JP2625895B2 - Valve drive for internal combustion engine - Google Patents

Valve drive for internal combustion engine

Info

Publication number
JP2625895B2
JP2625895B2 JP63134500A JP13450088A JP2625895B2 JP 2625895 B2 JP2625895 B2 JP 2625895B2 JP 63134500 A JP63134500 A JP 63134500A JP 13450088 A JP13450088 A JP 13450088A JP 2625895 B2 JP2625895 B2 JP 2625895B2
Authority
JP
Japan
Prior art keywords
opening
valve
hydraulic oil
closing
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63134500A
Other languages
Japanese (ja)
Other versions
JPH01305112A (en
Inventor
健一郎 進藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP63134500A priority Critical patent/JP2625895B2/en
Publication of JPH01305112A publication Critical patent/JPH01305112A/en
Application granted granted Critical
Publication of JP2625895B2 publication Critical patent/JP2625895B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Valve Device For Special Equipments (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、内燃機関の吸排気弁等の開閉弁を油圧によ
り開閉駆動する装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for opening and closing hydraulically operated on-off valves such as intake and exhaust valves of an internal combustion engine.

〔従来の技術〕[Conventional technology]

従来、吸排気弁を油圧アクチュエータによって開閉駆
動し、アクチュエータへの油圧の供給タイミングおよび
供給時間を制御して吸排気弁の任意の開閉動作を得よう
とするものが知られている。特開昭58−82010号公報は
機関の運転状態に応じてアクチュエータを構成するサー
ボ弁の開度を制御する構成を、また特開昭58−152140号
公報は燃料性状等の運転条件の変化に応じてアクチュエ
ータを制御し、排気弁の開弁時期を制御する構成を示し
ている。
2. Description of the Related Art Conventionally, there has been known an intake / exhaust valve that is driven to open and close by a hydraulic actuator, and controls the timing and time of supply of hydraulic pressure to the actuator to obtain an arbitrary opening / closing operation of the intake / exhaust valve. Japanese Patent Laying-Open No. 58-82010 discloses a configuration for controlling the opening of a servo valve constituting an actuator in accordance with the operating state of an engine, and Japanese Patent Laying-Open No. 58-152140 discloses a configuration for controlling changes in operating conditions such as fuel properties. An arrangement is shown in which the actuator is controlled accordingly to control the opening timing of the exhaust valve.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが、上記構成を有する従来の弁駆動装置は、吸
排気弁を開閉駆動するための作動油の性状が機関の温度
変化等により変化した場合について考慮されておらず、
このため吸排気弁の開閉動作の精度が低下するおそれが
ある。すなわち、例えば作動油の粘性が変化して流量特
性が変動すると、アクチュエータの作動が変化して吸排
気弁が所期の開閉動作を高精度に行わなくなり、エンジ
ン性能が低下するとともに吸排気弁の異常挙動を誘起し
て騒音が発生するおそれが生じる。また作動油中に含ま
れる気泡の割合がエンジンの運転状態によって変化する
と、作動油の体積弾性率が変化し、これにより作動油の
圧力上昇特性が変わってアクチュエータの作動が変化
し、同様な問題が生じる。
However, the conventional valve driving device having the above configuration does not consider the case where the properties of the hydraulic oil for opening and closing the intake / exhaust valves change due to a change in the temperature of the engine and the like.
For this reason, the accuracy of the opening / closing operation of the intake / exhaust valve may be reduced. That is, for example, when the viscosity of the hydraulic oil changes and the flow characteristics fluctuate, the operation of the actuator changes, and the intake and exhaust valves do not perform the expected opening and closing operations with high accuracy. Abnormal behavior may be induced to generate noise. Also, if the proportion of air bubbles contained in the hydraulic oil changes depending on the operating condition of the engine, the bulk modulus of the hydraulic oil changes, which changes the pressure rise characteristics of the hydraulic oil and changes the operation of the actuator. Occurs.

本発明は、作動油の性状が変化しても、開閉弁が常に
所期の開閉動作を行うことを可能ならしめ弁駆動装置を
得ることを課題とする。
An object of the present invention is to provide a valve drive device that enables an on-off valve to always perform an expected opening and closing operation even when the properties of hydraulic oil change.

〔課題を解決するための手段〕[Means for solving the problem]

本発明に係る弁駆動装置は、第1図の発明の構成図に
示すように、圧力源116と、開閉弁を開閉駆動するアク
チュエータ12,22と、上記圧力源とアクチュエータの間
に設けられ、上記圧力源の油圧のアクチュエータへの供
給、およびこの油圧のアクチュエータからの解放を制御
して上記開閉弁の開閉時期を制御する圧力制御弁111,11
2と、上記圧力源から供給される作動油の性状を検出す
る手段Aとに応じて、上記圧力制御弁の開閉動作を制御
し、上記開閉弁の開閉動作を調整する手段Bとを備える
ことを特徴としている。
The valve drive device according to the present invention is provided with a pressure source 116, actuators 12 and 22 for opening and closing the open / close valve, and between the pressure source and the actuator, as shown in the configuration diagram of the invention in FIG. Pressure control valves 111 and 11 for controlling the supply of the hydraulic pressure of the pressure source to the actuator and the release of the hydraulic pressure from the actuator to control the opening / closing timing of the open / close valve.
And means B for controlling the opening / closing operation of the pressure control valve and adjusting the opening / closing operation of the open / close valve in accordance with the means A for detecting the properties of the hydraulic oil supplied from the pressure source. It is characterized by.

〔作 用〕(Operation)

作動油の性状が変化してアクチュエータへ供給される
作動油の流量特性あるいは圧力変化特性が変化すると、
圧力制御弁の開閉動作が制御されてアクチュエータに対
する作動油の供給状態が、調整され、開閉弁の所期の開
閉動作が得られる。
When the properties of the hydraulic oil change and the flow characteristics or pressure change characteristics of the hydraulic oil supplied to the actuator change,
The opening / closing operation of the pressure control valve is controlled, the supply state of the hydraulic oil to the actuator is adjusted, and the desired opening / closing operation of the on / off valve is obtained.

〔実施例〕〔Example〕

以下図示実施例に基いて本発明を説明する。 Hereinafter, the present invention will be described based on the illustrated embodiments.

第2図は本発明の一実施例を示す。この図において、
吸気弁11,21およびこれらを支持する周囲の部材の構造
は従来公知の構成を有し、簡略化されて示されている。
本実施例において、シリンダヘッドはアルミ合金から、
また吸気弁11,21は鋼から形成される。
FIG. 2 shows an embodiment of the present invention. In this figure,
The structures of the intake valves 11, 21 and the surrounding members that support them have a conventionally known configuration and are shown in a simplified manner.
In this embodiment, the cylinder head is made of aluminum alloy,
The intake valves 11, 21 are formed of steel.

吸気弁11,21は油圧アクチュエータ12,22によって駆動
され、それぞればね15,25により常時開弁方向に付勢さ
れる。油圧アクチュエータ12,22はプランジャ13,23と油
圧室14,24とを備える。油圧室14,24は配管101,102を介
して油圧導入用圧力制御弁111に接続されると共に配管1
01,103を介して油圧排出用圧力制御弁112に接続され
る。圧電素子積層体としての電気式アクチュエータ113
は油圧導入用圧力制御弁111の開閉作動を行い、圧電素
子積層体としての電気式アクチュエータ114は油圧排出
用圧力制御弁112の開閉作動をおこなう。高圧アキュム
レータ115は配管104を介して油圧ポンプ116に接続され
る。117は調圧弁であり、油圧アクチュエータ14,24への
制御油圧を制御する。低圧アキュムレータ118は配管105
を介して油タンク106に接続される。107はストレーナで
ある。
The intake valves 11, 21 are driven by hydraulic actuators 12, 22, and are constantly urged in the valve opening direction by springs 15, 25, respectively. The hydraulic actuators 12, 22 include plungers 13, 23 and hydraulic chambers 14, 24. The hydraulic chambers 14 and 24 are connected to a pressure control valve 111 for introducing hydraulic pressure through pipes 101 and 102, and
01 and 103 are connected to the pressure control valve 112 for hydraulic discharge. Electric actuator 113 as piezoelectric element laminate
Performs an opening and closing operation of a hydraulic pressure introduction pressure control valve 111, and an electric actuator 114 as a piezoelectric element laminate performs an opening and closing operation of a hydraulic discharge pressure control valve 112. The high-pressure accumulator 115 is connected to the hydraulic pump 116 via the pipe 104. Reference numeral 117 denotes a pressure regulating valve which controls the control hydraulic pressure to the hydraulic actuators 14, 24. Low pressure accumulator 118 is for piping 105
Is connected to the oil tank 106. 107 is a strainer.

制御回路130は圧電アクチュエータ113,114を制御する
ことにより、吸気弁11,21の作動を制御するものであ
り、例えば、マイクロコンピュータシステムとして構成
される。制御回路130は、マイクロプロセシングユニッ
ト(MPU)131と、メモリ132と、入力ポート133と、出力
ポート134と、これらを相互に接続するバス135とを基本
的構成要素とする。
The control circuit 130 controls the operation of the intake valves 11, 21 by controlling the piezoelectric actuators 113, 114, and is configured as, for example, a microcomputer system. The control circuit 130 has a microprocessing unit (MPU) 131, a memory 132, an input port 133, an output port 134, and a bus 135 interconnecting these components as basic components.

入力ポート133には種々のセンサが接続され、エンジ
ン運転条件信号が入力される。クランク角センサ141は7
20゜CA毎(即ちエンジン一サイクル毎)にパルス信号を
発生し、基準信号となる。クランク角センサ142は30゜C
A毎にパルス信号を発生し、エンジン回転数を知ること
ができる。スロットルセンサ143は内燃機関のスロット
ル弁開度(又はアクセスペダル開度)を検出する。作動
油温センサ144は配管101に設けられ作動油の温度を検出
する。作動油粘性センサ145、および気泡割合センサ147
は例えば配管101に取付けられ、後述するようにそれぞ
れ作動油の粘性、作動油中の気泡の割合を検出する。冷
却水温センサ146は機関本体のウォータジャケットに設
けられて冷却水温を検出する。スロットルセンサ143、
作動油温センサ144、作動油粘性センサ145、冷却水温セ
ンサ146、および気泡割合センサ147の検出信号はAD変換
器148に入力されてAD変換される。
Various sensors are connected to the input port 133, and an engine operating condition signal is input. Crank angle sensor 141 is 7
A pulse signal is generated every 20 ° CA (that is, every engine cycle) and becomes a reference signal. 30 ° C for crank angle sensor 142
A pulse signal is generated for each A, and the engine speed can be known. The throttle sensor 143 detects a throttle valve opening (or an access pedal opening) of the internal combustion engine. The hydraulic oil temperature sensor 144 is provided in the pipe 101 and detects the temperature of the hydraulic oil. Hydraulic oil viscosity sensor 145 and bubble ratio sensor 147
Is attached to the pipe 101, for example, and detects the viscosity of the hydraulic oil and the ratio of bubbles in the hydraulic oil as described later. The cooling water temperature sensor 146 is provided on a water jacket of the engine body and detects a cooling water temperature. Throttle sensor 143,
The detection signals of the working oil temperature sensor 144, the working oil viscosity sensor 145, the cooling water temperature sensor 146, and the bubble ratio sensor 147 are input to the AD converter 148 and AD converted.

作動油粘性センサ145としては、例えば、磁気ひずみ
式振動粘度計、電磁式振動粘度計、回転粘度計、細管粘
度計を用いることが可能である。磁気ひずみ式振動粘度
計は、磁気ひずみ材料でできた振動片に固有振動数より
長い周期の電気パルスを印加し、その後の振幅の減衰の
様子から粘性を検出するものである。電磁式振動粘度計
は、電気ひずみ素子の作動油中と空気中における振動時
の振幅を比較することにより粘性を検出するものであ
る。回転粘度計は作動油中の回転子の受ける粘性トルク
から粘性を検出し、細管粘度計は配管101に連結したバ
イパス管内の出入口の差圧を測って粘性を検出する。一
方、気泡割合センサ147は、配管の一部を石英等の透光
性材料で形成し、発光素子から発光された光を透光配管
部を通過させて受光素子で受光し、その時の受光量によ
って気泡割合を検出する。
As the hydraulic oil viscosity sensor 145, for example, a magnetostrictive viscometer, an electromagnetic viscometer, a rotational viscometer, and a thin tube viscometer can be used. The magnetostrictive vibration viscometer applies an electric pulse having a period longer than the natural frequency to a vibrating piece made of a magnetostrictive material, and detects the viscosity from the subsequent amplitude decay. The electromagnetic vibration viscometer detects viscosity by comparing the amplitude of vibration of an electrostriction element in hydraulic oil and in air. The rotational viscometer detects the viscosity from the viscous torque applied to the rotor in the hydraulic oil, and the thin tube viscometer measures the differential pressure between the inlet and the outlet in the bypass pipe connected to the pipe 101 to detect the viscosity. On the other hand, the bubble ratio sensor 147 forms a part of the pipe with a light-transmitting material such as quartz, passes light emitted from the light-emitting element through the light-transmitting pipe part, receives the light with the light-receiving element, and receives the light amount at that time. To detect the bubble ratio.

出力ポート131は、駆動回路136,137を介して油圧導入
制御用、油圧排出制御用の圧電アクチュエータ113,114
に接続される。メモリ132には、以下に説明する制御回
路130の作動を達成するためのプログラムが格納されて
いる。
The output port 131 is connected to piezoelectric actuators 113 and 114 for hydraulic introduction control and hydraulic discharge control via drive circuits 136 and 137.
Connected to. The memory 132 stores a program for achieving the operation of the control circuit 130 described below.

第3図は吸気弁11,21の開閉タイミングを制御するル
ーチンの第1実施例を示す。この制御ルーチンは所定の
クランク角毎に割込み処理される。
FIG. 3 shows a first embodiment of a routine for controlling the opening / closing timing of the intake valves 11, 21. This control routine is interrupted at every predetermined crank angle.

ステップ201では、エンジンの運転状態に応じて吸気
弁の開閉磁気およびリフト量が定められ、この吸気弁の
開閉作動が得られるように圧力制御弁111,112の開閉タ
イミングが定められる。ステップ202では作動油温セン
サ144から作動油温が読込まれる。ステップ203では、マ
ップあるいは計算式に基いて作動油温から作動油の粘性
が推定される。
In step 201, the opening / closing magnetism and the lift amount of the intake valve are determined according to the operation state of the engine, and the opening / closing timing of the pressure control valves 111 and 112 is determined so that the opening / closing operation of the intake valve is obtained. In step 202, the operating oil temperature is read from the operating oil temperature sensor 144. In step 203, the viscosity of the hydraulic oil is estimated from the hydraulic oil temperature based on a map or a calculation formula.

作動油の粘性が増大すると、圧力制御弁111,112にお
ける作動油の抵抗が大きくなる。この結果、吸気弁11,2
1において、開弁動作が遅くなって最大リフト量が小さ
くなり、また閉弁時期が遅れ、エンジン性能が低下する
おそれがある。逆に作動油の粘性が減少すると、圧力制
御弁111,112における作動油の抵抗が小さくなり、吸気
弁11,21の開閉速度が増大し、動弁系の各部材での衝撃
が大きくなり、騒音が増大する。ステップ204では、作
動油の粘性の大きさに拘らず吸気弁11,21が所期の開閉
動作をするように、圧力制御弁111,112の開閉タイミン
グの補正係数が定められる。すなわち、作動油の粘性が
大きくなるほど補正係数は大きくなり、圧力制御弁111,
112の開弁期間が長くなってアクチュエータ14,24への作
動油の供給および解放動作の低下が防止され、吸気弁1
1,21の所期の開閉動作が確保される。また作動油の粘性
が小さくなるほど補正係数は小さくなり、圧力制御弁11
1,112の開弁期間が短くなって吸気弁11,21の開閉速度が
課題になることが防止される。
When the viscosity of the hydraulic oil increases, the resistance of the hydraulic oil in the pressure control valves 111 and 112 increases. As a result, the intake valves 11,2
In 1, there is a possibility that the valve opening operation is delayed, the maximum lift amount is reduced, and the valve closing timing is delayed, so that the engine performance is reduced. Conversely, when the viscosity of the hydraulic oil decreases, the resistance of the hydraulic oil at the pressure control valves 111 and 112 decreases, the opening / closing speed of the intake valves 11 and 21 increases, the impact at each member of the valve operating system increases, and noise is reduced. Increase. In step 204, a correction coefficient for the opening / closing timing of the pressure control valves 111, 112 is determined so that the intake valves 11, 21 perform the intended opening / closing operation regardless of the viscosity of the hydraulic oil. That is, as the viscosity of the hydraulic oil increases, the correction coefficient increases, and the pressure control valve 111,
The valve opening period of the valve 112 is extended to prevent the supply and release operations of the hydraulic oil to the actuators 14 and 24 from being reduced, and the intake valve 1
1,21 expected opening and closing operations are secured. The correction coefficient decreases as the viscosity of the hydraulic oil decreases, and the pressure control valve 11
The opening and closing speeds of the intake valves 11, 21 due to the shortened valve opening period of 1,112 are prevented from becoming an issue.

ステップ205では、ステップ204で求められた補正係数
を用いて開弁期間が算出され、駆動回路136,137内のタ
イマにセットされる。駆動回路136,137はタイマにセッ
トされた時間だけ圧力制御弁111,112を開弁させる。
In step 205, the valve opening period is calculated using the correction coefficient obtained in step 204, and is set in a timer in the drive circuits 136 and 137. The drive circuits 136 and 137 open the pressure control valves 111 and 112 for the time set in the timer.

第4図は制御ルーチンの第2実施例を示す。第1実施
例ではステップ202において作動油温が読込まれていた
が、第2実施例では、ステップ212においてセンサ145か
ら作動油の粘性が読込まれる。したがって第1実施例の
ステップ203のように作動油の粘性を推定する処理が不
要であり、ステップ212から直接ステップ204へ進み、圧
力制御弁111,112の開閉タイミングの補正係数が定めら
れる。その他の処理は第1実施例と同様である。
FIG. 4 shows a second embodiment of the control routine. In the first embodiment, the hydraulic oil temperature is read in step 202, but in the second embodiment, in step 212, the viscosity of the hydraulic oil is read from the sensor 145. Therefore, the process of estimating the viscosity of the hydraulic oil as in step 203 of the first embodiment is unnecessary, and the process directly proceeds from step 212 to step 204, where the correction coefficient for the opening / closing timing of the pressure control valves 111 and 112 is determined. Other processes are the same as in the first embodiment.

第5図は制御ルーチンの第3実施例を示す。第1実施
例では、ステップ202において作動油温が読込まれてス
テップ203において油温に基いて作動油の粘性が推定さ
れていたのに対し、この第3実施例では、ステップ222
においてセンサ146から冷却水温が読込まれ、ステップ2
23において、冷却水温に基いてマップあるいは計算式に
より作動油の粘性が推定される。その他の処理は第1実
施例と同様である。
FIG. 5 shows a third embodiment of the control routine. In the first embodiment, the hydraulic oil temperature is read in step 202 and the viscosity of the hydraulic oil is estimated based on the oil temperature in step 203, whereas in the third embodiment, step 222 is performed.
In step 2, the cooling water temperature is read from the sensor 146, and
At 23, the viscosity of the hydraulic oil is estimated by a map or a calculation formula based on the cooling water temperature. Other processes are the same as in the first embodiment.

しかして第1〜第3実施例によれば、作動油の粘性の
大きさに応じて圧力制御弁111,112の開閉タイミングが
制御され、吸気弁11,21が常に所期の開閉動作を行なよ
うになる。したがって、エンジン性能の低下が防止され
るとともに、吸気弁の各部材の衝突による騒音の発生が
防止され、また各部材の耐久性が向上する。
Thus, according to the first to third embodiments, the opening and closing timing of the pressure control valves 111 and 112 is controlled in accordance with the magnitude of the viscosity of the hydraulic oil, so that the intake valves 11 and 21 always perform the expected opening and closing operations. become. Therefore, the deterioration of the engine performance is prevented, the generation of noise due to the collision of each member of the intake valve is prevented, and the durability of each member is improved.

第6図は制御ルーチンの第4実施例を示す。この第4
実施例は、作動油中に含まれる気泡の割合に応じて圧力
制御弁111,112の開閉タイミングを変え、吸気弁11,21の
開閉動作の精度を確保するものである。第1実施例と対
比して説明すると、ステップ202,203,204がそれぞれス
テップ233,234に対応し、ステップ232ではセンサ142か
らエンジン回転数が読込まれ、ステップ233ではエンジ
ン回転数に基いてマップあるいは計算式により作動油中
の気泡割合が推定される。ここでエンジン回転数が高い
ほど、すなわち動弁系の作動サイクル数が大きいほど、
作動油中の気泡割合は多くなると推定される。この気泡
割合が変わると、作動油の体積弾性率が変化して作動油
の圧力上昇特性が変わり、吸気弁11,21の開閉動作が所
期のものとは異なってくる。ステップ234では、気泡割
合が多くなるほど圧力制御弁111,112の開弁期間を長く
すべく補正係数を大きく定め、すなわち気泡割合が多く
なるほどアクチュエータ12,22への作動油供給量を多く
して吸気弁11,21の所期の開閉動作を確保している。そ
の他の処理は第1実施例と同様である。
FIG. 6 shows a fourth embodiment of the control routine. This fourth
In the embodiment, the opening / closing timing of the pressure control valves 111 and 112 is changed in accordance with the ratio of bubbles contained in the hydraulic oil, and the accuracy of the opening / closing operation of the intake valves 11 and 21 is ensured. Explaining in comparison with the first embodiment, steps 202, 203, and 204 correspond to steps 233 and 234, respectively. In step 232, the engine speed is read from the sensor 142. The percentage of bubbles in the inside is estimated. Here, the higher the engine speed, that is, the larger the number of operating cycles of the valve train,
It is estimated that the proportion of bubbles in the hydraulic oil increases. When the bubble ratio changes, the bulk modulus of the working oil changes, and the pressure rise characteristics of the working oil change, and the opening and closing operations of the intake valves 11 and 21 differ from those expected. In step 234, the correction coefficient is set to a large value so as to increase the valve opening period of the pressure control valves 111 and 112 as the bubble ratio increases, that is, the hydraulic oil supply amount to the actuators 12 and 22 increases as the bubble ratio increases, and the intake valve 11 , 21 opening and closing operations are assured. Other processes are the same as in the first embodiment.

第7図は制御ルーチンの第5実施例を示す。第4実施
例ではステップ232においてエンジン回転数が読込まれ
ていたが、第5実施例では、ステップ242においてセン
サ147から作動油中の気泡割合が直接読込まれる。した
がって第4実施例のステップ233のように気泡割合を推
定する処理が不要であり、ステップ232から直接ステッ
プ234へ進み、圧力制御弁111,112の開閉タイミンダの補
正係数が定められる。その他の処理は第4実施例と同様
である。
FIG. 7 shows a fifth embodiment of the control routine. In the fourth embodiment, the engine speed is read in step 232, but in the fifth embodiment, in step 242, the air bubble ratio in the hydraulic oil is directly read from the sensor 147. Therefore, the process of estimating the bubble ratio as in step 233 of the fourth embodiment is unnecessary, and the process directly proceeds from step 232 to step 234, where the correction coefficient of the opening / closing timing of the pressure control valves 111 and 112 is determined. Other processes are the same as in the fourth embodiment.

しかして第4および第5実施例によれば、作動油中の
気泡割合に応じて圧力制御弁111,112の開閉タイミング
が制御され、吸気弁11,21が常に初期の開閉動作を行う
ようになり、したがってエンジンの性能の低下が防止さ
れるとともに吸気弁の各部材の衝突による騒音の発生が
防止され、また各部材の耐久性が向上する。
Thus, according to the fourth and fifth embodiments, the opening / closing timing of the pressure control valves 111, 112 is controlled according to the bubble ratio in the hydraulic oil, and the intake valves 11, 21 always perform the initial opening / closing operation, Therefore, the performance of the engine is prevented from deteriorating, the generation of noise due to the collision of each member of the intake valve is prevented, and the durability of each member is improved.

また、第1〜第5実施例は、吸気弁11,21の所期の開
閉動作を部品点数を増加させることなく達成するもので
あり、コスト、装置全体の寸法および重量、また各部材
の配置の点で有利である。
In the first to fifth embodiments, the desired opening / closing operation of the intake valves 11 and 21 is achieved without increasing the number of parts, and the cost, the size and weight of the entire apparatus, and the arrangement of each member are achieved. It is advantageous in the point.

なお、上記各実施例は、吸気弁の開閉タイミングを制
御しているが、同様に、排気弁の開閉タイミングを制御
してもよい。
In each of the above embodiments, the opening / closing timing of the intake valve is controlled, but the opening / closing timing of the exhaust valve may be similarly controlled.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、機関の運転状態等の変
化により作動油の性状が変化しても、開閉弁は常に所期
の開閉動作を行い、これにより、エンジン性能の低下が
防止され、また動弁系からの騒音の発生が防止される。
As described above, according to the present invention, even if the properties of the hydraulic oil change due to a change in the operating state of the engine or the like, the on-off valve always performs the expected opening and closing operation, thereby preventing a decrease in engine performance. Further, generation of noise from the valve train is prevented.

【図面の簡単な説明】[Brief description of the drawings]

第1図は発明の構成図、 第2図は本発明の一実施例における油圧システムおよび
電子制御システムの概略構成図、 第3図は第1実施例の制御ルーチンのフローチャート、 第4図は第2実施例の制御ルーチンのフローチャート、 第5図は第3実施例の制御ルーチンのフローチャート、 第6図は第4実施例の制御ルーチンのフローチャート、 第7図は第5実施例の制御ルーチンのフローチャートで
ある。 11,21……吸気弁(開閉弁)、 12,22……アクチュエータ、 111,112……圧力制御弁、 116……油圧ポンプ(圧力源)、 130……制御回路。
1 is a configuration diagram of the invention, FIG. 2 is a schematic configuration diagram of a hydraulic system and an electronic control system according to an embodiment of the present invention, FIG. 3 is a flowchart of a control routine of the first embodiment, FIG. 5 is a flowchart of a control routine of the third embodiment, FIG. 6 is a flowchart of a control routine of the fourth embodiment, and FIG. 7 is a flowchart of a control routine of the fifth embodiment. It is. 11,21 ... Intake valve (open / close valve), 12,22 ... Actuator, 111,112 ... Pressure control valve, 116 ... Hydraulic pump (pressure source), 130 ... Control circuit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】内燃機関の開閉弁を開閉駆動する装置であ
って、圧力源と、上記開閉弁を開閉駆動するアクチュエ
ータと、上記圧力源とアクチュエータの間に設けられ、
上記圧力源の油圧のアクチュエータへの供給、および該
油圧のアクチュエータからの解放を制御して上記開閉弁
の開閉時期を制御する圧力制御弁と、上記圧力源から供
給される作動油の性状を検出する手段と、該作動油の性
状に応じて上記圧力制御弁の開閉動作を制御し、上記開
閉弁の開閉動作を調整する手段とを備えることを特徴と
する内燃機関の弁駆動装置。
1. An apparatus for opening and closing an on-off valve of an internal combustion engine, comprising: a pressure source; an actuator for opening and closing the on-off valve; and an actuator provided between the pressure source and the actuator;
A pressure control valve for controlling the supply of the hydraulic pressure of the pressure source to the actuator and the release of the hydraulic pressure from the actuator to control the opening / closing timing of the on-off valve, and detecting properties of the hydraulic oil supplied from the pressure source And a means for controlling the opening and closing operation of the pressure control valve in accordance with the properties of the hydraulic oil to adjust the opening and closing operation of the opening and closing valve.
JP63134500A 1988-06-02 1988-06-02 Valve drive for internal combustion engine Expired - Lifetime JP2625895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63134500A JP2625895B2 (en) 1988-06-02 1988-06-02 Valve drive for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63134500A JP2625895B2 (en) 1988-06-02 1988-06-02 Valve drive for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH01305112A JPH01305112A (en) 1989-12-08
JP2625895B2 true JP2625895B2 (en) 1997-07-02

Family

ID=15129776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63134500A Expired - Lifetime JP2625895B2 (en) 1988-06-02 1988-06-02 Valve drive for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2625895B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290241A (en) * 2005-04-13 2006-10-26 Toyota Motor Corp Four-wheel drive car

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3776463B2 (en) * 1992-11-30 2006-05-17 株式会社デンソー Valve operation timing control device for internal combustion engine
DE102006016145A1 (en) * 2005-12-27 2007-06-28 Robert Bosch Gmbh Control process for variable-lift valve involves reporting closing duration before start of closing, using time of control event as start of closing
JP5394636B2 (en) * 2007-12-12 2014-01-22 株式会社タダノ A stability limit signal generator for truck mounted cranes.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53139011A (en) * 1977-05-10 1978-12-05 Mitsubishi Heavy Ind Ltd Valve mechanism of internal combustion engine
JPS59159706U (en) * 1983-04-12 1984-10-26 日産自動車株式会社 Hydraulic valve drive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006290241A (en) * 2005-04-13 2006-10-26 Toyota Motor Corp Four-wheel drive car

Also Published As

Publication number Publication date
JPH01305112A (en) 1989-12-08

Similar Documents

Publication Publication Date Title
US6328007B1 (en) Internal cylinder intake-air quantity calculating apparatus and method for variable valve open/closure timing controlled engine
JP3890827B2 (en) Control device for internal combustion engine
US7607417B2 (en) Method and system for controlling an internal combustion engine
JP5940126B2 (en) Control device for internal combustion engine with supercharger and control method for internal combustion engine with supercharger
US4953530A (en) Throttle valve opening degree controlling apparatus for internal combustion engine
KR930018151A (en) Engine ignition timing control device and method
US4531490A (en) Idling speed feedback control method having fail-safe function for abnormalities in functioning of crank angle position-detecting system of an internal combustion engine
JP2003510502A (en) Combustion misfire detection method and electronic diagnostic device therefor
JP2625895B2 (en) Valve drive for internal combustion engine
KR970075275A (en) Control method and device of internal combustion engine
US6052640A (en) Automotive torque converter slip estimation
US6714855B2 (en) Method, computer program and control and/or regulating device for operating an internal combustion engine
JPH11257137A (en) Fuel injection controller of engine
JP2580711B2 (en) Valve drive for internal combustion engine
JP3733620B2 (en) Fuel injection timing control device for diesel engine
JP2862643B2 (en) Control device for automatic transmission and engine
JP5192902B2 (en) Engine control device
JPS6371551A (en) Load torque estimating device for internal combustion engine
JP2526616B2 (en) Rotary speed control device for cooling fan for hydraulically driven internal combustion engine
JPS6095152A (en) Valve control device for internal-combustion engine
JP3297890B2 (en) Engine control device
JPH03130548A (en) Idle speed control device of internal combustion engine
JPS61226565A (en) Normal starting method of internal-combustion engine
JPS61182438A (en) Control method of internal-combustion engine
JPH07229409A (en) Valve timing control device