(a)は超音波探触子の断面図、第2図(b)
は従来の超音波探傷装置による探傷波形図である。
FIG. 2A is a sectional view of the ultrasonic probe, and FIG.
FIG. 3 is a flaw detection waveform chart obtained by a conventional ultrasonic flaw detector.

図において(1)は超音波探触子、(2)は超音波を
送受する振動子、(3)はプラスチック製の楔、(4)
は水、油等から成る音響結合体、(5)は音圧強度の強
いメインローブ、(6)は音圧強度の弱いメインロー
ブ、(7)は円柱体の被検材、αは上記被検材(7)に
対する超音波の入射角度、Cは被検材(7)の中心部、
(8)は探傷ゲート、Bは音圧強度の弱いメインローブ
(6)による底面エコー、Gは超音波探触子(1)と被
検材(7)とのギャップ、Tは送信パルスである。
In the figure, (1) is an ultrasonic probe, (2) is a transducer for transmitting and receiving ultrasonic waves, (3) is a plastic wedge, and (4)
Is an acoustic coupling body made of water, oil, or the like; (5) is a main lobe having a high sound pressure intensity; (6) is a main lobe having a low sound pressure intensity; The incident angle of the ultrasonic wave to the test material (7), C is the central portion of the test material (7),
(8) is a flaw detection gate, B is a bottom echo due to the main lobe (6) having a low sound pressure intensity, G is a gap between the ultrasonic probe (1) and the test material (7), and T is a transmission pulse. .

従来の超音波探傷装置は、振動子(2)と、前記振動
子(2)から放射した超音波が円柱体の被検材(7)の
中心を通る法線に対して斜めに入射されるように前記振
動子(2)を傾斜させて支持する楔(3)と、前記楔
(3)と前記被検材(7)の間に設けられ、超音波の縦
波成分を通過させる水、油等の音響結合体(4)とを有
し、前記被検材(7)の探傷領域中において反射された
超音波の横波成分を探傷ゲート(8)の時間に前記振動
子(2)により検出するようになっている。
In the conventional ultrasonic flaw detector, the ultrasonic wave radiated from the vibrator (2) and the vibrator (2) is obliquely incident on a normal passing through the center of the cylindrical test material (7). A wedge (3) for supporting the vibrator (2) at an angle, and water provided between the wedge (3) and the test material (7) to pass a longitudinal wave component of an ultrasonic wave; An acoustic coupler (4) made of oil or the like, and the transverse wave component of the ultrasonic wave reflected in the flaw detection area of the test material (7) is reflected by the vibrator (2) at the time of the flaw detection gate (8). It is designed to detect.

ところで被検材(7)の表皮下部分をできるだけ未探
傷領域部分を少なくして探傷検査を行うために、斜角探
傷法が使用されるのが一般的である。斜角探傷法は、被
検材(7)の中心部Cを通る法線に対して所定の角度α
で超音波を入射させると、スネルの法則により入射角度
αに対応した屈折角が与えられるものである。
By the way, the oblique flaw detection method is generally used in order to perform the flaw detection inspection by reducing the uncut area of the subcutaneous part of the test material (7) as much as possible. The oblique flaw detection method uses a predetermined angle α with respect to a normal passing through the center C of the test sample (7).
When an ultrasonic wave is made incident on the substrate, a refraction angle corresponding to the incident angle α is given by Snell's law.

振動子(2)から放射される超音波ビームには音圧強
度の強いメインローブ(5)と音圧強度の弱いメインロ
ーブ(6)が存在する。
An ultrasonic beam emitted from the vibrator (2) has a main lobe (5) having a high sound pressure intensity and a main lobe (6) having a low sound pressure intensity.

特に、被検材(7)が丸棒材の場合には、振動子
(2)の端部から発生する音圧強度の弱いメインローブ
(6)が、被検材(7)に入射する点は被検材(7)の
中心からずれるために、特に音圧強度の最大点より楔
(3)の超音波伝搬距離が短い側、すなわち音圧強度の
強いメインローブ(5)の送信方向に対して音圧強度の
最大点より後方では超音波の入射角度が著しく小さくな
り、縦波超音波として被検材(7)の中心部C付近を伝
播することがある。
In particular, when the test material (7) is a round bar material, the point at which the main lobe (6) having a low sound pressure intensity generated from the end of the vibrator (2) enters the test material (7). Is shifted from the center of the test sample (7), so that the ultrasonic wave propagation distance of the wedge (3) is shorter than the maximum point of the sound pressure intensity, that is, the transmission direction of the main lobe (5) having the strong sound pressure intensity. On the other hand, behind the maximum point of the sound pressure intensity, the incident angle of the ultrasonic wave becomes extremely small, and the ultrasonic wave may propagate near the center C of the test material (7) as the longitudinal ultrasonic wave.

上記条件は被検材(7)の外形寸法が小さいほど顕著
となる。
The above condition becomes more remarkable as the outer dimensions of the test material (7) are smaller.

[発明が解決しようとする問題点] 上記に示すように音圧強度の弱いメインローブ(6)
成分が被検材(7)の中心部Cに向ってほぼ垂直に入射
すると、縦波超音波として被検材(7)中を伝播するこ
とになる。一方、音圧強度の強いメインローブ(5)は
被検材(7)中を横波で伝播するように入射角度αが設
定されている超音波探傷装置では、送信パルスT以降の
時間は全て被検材(7)の横波音速で超音波の伝播時間
が設定、あるいは計算されているため、音圧強度の弱い
メインローブ(6)成分による縦波超音波が底面エコー
Bとして、音圧強度の強いメインローブ(5)の横波超
音波が被検材(7)の側面に1バウンドする時間より若
干短い時間で発生するため、常にノイズ成分として探傷
ゲート(8)に読み込まれ、S/N比を悪化させる問題が
あった。
[Problems to be Solved by the Invention] As described above, the main lobe having a low sound pressure intensity (6)
When the component is incident almost perpendicularly to the center portion C of the test material (7), it propagates as longitudinal ultrasonic waves in the test material (7). On the other hand, in the ultrasonic flaw detector in which the incident angle α is set so that the main lobe (5) having a high sound pressure intensity propagates in the test material (7) as a transverse wave, the time after the transmission pulse T is all affected. Since the propagation time of the ultrasonic wave is set or calculated at the transverse sound speed of the inspection material (7), the longitudinal ultrasonic wave due to the main lobe (6) component having a low sound pressure intensity is used as the bottom echo B to obtain the sound pressure intensity. Since the transverse ultrasonic wave of the strong main lobe (5) is generated in a time slightly shorter than one bounce on the side surface of the test material (7), it is always read as a noise component into the flaw detection gate (8), and the S / N ratio is increased. There was a problem that worsened.

この発明は上記問題点を解決するためになされたもの
で、前記振動子から放射される超音波のうち縦波超音波
として前記円柱体の被検材の中心部を通過し、前記被検
材の底面により反射されて探傷ゲート時間中に前記振動
子に入射するような超音波が前記被検材に入らないよう
にすることによりS/N比の良い超音波探傷装置を提供す
るものである。
The present invention has been made in order to solve the above problems, and passes through the central portion of the test material of the cylindrical body as a longitudinal ultrasonic wave among the ultrasonic waves radiated from the transducer, and An ultrasonic flaw detector having a good S / N ratio is provided by preventing ultrasonic waves that are reflected by the bottom surface of the test piece and enter the vibrator during the flaw detection gate time from entering the test material. .

[問題点を解決するための手段] この発明による超音波探傷装置は、前記振動子から放
射される超音波のうち縦波超音波として前記円柱体の被
検材の中心部を通過し、前記被検材の底面により反射さ
れて探傷ゲート時間中に前記振動子に入射するような超
音波が前記被検材に入らないように該超音波を吸収する
吸収体を、前記振動子の法線に対する傾斜側で、かつ前
記楔と前記音響結合体との間に設けたものである。
[Means for Solving the Problems] An ultrasonic flaw detector according to the present invention is characterized in that, among ultrasonic waves radiated from the vibrator, longitudinal ultrasonic waves pass through a central portion of a test material of the cylindrical body, and An absorber that absorbs the ultrasonic wave so that the ultrasonic wave reflected by the bottom surface of the test material and incident on the vibrator during the flaw detection gate time does not enter the test material is used as a normal to the vibrator. And between the wedge and the acoustic coupling body.

[作用] この発明による吸収体は、前記振動子から放射される
超音波のうち縦波超音波として前記円柱体の被検材の中
心部を通過し、前記被検材の底面により反射されて探傷
ゲート時間中に前記振動子に入射するような超音波が前
記被検材に入らないように該超音波(振動子の端部から
発生する音圧強度の弱いメインローブ)を吸収する。
[Operation] The absorber according to the present invention passes through the central portion of the test material of the cylindrical body as longitudinal ultrasonic wave among the ultrasonic waves radiated from the transducer, and is reflected by the bottom surface of the test material. The ultrasonic wave (a main lobe having a low sound pressure intensity generated from the end of the vibrator) is absorbed so that the ultrasonic wave which enters the vibrator during the flaw detection gate time does not enter the test material.

従って振動子の端部から発生する音圧強度の弱いメイ
ンローブは被検材には入射しなくなるので、探傷波形図
においても、探傷ゲート中に縦波超音波によるノイズ成
分は発生しない超音波探傷装置となり得る。
Therefore, the main lobe having a low sound pressure intensity generated from the end of the vibrator does not enter the test material, so that even in the flaw detection waveform diagram, the ultrasonic flaw detection in which the noise component due to the longitudinal ultrasonic wave does not occur in the flaw detection gate. It can be a device.

[実施例] 第1図はこの発明の一実施例を示す超音波探傷装置を
示す図である。
[Embodiment] FIG. 1 is a view showing an ultrasonic flaw detector according to an embodiment of the present invention.

第1図(a)は超音波探触子の断面図、第1図(b)
は、この発明の超音波探触子によるビームの拡がりと音
圧強度の関係を示す図、第1図(c)はこの発明の超音
波探傷装置による探傷波形図である。
FIG. 1A is a cross-sectional view of the ultrasonic probe, and FIG.
FIG. 1 is a diagram showing the relationship between beam spread and sound pressure intensity by the ultrasonic probe of the present invention, and FIG. 1 (c) is a flaw detection waveform chart by the ultrasonic flaw detector of the present invention.

図において(1)は超音波探触子、(2)は振動子、
(3)は楔、(4)は音響結合体、(5)は音圧強度の
強いメインローブ、(6)は音圧強度の弱いメインロー
ブ、(7)は被検材、(8)は探傷ゲート、(9)はこ
の発明による弾性体からなる吸収体、(10)はサイドロ
ーブ、αは被検材(7)への超音波入射角度、Cは被検
材(7)の中心部、Tは送信パルス、Gは超音波探触子
(1)と被検材(7)とのギャップである。
In the figure, (1) is an ultrasonic probe, (2) is a transducer,
(3) is a wedge, (4) is an acoustic coupling body, (5) is a main lobe having a high sound pressure intensity, (6) is a main lobe having a low sound pressure intensity, (7) is a test material, and (8) is a test sample. A flaw detection gate, (9) is an absorber made of the elastic body according to the present invention, (10) is a side lobe, α is an incident angle of ultrasonic waves to the test material (7), and C is a central portion of the test material (7). , T is a transmission pulse, and G is a gap between the ultrasonic probe (1) and the test material (7).

なお、前記吸収体(9)は前記振動子(2)の法線に
対する傾斜側で、かつ前記楔(3)と音響結合体(4)
との間に設けられている。
Note that the absorber (9) is on the inclined side with respect to the normal line of the vibrator (2), and the wedge (3) and the acoustic coupling body (4).
And is provided between them.

上記のように構成された超音波探傷装置においては、
振動子(2)から放射された超音波の音圧強度の強いメ
インローブ(5)、および音圧強度の弱いメインローブ
(6)は楔(3)中を伝播し、音圧強度の強いメインロ
ーブ(5)は被検材(7)の表面へと伝播される。
In the ultrasonic flaw detector configured as described above,
The main lobe (5) having a high sound pressure intensity and the main lobe (6) having a low sound pressure intensity of the ultrasonic wave radiated from the vibrator (2) propagate through the wedge (3), and the main lobe having a high sound pressure intensity is obtained. The lobe (5) is propagated to the surface of the test material (7).

一方、音圧強度の強いメインローブの送信方向に対し
音圧強度に最大点より後方側の音圧強度の弱いメインロ
ーブ(6)とサイドローブ(10)は楔(3)に設けられ
た吸収体(9)に到達し、吸収減衰される。
On the other hand, the main lobe (6) and the side lobes (10) having a low sound pressure intensity behind the maximum point of the sound pressure intensity in the transmission direction of the main lobe having the high sound pressure intensity are provided on the wedge (3). It reaches the body (9) and is absorbed and attenuated.

すなわち前記吸収体(9)は、上記振動子(2)から
放射される超音波のうち縦超音波として上記被検材
(7)の中心部Cを通過し、上記被検材(7)の底面よ
り反射されて上記探傷ゲート(8)の時間中に前記振動
子(2)に入る音圧強度の弱いメインローブが、被検材
(7)に入射しないように上記振動子(2)から放射さ
れる音圧強度の弱いメインローブを楔(3)と音響結合
体(4)との間で吸収する。
That is, the absorber (9) passes through the center portion C of the test material (7) as longitudinal ultrasonic waves among the ultrasonic waves radiated from the transducer (2), and The main lobe having a low sound pressure intensity, which is reflected from the bottom surface and enters the oscillator (2) during the time of the flaw detection gate (8), is transmitted from the oscillator (2) so as not to enter the test material (7). The radiated main lobe having a low sound pressure intensity is absorbed between the wedge (3) and the acoustic coupling body (4).

そして、被検材(7)の表面へ伝播した音圧強度の強
いメインローブ(5)は被検材(7)の中に所定の角度
で入射し、横超音波として伝播するだけであるため、被
検材(7)の中心部Cに向って伝播する縦波超音波は上
記吸収体(9)により存在しなくなる。その結果、探傷
波形図においても、送信パルスT以降の探傷ゲート
(8)内には縦波超音波によるノイズエコーは発生しな
いことになる。なお、前記振動子(2)から放射される
超音波のうち縦波超音波として前記円柱体の被検材
(7)の中心部Cを通過し、前記被検材(2)の底面に
より反射されて探傷ゲート時間中に前記振動子(2)に
入射するような超音波が前記被検材(7)に入らないよ
うに該超音波を吸収する吸収体(9)の取付け範囲は、
例えば第1図(a)(b)に示すように音圧強度の最大
点から−10dB以下の全範囲とした方が良い。これは−6
〜−8dB程度の範囲では被検材(7)中を伝播する横波
超音波の強度が弱くなる欠点を有しているからである。
又、−10dBよりさらに低い範囲では、吸収体(9)の効
果があまり現われないために、両者のバランスを考慮し
て−10dB以下の音圧の全範囲とした方が良い。
Then, the main lobe (5) having a high sound pressure intensity transmitted to the surface of the test material (7) is incident on the test material (7) at a predetermined angle and only propagates as a transverse ultrasonic wave. The longitudinal wave propagating toward the central portion C of the test material (7) is not present by the absorber (9). As a result, even in the flaw detection waveform diagram, no noise echo due to longitudinal ultrasonic waves is generated in the flaw detection gate (8) after the transmission pulse T. Note that, among the ultrasonic waves radiated from the vibrator (2), the ultrasonic waves pass through the center portion C of the cylindrical test material (7) as longitudinal ultrasonic waves and are reflected by the bottom surface of the test material (2). The mounting range of the absorber (9) that absorbs the ultrasonic wave so as to prevent the ultrasonic wave incident on the vibrator (2) from entering the test material (7) during the flaw detection gate time is as follows:
For example, as shown in FIGS. 1 (a) and 1 (b), it is better to set the entire range of −10 dB or less from the maximum point of the sound pressure intensity. This is -6
This is because in the range of about -8 dB, there is a disadvantage that the intensity of the transverse ultrasonic wave propagating in the test material (7) becomes weak.
Further, in a range lower than -10 dB, the effect of the absorber (9) does not appear so much. Therefore, it is better to set the entire range of the sound pressure to -10 dB or less in consideration of the balance between the two.

[発明の効果] この発明は以上説明したように、超音波を送受する振
動子と、前記振動子から放射した超音波が円柱体の被検
材の中心を通る法線に対して斜めに入射されるように前
記振動子を傾斜させて支持する楔と、前記楔と前記被検
材の間に設けられ、超音波の縦波成分を通過させる水、
油等の音響結合体とを有し、前記被検材の探傷領域中に
おいて反射された超音波の横波成分を探傷ゲート時間に
前記振動子により検出する超音波探傷装置において、前
記振動子から放射される超音波のうち縦波超音波として
前記円柱体の被検材の中心部を通過し、前記被検材の底
面により反射されて探傷ゲート時間中に前記振動子に入
射するような超音波が前記被検材に入らないように該超
音波を吸収する吸収体を、前記振動子の法線に対する傾
斜側で、かつ前記楔と前記音響結合体との間に設けたこ
とにより音圧強度の弱いメインローブが被検材の中心部
に向って垂直に入射することを防止する事が可能とな
る。
[Effect of the Invention] As described above, the present invention provides a vibrator for transmitting and receiving ultrasonic waves and an ultrasonic wave radiated from the vibrator obliquely incident on a normal passing through the center of the test material of the cylindrical body. A wedge that tilts and supports the vibrator so as to be provided between the wedge and the test material, and water that passes a longitudinal wave component of an ultrasonic wave;
An ultrasonic flaw detector which has an acoustic coupling body such as oil and detects the transverse wave component of the ultrasonic wave reflected in the flaw detection region of the test material by the vibrator at the flaw detection gate time. Among the ultrasonic waves to be transmitted, ultrasonic waves that pass through the central portion of the test object of the cylindrical body as longitudinal ultrasonic waves, are reflected by the bottom surface of the test object, and enter the vibrator during the flaw detection gate time. Is provided on the inclined side with respect to the normal line of the vibrator and between the wedge and the acoustic coupling body, so that the sound pressure intensity is increased. This makes it possible to prevent the main lobe having a weak lobe from entering perpendicularly toward the center of the test material.

その結果、被検材中で縦波超音波が発生しないため、
送信パルス以降の探傷ゲート内にノイズ成分となるエコ
ーは発生せず、S/N比の良い超音波探触子を供給できる
効果がある。
As a result, since longitudinal ultrasonic waves do not occur in the test material,
An echo as a noise component is not generated in the flaw detection gate after the transmission pulse, so that an ultrasonic probe having a good S / N ratio can be supplied.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)はこの発明による超音波探触子の断面図、
第1図(b)はこの発明の超音波探触子によるビーム拡
がりと音圧強度を示す図、第1図(c)はこの発明によ
る超音波探傷装置による探傷波形図、第2図(a)は従
来の超音波探触子の断面図、第2図(b)は従来の超音
波探傷装置による探傷波形図である。 図において(1)は超音波探触子、(2)は振動子、
(3)は楔、(4)は音響結合体、(5)は音圧強度の
強いメインローブ、(6)は音圧強度の弱いメインロー
ブ、(7)は被検材、(9)は吸収体である。 尚、各図中同一符号は同一又は相当部分を示している。
FIG. 1 (a) is a cross-sectional view of an ultrasonic probe according to the present invention,
FIG. 1 (b) is a diagram showing beam spread and sound pressure intensity by the ultrasonic probe of the present invention, FIG. 1 (c) is a flaw detection waveform diagram by the ultrasonic flaw detector according to the present invention, and FIG. 2 (a) 2) is a cross-sectional view of a conventional ultrasonic probe, and FIG. 2B is a flaw detection waveform chart using a conventional ultrasonic flaw detector. In the figure, (1) is an ultrasonic probe, (2) is a transducer,
(3) is a wedge, (4) is an acoustic coupling body, (5) is a main lobe having a high sound pressure intensity, (6) is a main lobe having a low sound pressure intensity, (7) is a test material, and (9) is a test sample. It is an absorber. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超音波を送受する振動子と、前記振動子か
ら放射した超音波が円柱体の被検材の中心を通る法線に
対して斜めに入射されるように前記振動子を傾斜させて
支持する楔と、前記楔と前記被検材の間に設けられ、超
音波の縦波成分を通過させる水、油等の音響結合体とを
有し、前記被検材の探傷領域中において反射された超音
波の横波成分を探傷ゲート時間に前記振動子により検出
する超音波探傷装置において、前記振動子から放射され
る超音波のうち縦波超音波として前記円柱体の被検材の
中心部を通過し、前記被検材の底面により反射されて探
傷ゲート時間中に前記振動子に入射するような超音波が
前記被検材に入らないように該超音波を吸収する吸収体
を、前記振動子の法線に対する傾斜側で、かつ前記楔と
前記音響結合体との間に設けたことを特徴とする超音波
探傷装置。
An oscillator for transmitting and receiving ultrasonic waves, and an oscillator for tilting the oscillator so that ultrasonic waves radiated from the oscillator are incident obliquely with respect to a normal passing through the center of a cylindrical test material. A wedge which is provided between the wedge and the material to be inspected, and which is provided between the wedge and the material to be inspected, such as water, oil or the like, which allows a longitudinal wave component of an ultrasonic wave to pass therethrough. In the ultrasonic flaw detector which detects the transverse wave component of the ultrasonic wave reflected at the flaw detection gate time by the vibrator, the ultrasonic wave emitted from the vibrator as the longitudinal ultrasonic wave of the test material of the cylindrical body An absorber that absorbs the ultrasonic wave so as to pass through the central portion and be reflected by the bottom surface of the test material and incident on the vibrator during the flaw detection gate time so as not to enter the test material. The inclined side with respect to the normal line of the vibrator, and the wedge and the acoustic coupling body Ultrasonic flaw detection apparatus characterized by comprising between.
JP62091254A 1987-04-14 1987-04-14 Ultrasonic flaw detector Expired - Lifetime JP2630392B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62091254A JP2630392B2 (en) 1987-04-14 1987-04-14 Ultrasonic flaw detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62091254A JP2630392B2 (en) 1987-04-14 1987-04-14 Ultrasonic flaw detector

Publications (2)

Publication Number Publication Date
JPS63256846A JPS63256846A (en) 1988-10-24
JP2630392B2 true JP2630392B2 (en) 1997-07-16

Family

ID=14021290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62091254A Expired - Lifetime JP2630392B2 (en) 1987-04-14 1987-04-14 Ultrasonic flaw detector

Country Status (1)

Country Link
JP (1) JP2630392B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060048576A1 (en) * 2002-01-17 2006-03-09 Akihiro Kiuchi Bearing steel,method for evaluating large-sized inclusions in the steel and rolling bearing

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598153U (en) * 1982-07-09 1984-01-19 三菱電機株式会社 ultrasonic probe
JPS60140154A (en) * 1983-12-28 1985-07-25 Toyota Central Res & Dev Lab Inc Ultrasonic inspection apparatus

Also Published As

Publication number Publication date
JPS63256846A (en) 1988-10-24

Similar Documents

Publication Publication Date Title
US5431054A (en) Ultrasonic flaw detection device
KR870000590A (en) Defect detection method and apparatus of metal
JP2630392B2 (en) Ultrasonic flaw detector
JP2630393B2 (en) Ultrasonic flaw detector
US5677489A (en) Distributed structural characteristic detection system using a unidirectional acoustic waveguide
JP7074488B2 (en) Ultrasonic probe
EP3543688A1 (en) Inspection method
JPS5831870B2 (en) Ultrasonic flaw detection equipment
JP2922508B1 (en) Automatic ultrasonic flaw detector
JPS6110204Y2 (en)
JPH08220079A (en) Ultrasonic probe
JP2978708B2 (en) Composite angle beam probe
JPH01187447A (en) Two-split type vertical probe
RU2055359C1 (en) Prismatic ultrasonic piezoelectric converter
JPH11316216A (en) Ultrasonic probe
JPH10111281A (en) Ultrasonic flaw detection and ultrasonic probe
JPS63259460A (en) Ultrasonic probe apparatus
JPH0513465B2 (en)
JPH04194745A (en) Ultrasonic inspection
JPH08201352A (en) Ultrasonic probe for oblique flaw detection
SU1486917A1 (en) Method of ultrasonic monitoring of quality of elongated articles
SU1755177A1 (en) Ultrasonic tilted converter
JPH0328375Y2 (en)
JPS63184054A (en) Ultrasonic probe
JPS61118655A (en) Probe for ultrasonic flaw detection of tenon part