JP2628330B2 - Production method of silica gel with excellent alkali resistance - Google Patents

Production method of silica gel with excellent alkali resistance

Info

Publication number
JP2628330B2
JP2628330B2 JP63038897A JP3889788A JP2628330B2 JP 2628330 B2 JP2628330 B2 JP 2628330B2 JP 63038897 A JP63038897 A JP 63038897A JP 3889788 A JP3889788 A JP 3889788A JP 2628330 B2 JP2628330 B2 JP 2628330B2
Authority
JP
Japan
Prior art keywords
silica gel
alkali resistance
temperature
alkali
production method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63038897A
Other languages
Japanese (ja)
Other versions
JPH01215708A (en
Inventor
和彦 矢口
正彰 室谷
詳仁 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Silysia Chemical Ltd
Original Assignee
Fuji Silysia Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12537993&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2628330(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fuji Silysia Chemical Ltd filed Critical Fuji Silysia Chemical Ltd
Priority to JP63038897A priority Critical patent/JP2628330B2/en
Publication of JPH01215708A publication Critical patent/JPH01215708A/en
Application granted granted Critical
Publication of JP2628330B2 publication Critical patent/JP2628330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/16Preparation of silica xerogels

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐アルカリ性に優れたシリカゲルの製法に関
するもので、詳しくは、強アルカリ水溶液と接触しても
侵蝕を受けることが少ないシリカゲルを得るための方法
である。
Description: TECHNICAL FIELD The present invention relates to a method for producing silica gel having excellent alkali resistance. More specifically, the present invention relates to a method for obtaining a silica gel which is hardly corroded even when contacted with a strong alkaline aqueous solution. This is the method.

(従来技術とその問題点) シリカゲルは幅広い分野で利用されており、例えば、
触媒、触媒担体、クロマト分離吸着剤、プラスチック充
填剤、アンチブロッキング充填剤、更に、化粧品原料等
に利用されている。
(Prior art and its problems) Silica gel is used in a wide range of fields.
It is used as a catalyst, a catalyst carrier, a chromatographic separation adsorbent, a plastic filler, an anti-blocking filler, and a raw material for cosmetics.

従来、シリカゲルの製法としては、いくつか知られて
いるが、一般的な方法として、例えば、ケイ酸アルカリ
水溶液と鉱酸水溶液とを混合してコロイド状シリカを生
成させ、次いで、ゲル化しヒドロゲルとした後、水洗し
て副生した水溶液の中和塩を除去し、更に、必要に応じ
て、熟成した後、乾燥することにより製造する方法が知
られている。(例えば、特公昭48−13834号参照) ところが、この製法により得られるシリカゲルはアル
カリ水溶液に弱く、特に、強アルカリ水溶液と接触する
と、シリカゲルの一部が溶解侵蝕を受けると言う欠点が
ある。この原因は下記反応式に示す通り、シリカの一部
がケイ酸ナトリウムとなり水溶化するためであるが、特
に、シリカゲル自体の比表面積が極めて大きい(約1000
m2/g以上のものもある)ため、アルカリ水溶液との接触
面積を増大しているのも、この傾向を増大している要因
である。
Conventionally, several methods for producing silica gel are known, but as a general method, for example, an aqueous solution of an alkali silicate and an aqueous solution of a mineral acid are mixed to produce colloidal silica, which is then gelled to form a hydrogel. Then, a method is known in which the product is washed with water to remove a neutralized salt of the by-produced aqueous solution, and, if necessary, aged and then dried. (See, for example, Japanese Patent Publication No. 48-13834.) However, the silica gel obtained by this method has a disadvantage that it is susceptible to an aqueous alkali solution, and in particular, when it comes into contact with a strong aqueous alkali solution, a part of the silica gel is dissolved and eroded. This is because a part of silica becomes sodium silicate and becomes water-soluble as shown in the following reaction formula. In particular, the specific surface area of silica gel itself is extremely large (about 1000
m 2 / g or more), an increase in the contact area with the aqueous alkaline solution is also a factor that increases this tendency.

(SiO2)n+2nNaOH→nNaSiO3+nH2O そのため、上記製法で得たシリカゲルをアルカリ水溶
液と接触する必要のある用途に利用した場合には、アル
カリによる侵蝕を受け寿命が短かくなる問題点があっ
た。例えば、粒子状シリカゲルを各種蛋白質の分離精製
を目的としたゲル浸透、イオン交換、吸着クロマトグラ
フィー等のカラム充填剤として用いた場合、精製処理後
において、充填剤に吸着した不純蛋白などを脱着のため
強アルカリ水溶液で洗浄することがしばしばあるが、こ
の際に、充填剤である粒状シリカゲルが侵蝕され粒子が
微小化するとともに、充填層の有効容積が減少する問題
が生ずる。また、シリカゲルを固定化酵素の担体として
用いる場合も、基準と酵素の反応終了後、失活酵素の脱
着をアルカリ水溶液にて行なうことがあるが、この場合
も、固定相が同様に侵蝕される現象が発生する。
(SiO 2 ) n + 2nNaOH → nNaSiO 3 + nH 2 O Therefore, when the silica gel obtained by the above-mentioned production method is used for an application requiring contact with an alkaline aqueous solution, there is a problem that the life is short due to erosion by alkali. Was. For example, when particulate silica gel is used as a column packing material for gel permeation, ion exchange, adsorption chromatography, etc. for the purpose of separating and purifying various proteins, after the purification treatment, it is possible to desorb impurity proteins and the like adsorbed on the packing material. For this reason, washing with a strong alkaline aqueous solution is often performed. At this time, however, there is a problem that the granular silica gel as the filler is eroded, the particles are miniaturized, and the effective volume of the packed bed is reduced. Also, when silica gel is used as a carrier for the immobilized enzyme, the deactivated enzyme may be desorbed with an alkaline aqueous solution after the reaction between the standard and the enzyme, but in this case, the stationary phase is similarly eroded. The phenomenon occurs.

(発明の課題と解決手段) 本発明者は上記実情に鑑み、ケイ酸アルカリと鉱酸と
から製造されたシリカゲルの耐アルカリ性を改善するこ
とを目的として種々検討した結果、従来法により得たシ
リカゲルを600℃以上の温度で焼成することにより、耐
アルカリ性に優れたシリカゲルが回収できることを見い
出し、本発明を完成するに到った。
(Problems and Solutions to the Invention) In view of the above-mentioned circumstances, the present inventors have conducted various studies with the aim of improving the alkali resistance of silica gel produced from an alkali silicate and a mineral acid. By firing at a temperature of 600 ° C. or higher, it was found that silica gel having excellent alkali resistance could be recovered, and the present invention was completed.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明ではケイ酸アルカリと鉱酸とを主原料として製
造されたシリカゲルを対象とし、これを更に焼成処理す
るものであるが、原料のケイ酸アルカリとしては、通
常、ケイ酸ナトリウム、ケイ酸カリウム、ケイ酸リチウ
ムなどのケイ酸アルカリ金属塩が挙げられ、一方、鉱酸
としては、通常、硫酸、塩酸、硝酸などの無機酸、又
は、酢酸、シュウ酸などの有機酸が挙げられる。
In the present invention, silica gel produced using an alkali silicate and a mineral acid as main raw materials is subjected to a further calcination treatment. As the raw material alkali silicate, sodium silicate and potassium silicate are usually used. And alkali metal silicates such as lithium silicate. On the other hand, the mineral acids usually include inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as acetic acid and oxalic acid.

ケイ酸アルカリと鉱酸とからシリカゲルを製造する方
法としては、本発明では特に限定されず、種々の公知法
に従って製造することができる。例えば、両者の水溶液
を混合しコロイド状シリカとし、次いで、ゲル化しヒド
ロゲル化した後、水洗、乾燥する方法が採用し得る。そ
して、これらの各工程の条件も、従来の公知法の範囲か
ら選定することができる。本発明で用いるシリカゲルの
タイプは通常、RD型、A型、B型又はID型のいずれのも
のでよく、また、比表面積は例えば、600m2/g以上のも
のが望ましい。このようなシリカゲルは市販もされてお
り、例えば、富士デヴィソン化学(株)製のシリカゲル
などを用いるのが望ましい。
The method for producing silica gel from an alkali silicate and a mineral acid is not particularly limited in the present invention, and it can be produced according to various known methods. For example, a method of mixing both aqueous solutions to form colloidal silica, then gelling and hydrogelling, washing with water, and drying may be employed. The conditions for each of these steps can also be selected from the range of conventional known methods. The type of silica gel used in the present invention may be any of RD type, A type, B type and ID type, and the specific surface area is desirably, for example, 600 m 2 / g or more. Such silica gel is commercially available. For example, silica gel manufactured by Fuji Devison Chemical Co., Ltd. is preferably used.

本発明においては、上述のようなシリカゲルを600℃
以上、好ましくは700〜1200℃の温度で焼成処理するこ
とを必須の要件とするものである。要するに、この焼成
処理により、シリカゲルの耐アルカリ性を著しく改善す
ることができるのである。したがって、焼成温度が低い
場合には、耐アルカリ性の向上効果が小さく好ましくな
い。このようにして焼成するとシリカゲルは表面水酸基
濃度が3.5個/n m2以下、比表面積は焼成前の90%以下と
なる。
In the present invention, the above-mentioned silica gel is heated to 600 ° C.
As described above, preferably, the calcination treatment is preferably performed at a temperature of 700 to 1200C. In short, this baking treatment can significantly improve the alkali resistance of silica gel. Therefore, when the firing temperature is low, the effect of improving alkali resistance is small, which is not preferable. When calcined in this manner, the silica gel has a surface hydroxyl group concentration of 3.5 particles / nm 2 or less and a specific surface area of 90% or less before calcining.

焼成処理は通常、大気中で実施され、その加熱方法は
直接加熱又は間接加熱のいずれもよい。焼成装置として
は、例えば、電気高温マッフル炉、管状炉、連続ロータ
リーキルン、連続コンベアー式電気炉、タンマン炉、チ
ューブ炉、坩堝炉、流気式電気炉、ポット炉などが挙げ
られる。
The firing treatment is usually performed in the air, and the heating method may be either direct heating or indirect heating. Examples of the firing apparatus include an electric high-temperature muffle furnace, a tubular furnace, a continuous rotary kiln, a continuous conveyor-type electric furnace, a Tamman furnace, a tube furnace, a crucible furnace, a flow-type electric furnace, and a pot furnace.

また、焼成時間は焼成方式、焼成温度などにより多少
異なるが、通算、0.5〜24時間、好ましくは1〜5時間
の範囲から選ばれる。焼成は前記温度で実施するが、通
常、設定温度の±10℃前後の範囲に制御するのが望まし
い。なお、焼成に供するシリカゲルは通常、50〜300メ
ッシュ程度の粒状のものが好ましい。
The firing time varies somewhat depending on the firing method and firing temperature, but is generally selected from the range of 0.5 to 24 hours, preferably 1 to 5 hours. The sintering is performed at the above-mentioned temperature, but it is usually desirable to control the temperature within a range of about ± 10 ° C. of the set temperature. In addition, the silica gel to be subjected to the calcination is usually preferably in a granular form of about 50 to 300 mesh.

このような処理を終えたシリカゲルは通常、飽和蒸気
圧のデシケーター中に保持することにより再水和し、シ
リカゲルの表面シラノール基を元に戻すのが望ましい。
このようにして回収されたシリカゲルは耐アルカリ性が
大幅に改善された高品位のシリカゲルである。
It is usually desirable to rehydrate the silica gel after such treatment by holding it in a desiccator with a saturated vapor pressure to restore the surface silanol groups of the silica gel.
The silica gel thus recovered is a high-grade silica gel having greatly improved alkali resistance.

(実施例) 次に、本発明を実施例により更に具体的に説明する
が、本発明はその要旨を超えない限り、以下の実施例の
記述に制約されるものではない。
EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the description of the following examples unless it exceeds the gist.

<耐アルカリ性(重量減少率)測定方法> シリカゲルの試料を内径3mm、長さ23cmのステンレス
製パイプに充填し、これを蒸留水中で減圧脱泡した後、
pH8の水酸化ナトリウム水溶液を25℃の温度において6g/
minの流速で90分間、上向流により通液し、次いで、試
料を回収し170℃の温度で1時間乾燥した後、処理前後
のシリカゲルの重量減少率を次式(1)により求めた。
<Method of measuring alkali resistance (weight loss ratio)> A silica gel sample was filled into a stainless steel pipe having an inner diameter of 3 mm and a length of 23 cm, and this was defoamed in distilled water under reduced pressure.
pH 8 sodium hydroxide aqueous solution at a temperature of 25 ℃ 6g /
The liquid was passed through an upward flow at a flow rate of min for 90 minutes, then the sample was recovered and dried at a temperature of 170 ° C. for 1 hour, and the weight loss rate of the silica gel before and after the treatment was determined by the following equation (1).

ここでアルカリ処理前重量とは170℃2時間焼成後デ
ジケーター内で常温に冷却し測定したシリカゲルの重量
であり、アルカリ処理後重量とは水酸化ナトリウムで調
製したpH8.0の水溶液を90分間6g/minの流量で接触させ
た後デジケーター中で常温に冷却し測定したシリカゲル
の重量である。
Here, the weight before alkali treatment is the weight of silica gel measured at 170 ° C. for 2 hours and then cooled to room temperature in a digitizer after baking for 2 hours. The weight after alkali treatment is 6 g of an aqueous solution of pH 8.0 prepared with sodium hydroxide for 90 minutes. This is the weight of silica gel measured after contacting at a flow rate of / min and cooling to room temperature in a digitizer.

この測定において170℃の温度で2時間熱処理した
後、アルカリ水溶液と接触させたシリカゲルの重量減少
率の値に対して所定の温度で熱処理した後、アルカリ水
溶液と接触させたシリカゲルの重量減少率値が0.25以下
となったシリカゲルを耐アルカリ性が改善されたシリカ
ゲルと見なした。すなわち次式の通りである。
In this measurement, after heat treatment at a temperature of 170 ° C. for 2 hours, the value of the weight loss rate of the silica gel contacted with the alkaline aqueous solution after heat treatment at a predetermined temperature with respect to the value of the weight loss rate of the silica gel contacted with the alkaline aqueous solution The silica gel having a value of 0.25 or less was regarded as silica gel having improved alkali resistance. That is, it is as follows.

(2)式>0.25の場合:耐アルカリ性が改善されてい
ないシリカゲル (2)式≦0.25の場合:耐アルカリ性が改善されたシ
リカゲル 実施例1〜7及び比較例1〜3 RD型シリカゲル(富士デヴィソン化学(株)製)(比
表面積754m2/g、Na2O160ppm、OH基6.48個/n m2)を粉砕
し、粒径80〜100メッシュに分級したものを大気中、加
熱炉中にて第1表に示す温度に保持し2時間、焼成処理
を行なった。燃焼装置は(有)山下電気工業所製電気高
温マッフル炉を使用した。
(2) When formula> 0.25: silica gel whose alkali resistance is not improved (2) When formula ≦ 0.25: silica gel whose alkali resistance is improved Examples 1 to 7 and Comparative Examples 1 to 3 RD type silica gel (Fuji Devison (Chemical Co., Ltd.) (Specific surface area 754 m 2 / g, Na 2 O 160 ppm, OH group 6.48 / nm 2 ), pulverized and classified to a particle size of 80 to 100 mesh in air and in a heating furnace. The firing treatment was performed for 2 hours while maintaining the temperature shown in Table 1. The combustion device used was an electric high-temperature muffle furnace manufactured by Yamashita Electric Industrial Co., Ltd.

焼成処理後の各シリカゲルにつき、基本物性を測定す
るとともに、前述の耐アルカリ性測定方法に従って、シ
リカゲルの重量減少率を求め、また、参考までにアルカ
リ処理後の物性変化も求めたところ、第1表に示す通り
の結果であった。
The basic physical properties of each of the silica gels after the calcination treatment were measured, and the weight loss rate of the silica gel was determined according to the alkali resistance measurement method described above. The physical property changes after the alkali treatment were also determined for reference. The results were as shown in FIG.

実施例8〜11及び比較例4〜7 実施例1の方法において、焼成温度を第2表に示す温
度とし、しかも、焼成後のシリカゲルを飽和蒸気圧のデ
シケーターにより24時間以上、水和させ、更に、そこに
蒸留水を加え撹拌し、これを減圧脱泡、デカンテーショ
ンを行なった後、実施例1と同様に各物性値及び重量減
少率を求めたところ、第2表に示す通りの結果であっ
た。
Examples 8 to 11 and Comparative Examples 4 to 7 In the method of Example 1, the calcination temperature was set to the temperature shown in Table 2, and the silica gel after calcination was hydrated for 24 hours or more with a desiccator having a saturated vapor pressure. Further, distilled water was added thereto, and the mixture was stirred. The mixture was subjected to defoaming under reduced pressure and decantation. After that, each physical property value and weight loss rate were obtained in the same manner as in Example 1. The results were as shown in Table 2. Met.

実施例12〜14及び比較例8〜11 RD型シリカゲル(富士デヴィソン化学(株)製)を粉
砕し粒径80〜100メッシュに分級したものを蒸留水中で
撹拌し、圧脱泡、デカンケーションし、次いで、これを
170℃の温度で2時間、乾燥した。
Examples 12 to 14 and Comparative Examples 8 to 11 RD type silica gel (manufactured by Fuji Devison Chemical Co., Ltd.) was pulverized and classified to a particle size of 80 to 100 mesh, stirred in distilled water, defoamed and decanted. And then this
Dried at a temperature of 170 ° C. for 2 hours.

このシリカゲル(比表面積703m2/g、Na2O14.88ppm)
を実施例8と同様に第3表に示す温度で焼成処理した
後、水和処理することにより回収された各シリカゲルに
つき、同様な方法で重量減少率を求めたところ、第3表
に示す結果であった。
This silica gel (specific surface area 703 m 2 / g, Na 2 O 14.88 ppm)
Was calcined at the temperature shown in Table 3 in the same manner as in Example 8, and the weight loss rate was determined by the same method for each silica gel recovered by hydration. The results shown in Table 3 were obtained. Met.

(効果) 以上のように、本発明によれば、ケイ酸アルカリと鉱
酸とから製造されたシリカゲル及び市販のシリカゲルを
特定条件において焼成することにより、耐アルカリ性の
大幅に改善された高品質のシリカゲルを得ることができ
る。したがって、本発明で得たシリカゲルを例えば、各
種カラム充填剤として用いても、アルカリ洗浄時にシリ
カゲル粒子が侵蝕されることもなく、充填剤としての寿
命を長くすることができる。
(Effects) As described above, according to the present invention, by sintering silica gel produced from an alkali silicate and a mineral acid and a commercially available silica gel under specific conditions, a high-quality silica with significantly improved alkali resistance is obtained. Silica gel can be obtained. Therefore, even when the silica gel obtained in the present invention is used as, for example, various column fillers, the silica gel particles are not eroded during alkali washing, and the life of the filler can be extended.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−283810(JP,A) 特開 昭59−54632(JP,A) 特開 昭57−179008(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-62-283810 (JP, A) JP-A-59-54632 (JP, A) JP-A-57-179008 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ケイ酸アルカリと鉱酸とから製造されたシ
リカゲルを、600℃以上の温度で焼成することを特徴と
する耐アルカリ性に優れたシリカゲルの製法。
1. A method for producing silica gel having excellent alkali resistance, comprising firing silica gel produced from an alkali silicate and a mineral acid at a temperature of 600 ° C. or higher.
JP63038897A 1988-02-22 1988-02-22 Production method of silica gel with excellent alkali resistance Expired - Fee Related JP2628330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63038897A JP2628330B2 (en) 1988-02-22 1988-02-22 Production method of silica gel with excellent alkali resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63038897A JP2628330B2 (en) 1988-02-22 1988-02-22 Production method of silica gel with excellent alkali resistance

Publications (2)

Publication Number Publication Date
JPH01215708A JPH01215708A (en) 1989-08-29
JP2628330B2 true JP2628330B2 (en) 1997-07-09

Family

ID=12537993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63038897A Expired - Fee Related JP2628330B2 (en) 1988-02-22 1988-02-22 Production method of silica gel with excellent alkali resistance

Country Status (1)

Country Link
JP (1) JP2628330B2 (en)

Also Published As

Publication number Publication date
JPH01215708A (en) 1989-08-29

Similar Documents

Publication Publication Date Title
JP6846344B2 (en) Cerium oxide particles and their manufacturing method
AU607829B2 (en) Method of producing an adsorbent for separation and recovery of co
JP6089678B2 (en) Strontium exchange clinoptilolite
JP4336148B2 (en) Magnesium oxide powder and method for producing the same
JP3050147B2 (en) Adsorbent for air separation, production method thereof and air separation method using the same
JP2628330B2 (en) Production method of silica gel with excellent alkali resistance
JP3332817B2 (en) Mesoporous silica and method for producing the same
JP6454214B2 (en) Silica and production method thereof
JP2740810B2 (en) Production method of silica gel with excellent alkali resistance
JP4873108B2 (en) Carbon dioxide adsorption separation method
JPS62132727A (en) Clinoptilolite-type zeolite and production thereof
JP3572365B2 (en) High heat resistant ferrierite-type zeolite and method for producing the same
JP2005263529A (en) Method for producing activated alumina having low alkali content
JP2002018226A (en) Method for adsorptive separation of carbon dioxide
JP2000239006A (en) Activated alumina compact for production of hydrogen peroxide, its production, and purification of operating liquid for production of hydrogen peroxide by using the same
JP6303791B2 (en) Method for producing strontium clinoptilolite
JP7426258B2 (en) Silica-containing alumina powder and its manufacturing method
WO2023190681A1 (en) Beta zeolite and method for producing same
JP2009280423A (en) Aluminum silicate that regularly arranges water molecule, and method for synthesizing the same
SU1738326A1 (en) Method of producing alumina-base adsorbent
JPH10128106A (en) Adsorbent for oxygen psa(pressure swing adsorption), its preparation and preparation of oxygen using it
JPH0975717A (en) Method for removing arsenate ion
JPH0137330B2 (en)
JP3260826B2 (en) Purification method of nitrous oxide
JP2931660B2 (en) Purification method of silicon tetrafluoride gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees