JP2622649B2 - Immobilized carrier suitable for sulfur oxidizing bacteria, method of immobilizing sulfur oxidizing bacteria on immobilized carrier, method of acclimating and growing sulfur oxidizing bacteria in fixed bed bioreactor, and biology of wastewater containing reducing sulfur compounds Processing method - Google Patents

Immobilized carrier suitable for sulfur oxidizing bacteria, method of immobilizing sulfur oxidizing bacteria on immobilized carrier, method of acclimating and growing sulfur oxidizing bacteria in fixed bed bioreactor, and biology of wastewater containing reducing sulfur compounds Processing method

Info

Publication number
JP2622649B2
JP2622649B2 JP4197485A JP19748592A JP2622649B2 JP 2622649 B2 JP2622649 B2 JP 2622649B2 JP 4197485 A JP4197485 A JP 4197485A JP 19748592 A JP19748592 A JP 19748592A JP 2622649 B2 JP2622649 B2 JP 2622649B2
Authority
JP
Japan
Prior art keywords
sulfur
oxidizing bacteria
fixed
bioreactor
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4197485A
Other languages
Japanese (ja)
Other versions
JPH0615294A (en
Inventor
正博 藤井
理 三木
裕史 嘉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP4197485A priority Critical patent/JP2622649B2/en
Publication of JPH0615294A publication Critical patent/JPH0615294A/en
Application granted granted Critical
Publication of JP2622649B2 publication Critical patent/JP2622649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)
  • Removal Of Specific Substances (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は廃水の生物学的処理、よ
り詳細には、還元性硫黄化合物を含む廃水を生物学的に
処理するための還元性硫黄化合物を酸化する硫黄酸化細
菌に適した固定化担体、硫黄酸化細菌を固定化担体に固
定化する方法、固定床型バイオリアクターに硫黄酸化細
菌を馴養・増殖する方法、および還元性硫黄化合物を含
む廃水の生物学的処理方法に関する。
FIELD OF THE INVENTION The present invention is directed to biological treatment of wastewater, and more particularly, to sulfur oxidizing bacteria that oxidize reducing sulfur compounds for biological treatment of wastewater containing reducing sulfur compounds. The present invention relates to a method for immobilizing a sulfur-oxidizing bacterium on an immobilized carrier, a method for acclimating and growing sulfur-oxidizing bacteria in a fixed-bed type bioreactor, and a method for biologically treating wastewater containing a reducing sulfur compound.

【0002】[0002]

【従来の技術】還元性硫黄化合物を含む廃水は、写真工
業、石油精製工業、化学工業、金属精錬工業、鉱山など
から発生する。これらの廃水に含まれている還元性硫黄
化合物は、硫化物(S2-)、チオ硫酸化合物(S23
2-)、ポリチオン酸化合物(S36 2-)などであり、
これらの還元性硫黄化合物を含む廃水は、還元性硫黄化
合物に起因するCOD(化学的酸素要求量)値が高く、
このまま公共用水域に放流することはできない。
2. Description of the Related Art Wastewater containing reducing sulfur compounds is generated from the photographic industry, petroleum refining industry, chemical industry, metal refining industry, mines, and the like. The reducing sulfur compounds contained in these wastewaters include sulfides (S 2− ) and thiosulfate compounds (S 2 O 3
2- ), polythionic acid compound (S 3 O 6 2- ), etc.
Wastewater containing these reducing sulfur compounds has a high COD (chemical oxygen demand) value due to the reducing sulfur compounds,
It cannot be discharged into public water bodies as it is.

【0003】この還元性硫黄化合物を含む廃水の処理方
法として還元性硫黄化合物を次亜塩素酸ソーダ等の酸化
剤を用いて酸化する方法が知られているが、この方法は
処理技術が十分に確立していないため処理水質が安定せ
ず、また処理コストが高いという致命的欠点がある。
[0003] As a method for treating this wastewater containing a reducing sulfur compound, a method is known in which a reducing sulfur compound is oxidized using an oxidizing agent such as sodium hypochlorite. There is a fatal drawback that the treatment water quality is not stable because it has not been established, and the treatment cost is high.

【0004】このような問題点を多く抱えている化学的
方法に代わり、還元性硫黄化合物を微生物、いわゆる硫
黄酸化細菌により酸化してCODを除去する方法があ
る。例えば、特開昭56−67589号公報、特開昭5
7−4296号公報に記載の方法である。
[0004] Instead of a chemical method having many of these problems, there is a method of removing COD by oxidizing a reducing sulfur compound by a microorganism, a so-called sulfur-oxidizing bacterium. For example, JP-A-56-67589,
This is the method described in JP-A-7-4296.

【0005】特開昭56−67589号公報記載の方法
は、S23 2-、S36 2-、S48 2-またはこれに
類するポリチオン酸を含有する工場排水に、家庭用浄化
槽えつ流水、下水処理場のエアレーションタンク水、ま
たは金属鉱山排水の1種または2種以上を添加し、酸素
を吹き込んで硫黄化合物を硫酸に酸化して排水のCOD
を除去する方法である。
[0005] The method described in Japanese Patent Application Laid-Open No. 56-59589 discloses a method in which household wastewater containing S 2 O 3 2− , S 3 O 6 2− , S 4 O 8 2− or similar polythionic acid is added to household wastewater. CO2 of wastewater by adding one or more of wastewater from a septic tank for sewage treatment, aeration tank water from a sewage treatment plant, or metal mine drainage, and blowing oxygen to oxidize sulfur compounds into sulfuric acid
It is a method of removing.

【0006】特開昭57−4296号公報記載の方法
は、チオ硫酸、ポリチオン酸、ジチオン酸またはこれら
に類する硫黄酸化物に起因する各種排水中のCODを除
去する際に発生する石膏を硫黄酸化細菌の担体物質とし
て使用し、同時に培養増殖した菌を石膏に吸着させて濃
縮した後繰り返し使用して、排水中のCODを流動床型
バイオリアクターを用いて生物学的に除去する方法であ
る。
[0006] The method described in Japanese Patent Application Laid-Open No. 57-4296 discloses a method for removing gypsum generated when removing COD in various wastewaters caused by thiosulfuric acid, polythionic acid, dithionic acid or similar sulfur oxides by sulfur oxidation. This is a method of removing COD in wastewater biologically by using a fluidized bed bioreactor, which is repeatedly used after adsorbing and concentrating bacteria grown and cultured on gypsum at the same time as a carrier material for bacteria and using the fluidized bed bioreactor.

【0007】このような排水中の硫黄酸化物に起因する
CODを流動床型バイオリアクターを用いて生物学的に
除去する方法にも問題点が存在する。
[0007] There is also a problem in a method of biologically removing COD caused by sulfur oxides in wastewater using a fluidized bed bioreactor.

【0008】下水もしくはし尿汚泥中および金属鉱山廃
水中等にはチオシアンやチオ硫酸を分解する硫黄酸化細
菌が多種類存在していることが良く知られており、特開
昭56−67589号公報、特開昭57−4296号公
報に記載されている硫黄酸化細菌は、これらに記載され
ているようにpHが1.9〜2.0と著しく低いところ
でチオ硫酸、ポリチオン酸、ジチオン酸またはこれらに
類する硫黄酸化物を硫酸まで酸化して排水のCODを除
去している。このような低いpHで棲息あるいは活性な
硫黄酸化細菌は、例えば今井和民著、化学同人発行「独
立栄養細菌」の63〜67頁に記載されているように、
Thiobacillus属の硫黄酸化細菌と推定され
る。
It is well known that there are many types of sulfur-oxidizing bacteria that decompose thiocyanate and thiosulfate in sewage or human waste sludge, metal mine wastewater, etc., as disclosed in JP-A-56-67589. The sulfur-oxidizing bacteria described in Japanese Patent Laid-Open Publication No. 57-4296 are thiosulfuric acid, polythionic acid, dithionic acid or the like at a pH as low as 1.9 to 2.0 as described therein. The sulfur oxides are oxidized to sulfuric acid to remove COD from the wastewater. Such a sulfur-oxidizing bacterium that lives or is active at a low pH is described in, for example, Kazumin Imai, “Autotrophic Bacteria” published by Kagaku Doujin at pages 63-67,
It is estimated to be a sulfur-oxidizing bacterium belonging to the genus Thiobacillus.

【0009】このような低いpHで棲息あるいは活性な
硫黄酸化細菌を廃水処理に用いると多くの問題点があ
る。即ち、pHが高いアルカリ性の廃水を処理する場
合、低いpHで棲息あるいは活性な硫黄酸化細菌が存在
する曝気槽のpHをこの硫黄酸化細菌に適したpHに調
整する必要があり、また、処理水のpHが1.9〜2.
0のように低いと、これを公共用水域に放流するために
はpHを再び調整する必要があり、pH調整用の設備、
薬品等のコストがかなりかかる問題点がある。また、こ
のような低いpHで棲息あるいは活性な硫黄酸化細菌を
廃水処理に用いると、廃水処理設備を耐酸性仕様にする
必要があり、このため廃水処理設備の建設費が非常に高
くなる致命的な欠点がある。
[0009] The use of such sulfur-oxidizing bacteria which live or are active at low pH for wastewater treatment has many problems. That is, when treating alkaline wastewater having a high pH, it is necessary to adjust the pH of the aeration tank in which low-pH live or active sulfur-oxidizing bacteria are present to a pH suitable for the sulfur-oxidizing bacteria. Has a pH of 1.9 to 2.
If it is low, such as 0, it is necessary to adjust the pH again in order to release this into public waters, and equipment for adjusting pH,
There is a problem that the cost of chemicals and the like is considerably high. In addition, when sulfur-oxidizing bacteria living or active at such a low pH are used for wastewater treatment, it is necessary to make the wastewater treatment equipment acid-resistant, which greatly increases the construction cost of the wastewater treatment equipment. Disadvantages.

【0010】硫黄酸化細菌が硫黄化合物を酸化して生成
する硫酸とカルシウムとが反応してできる石膏は、非常
に微細なため曝気槽の曝気に用いる散気管を閉塞する懸
念が多分にあり、散気管が閉塞すると硫黄酸化細菌の機
能が低下し、これを修復するのに多大な労力と経費を必
要とする問題点がある。
[0010] The gypsum formed by the reaction of sulfuric acid and calcium produced by sulfur oxidizing bacteria oxidizing sulfur compounds is very fine, and there is a concern that the gypsum used for aeration in the aeration tank may be blocked. When the trachea is obstructed, the function of the sulfur oxidizing bacteria is reduced, and there is a problem that repairing the sulfur oxidizing bacteria requires much labor and cost.

【0011】次に、硫黄化合物を含む廃水を処理する際
に、酸素ガスを吹き込む指標として酸化還元電位(OR
P)を用いる方法が特開昭58−122093号公報に
記載されている。即ち、この方法は、硫化ソーダおよび
/または水硫化ソーダ等の硫化物を含む廃水に分子状酸
素を含有するガスまたは過酸化水素を接触させ、排水中
の硫化ソーダおよび/または水硫化ソーダをチオ硫酸ソ
ーダとした後、白色硫黄細菌により微生物処理する際
に、分子状酸素を含有するガスまたは過酸化水素と接触
させ化学的にチオ硫酸ソーダに酸化する過程で、ORP
が−550mV以上(基準電極不明)、好ましくは−5
00mV(基準電極不明)以上になるまで分子状酸素を
含有するガスまたは過酸化水素を供給している。しか
し、この方法は、生物学的処理の段階ではORPを指標
にして曝気するわけではない。
Next, when treating wastewater containing sulfur compounds, the oxidation-reduction potential (OR
A method using P) is described in JP-A-58-122093. That is, in this method, a gas containing molecular oxygen or hydrogen peroxide is brought into contact with wastewater containing sulfide such as sodium sulfide and / or sodium hydrosulfide, and the sodium sulfide and / or sodium hydrosulfide in the wastewater is thiolated. When sodium sulfate is converted to sodium thiosulfate by contact with a gas containing molecular oxygen or hydrogen peroxide when the microorganism is treated with white sulfur bacteria, the ORP
Is -550 mV or more (reference electrode unknown), preferably -5
A gas containing molecular oxygen or hydrogen peroxide is supplied until the voltage becomes 00 mV (reference electrode unknown). However, this method does not aerate using ORP as an index at the stage of biological treatment.

【0012】[0012]

【発明が解決しようとする課題】従来の硫黄化合物を含
む排水の生物学的処理方法は、低いpHで棲息あるいは
活性な硫黄酸化細菌を用いるため処理プロセスが複雑に
なり、また、処理設備も耐酸性仕様にするため処理のラ
ンニングコスト、設備費が高くなる欠点がある。また、
生物学的処理過程の曝気量の指標が明確でないので、曝
気量が不足の場合は還元性硫黄化合物の酸化が不十分
で、処理水に未反応の還元性硫黄化合物が流出して処理
水のCODを高める懸念がある。逆に、曝気量が過剰の
場合は曝気槽の硫黄酸化細菌のフロックを機械的に破壊
し、このため硫黄酸化細菌が処理水に流出し、曝気槽の
硫黄酸化細菌濃度の低下、処理水質の悪化等を招く問題
点がある。更に、硫黄酸化細菌により生成した石膏を硫
黄酸化細菌の固定化担体に用いると、粒子が微細すぎて
散気管の閉塞原因になる。
The conventional biological treatment method for wastewater containing sulfur compounds uses a low pH-resident or active sulfur-oxidizing bacterium, which complicates the treatment process, and the treatment equipment is also acid-resistant. However, there is a disadvantage that the running cost and the equipment cost of the process are increased because of the performance specifications. Also,
Since the index of the amount of aeration in the biological treatment process is not clear, if the amount of aeration is insufficient, the oxidation of the reducing sulfur compound is insufficient, and the unreacted reducing sulfur compound flows into the treated water and the treated water is discharged. There is a concern about increasing COD. Conversely, if the amount of aeration is excessive, the flocs of the sulfur oxidizing bacteria in the aeration tank are mechanically destroyed, which causes the sulfur oxidizing bacteria to flow into the treated water, lowering the concentration of the sulfur oxidizing bacteria in the aeration tank and reducing the quality of the treated water. There is a problem that causes deterioration. Further, when gypsum produced by sulfur-oxidizing bacteria is used as a carrier for immobilizing sulfur-oxidizing bacteria, the particles are too fine, which causes obstruction of the air diffuser.

【0013】[0013]

【課題を解決するための手段】本発明の要旨は以下の通
りである。
Gist of the present invention SUMMARY OF THE INVENTION are following through <br/> Ride.

【0014】(1) 還元性硫黄化合物を含む廃水を硫
黄酸化細菌を用いた固定床型バイオリアクターにより処
理するための硫黄酸化細菌の固定化担体において、カオ
リン族系粘土にカルシウム化合物を配合し、成型後、焼
成して得られたセラミックスを用いたことを特徴とする
硫黄酸化細菌に適した固定化担体。
[0014] (1) In the immobilization of sulfur-oxidizing bacteria for waste water containing a reducing sulfur compound is treated with a fixed bed bioreactor using sulfur-oxidizing bacteria, Gao
A calcium compound is blended with phosphorus-based clay, and after molding, firing
An immobilized carrier suitable for sulfur-oxidizing bacteria, characterized by using ceramics obtained by the synthesis.

【0015】(2) さらに高炉水砕スラグを配合し
前記(1)の硫黄酸化細菌に適した固定化担体。
(2) Further, granulated blast furnace slag was blended .
An immobilized carrier suitable for the sulfur-oxidizing bacteria of the above (1) .

【0016】() 前記(1)または(2)の固定化
担体を固定床型バイオリアクターに充填し、これに下水
の活性汚泥処理の曝気槽より採取した活性汚泥混合液を
入れ、下水の活性汚泥を固定化担体に固定化した後、固
定床型バイオリアクターのpHおよびORPを所定の条
件に維持して硫黄酸化細菌を馴養・増殖し、硫黄酸化細
菌を固定化担体に固定化する方法。
( 3 ) The fixed carrier of the above (1) or (2) is filled in a fixed-bed type bioreactor, and an activated sludge mixed solution collected from an aeration tank for sewage activated sludge treatment is put into the bioreactor. After the activated sludge is immobilized on the immobilization carrier, the pH and ORP of the fixed-bed type bioreactor are maintained under predetermined conditions to acclimate and grow the sulfur-oxidizing bacteria, and immobilize the sulfur-oxidizing bacteria on the immobilization carrier. .

【0017】() 前記()の方法において、固定
床型バイオリアクターのpHを4.0〜7.5の範囲に
管理・制御し、また、固定床型バイオリアクターの曝気
を固定床型バイオリアクター出口の処理水のORPを指
標にして行うことを特徴とする固定床型バイオリアクタ
ーに硫黄酸化細菌を馴養・増殖する方法。
( 4 ) In the method of the above ( 3 ), the pH of the fixed bed type bioreactor is controlled and controlled within a range of 4.0 to 7.5, and the aeration of the fixed bed type bioreactor is fixed. A method of acclimating and growing sulfur-oxidizing bacteria in a fixed-bed type bioreactor, wherein the process is performed using the ORP of the treated water at the outlet of the bioreactor as an index.

【0018】() 前記()の方法において、OR
Pを、廃水に含まれている還元性硫黄化合物が化学的に
硫酸に酸化される反応に関する自由反応エネルギーの変
化量から計算で求めたORPに管理・制御することを特
徴とする固定床型バイオリアクターに硫黄酸化細菌を馴
養・増殖する方法。
( 5 ) In the method of the above ( 4 ), the OR
A fixed-bed type biomass characterized in that P is controlled and controlled to an ORP calculated from the amount of change in free reaction energy relating to a reaction in which a reducing sulfur compound contained in wastewater is chemically oxidized to sulfuric acid. A method of acclimating and growing sulfur-oxidizing bacteria in a reactor.

【0019】() 還元性硫黄化合物を含む廃水を、
前記(1)または(2)の固定化担体に前記()の方
法、または前記()もしくは()の方法により馴養
・増殖した硫黄酸化細菌を固定化した固定床型バイオリ
アクターで処理することを特徴とする還元性硫黄化合物
を含む廃水の生物学的処理方法。
( 6 ) The wastewater containing a reducing sulfur compound is
(1) or (2) of method (3) immobilized carrier or the (4) or (5) treatment in a fixed bed bioreactor with immobilized acclimatization and proliferation and sulfur-oxidizing bacteria according to the method of, A biological treatment method for wastewater containing a reducing sulfur compound.

【0020】() 前記()の方法において、固定
床型バイオリアクターのpHを所定の値に制御し、ま
た、固定床型バイオリアクターに供給する曝気量を固定
床型バイオリアクター出口の処理水のORPを指標にし
て管理・制御することを特徴とする還元性硫黄化合物を
含む廃水の生物学的処理方法。
( 7 ) In the method of the above ( 6 ), the pH of the fixed bed type bioreactor is controlled to a predetermined value, and the amount of aeration supplied to the fixed bed type bioreactor is treated at the outlet of the fixed bed type bioreactor. A biological treatment method for wastewater containing a reducing sulfur compound, wherein the wastewater treatment includes management and control using the ORP of water as an index.

【0021】() 前記()または()の方法に
おいて、還元性硫黄化合物が硫化水素および/またはチ
オ硫酸化合物で、固定床型バイオリアクターのpHを
4.0〜7.5の範囲に、固定床型バイオリアクター出
口の処理水のORPを+100〜+200mV(銀/塩
化銀電極基準)の範囲にそれぞれ管理・制御することを
特徴とする還元性硫黄化合物を含む廃水の生物学的処理
方法。
( 8 ) In the method of the above ( 6 ) or ( 7 ), the reducing sulfur compound is hydrogen sulfide and / or a thiosulfate compound, and the pH of the fixed-bed type bioreactor is in the range of 4.0 to 7.5. Biological treatment of wastewater containing reducing sulfur compounds, wherein the ORP of the treated water at the outlet of the fixed-bed type bioreactor is controlled and controlled in the range of +100 to +200 mV (based on silver / silver chloride electrode), respectively. Method.

【0022】[0022]

【作用】本発明は、還元性硫黄化合物を含む廃水の処理
において、還元性硫黄化合物を酸化する硫黄酸化細菌を
下水の活性汚泥から馴養・増殖し、また、この硫黄酸化
細菌の固定床型バイオリアクターの固定化担体としてカ
オリン族系粘土にカルシ ウム化合物を配合し、成型後、
焼成して得られたセラミックスを用い、更に、硫黄酸化
細菌の馴養・増殖および廃水処理において固定床型バイ
オリアクターのpH、ORPを所定の範囲に管理、制御
するが、これらが適している理由について説明する
According to the present invention, in the treatment of wastewater containing a reducing sulfur compound, sulfur-oxidizing bacteria that oxidize the reducing sulfur compound acclimate and proliferate from the activated sludge of the sewage. As a carrier for immobilizing the reactor
Blended calcium compound to Olin Group clay, after molding,
Using the ceramics obtained by calcination, the pH and ORP of the fixed-bed type bioreactor are controlled and controlled within a predetermined range in the adaptation and propagation of sulfur-oxidizing bacteria and in wastewater treatment. To explain .

【0023】まず、下水、産業廃水を処理する活性汚泥
よりpH4.0〜7.5の範囲で最も活性な還元性硫黄
化合物を酸化する硫黄酸化細菌を馴養・増殖する利点、
方法などについて説明する。
First, the advantage of acclimating and growing sulfur-oxidizing bacteria that oxidize the most active reducing sulfur compounds in the pH range of 4.0 to 7.5 from activated sludge for treating sewage and industrial wastewater,
The method will be described.

【0024】本発明者らは、下水、産業廃水の処理を行
っている活性汚泥に、pH4.0〜7.5で還元性硫黄
化合物を酸化する硫黄酸化細菌が棲息していることを見
いだした。このような中性近辺で活性な硫黄酸化細菌が
存在すれば、従来の問題点、即ち、還元性硫黄化合物を
含む廃水および硫黄酸化細菌で処理した処理水のpH調
整、あるいは、廃水処理設備の耐酸仕様の必要がなく、
設備費、処理コストを大幅に低減することができる。
The present inventors have found that activated sludge which is treating sewage and industrial wastewater inhabits sulfur-oxidizing bacteria which oxidize reductive sulfur compounds at pH 4.0 to 7.5. . If active sulfur oxidizing bacteria exist around such neutrality, the conventional problems, namely, pH adjustment of wastewater containing reducing sulfur compounds and treated water treated with sulfur oxidizing bacteria, or of wastewater treatment equipment No need for acid-resistant specifications
Equipment costs and processing costs can be significantly reduced.

【0025】そこで、中性近辺で活性な硫黄酸化細菌の
馴養・増殖方法について研究した結果、図1に示す固定
床型バイオリアクター8に後述の固定化担体を充填し、
これに下水の処理を行っている活性汚泥混合液を入れ、
この固定床型バイオリアクターのpHを4.0〜7.5
の範囲に管理・制御し、また、固定床型バイオリアクタ
ーの曝気を後述の方法で求めたORPを指標に行いなが
ら、還元性硫黄化合物を含む廃水を供給すれば、pH
4.0〜7.5の範囲で活性な硫黄酸化細菌が容易に馴
養・増殖することが明らかになった。
[0025] As a result of research on the acclimatization and proliferation method of sulfur-oxidizing bacteria in the vicinity neutral, filled with immobilization carrier below the fixed bed bioreactor 8 shown in FIG. 1,
Activated sludge mixture which is treating sewage is put in this,
The pH of the fixed-bed type bioreactor is adjusted to 4.0 to 7.5.
If the wastewater containing the reducing sulfur compound is supplied while controlling and controlling the aeration of the fixed bed type bioreactor using the ORP obtained by the method described below as an index,
It was found that active sulfur-oxidizing bacteria easily acclimated and proliferated in the range of 4.0 to 7.5.

【0026】このORPは、還元性硫黄化合物が化学的
に硫酸化合物まで酸化される反応を仮定し、この反応に
おける自由エネルギー変化量を便覧、成書、文献などか
ら求め、次に、この自由エネルギー変化量から計算によ
り、これらの反応が起こるためのORPを求めて設定す
れば良い。具体的には、チオ硫酸化合物が約+140〜
160mV(銀/塩化銀電極基準)、硫化物が約−60
〜−80mV(銀/塩化銀電極基準)で、両者が混合す
る場合は酸化側に、即ち約+140〜160mVに管理
・制御すれば良い。
The ORP assumes a reaction in which a reducing sulfur compound is chemically oxidized to a sulfuric acid compound. The amount of change in free energy in this reaction is obtained from a handbook, a textbook, a literature, and the like. The ORP for causing these reactions may be obtained and set by calculation from the amount of change. Specifically, the thiosulfate compound is about + 140-
160 mV (based on silver / silver chloride electrode), sulfide is about -60
In the case of -80 mV (based on the silver / silver chloride electrode) and the two are mixed, it may be controlled and controlled to the oxidation side, that is, to about +140 to 160 mV.

【0027】このような方法で下水の活性汚泥から硫黄
酸化細菌の馴養・増殖を行い、この硫黄酸化細菌の活性
汚泥をpHの異なる液体Starkey培地に植種し
て、振盪培養器を用いて20℃で、Starkey培地
のチオ硫酸イオン濃度が2200mg/lから50mg
/l以下になる日数を測定した。その結果を図2に示
す。なお、液体Starkeyの培地の組成は、表1の
通りである。
In this manner, the sulfur-oxidizing bacteria are acclimated and grown from the activated sludge of the sewage, and the activated sludge of the sulfur-oxidizing bacteria is inoculated into a liquid Starkey medium having a different pH, and is then shaken using a shaking incubator. At ℃, the thiosulfate ion concentration of the Starkey medium is from 2200 mg / l to 50 mg.
/ L or less was measured. The result is shown in FIG. The composition of the liquid Starkey medium is shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】各pHの緩衝液1リットルに上記試薬を溶
解して、pHの異なるStarkeyの液体培地を作成
した。
The above reagent was dissolved in 1 liter of a buffer solution of each pH to prepare a Starkey liquid medium having a different pH.

【0030】図2の結果から、Starkey培地のp
Hが2〜3.5および8.0〜10の範囲では、20日
以上振盪してもチオ硫酸イオンがほとんど減少しない
が、pHが4.0〜7.5の範囲では振盪日数12日以
下で、特にpH5.0〜6.5では5日以下でチオ硫酸
イオンが50mg/l以下になることが明らかになっ
た。従って、本発明の方法により下水の活性汚泥から馴
養・増殖した硫黄酸化細菌は、pH4.0〜7.5の範
囲で活性で、還元性硫黄化合物を酸化する能力を有して
いることが明らかになった。
From the results shown in FIG. 2, the p
When H is in the range of 2 to 3.5 and 8.0 to 10, thiosulfate ion hardly decreases even when shaken for 20 days or more, but when pH is in the range of 4.0 to 7.5, the number of shaking days is 12 days or less. In particular, it was found that the thiosulfate ion became 50 mg / l or less in 5 days or less especially at pH 5.0 to 6.5. Therefore, it is clear that the sulfur-oxidizing bacteria acclimated and grown from the activated sludge of the sewage by the method of the present invention are active in the pH range of 4.0 to 7.5 and have the ability to oxidize reducing sulfur compounds. Became.

【0031】一方、従来の硫黄酸化細菌を用いて還元性
硫黄化合物を含む廃水を生物学的に処理する方法、例え
ば、特開昭53−59254号公報、特開昭56−67
589号公報記載の方法で用いる硫黄酸化細菌は、pH
1.9〜2.0で還元性硫黄化合物を酸化するが、本発
明の方法で馴養・培養した硫黄酸化細菌はこのような低
pHでは還元性硫黄化合物を酸化する能力を有していな
い。このことから、本発明の方法で馴養・培養した硫黄
酸化細菌は、従来の廃水処理に用いられている硫黄酸化
細菌とは異なることが明らかである。
On the other hand, conventional methods for biologically treating wastewater containing reducing sulfur compounds using sulfur-oxidizing bacteria, for example, JP-A-53-59254 and JP-A-56-67.
The sulfur oxidizing bacteria used in the method described in JP-A-589
Although the reducing sulfur compound is oxidized at 1.9 to 2.0, the sulfur-oxidizing bacteria acclimated and cultured by the method of the present invention have no ability to oxidize the reducing sulfur compound at such a low pH. From this, it is clear that the sulfur oxidizing bacteria acclimated and cultured by the method of the present invention are different from the sulfur oxidizing bacteria used in the conventional wastewater treatment.

【0032】これは、D.P.Kelly and
A.P.Harrisonの分類によっても明白であ
る。即ち、図3に示す彼らの分類によると、本発明の方
法で馴養・増殖したpH4.0〜7.5の範囲で活性な
硫黄酸化細菌はGroup2に、また、特開昭53−5
9254号公報、特開昭56−67589号公報記載の
硫黄酸化細菌は、pH1.9〜2.0で活性なのでGr
oup5に属することが明らかである(書名:Berg
ey’s Manual of Systematic
Bacteriology Vol.3,著者:Ja
mes T.Staley,発行元:Williams
& Wilkins,記載箇所:1843頁のFi
g.20.47)。
This is described in D. P. Kelly and
A. P. It is also evident by the Harrison classification. That is, according to their classification shown in FIG. 3, the sulfur oxidizing bacteria active in the range of pH 4.0 to 7.5 acclimated and grown by the method of the present invention belong to Group 2, and Japanese Patent Application Laid-Open No. 53-5 / 1983.
9254 and JP-A-56-67589 are active at pH 1.9 to 2.0.
It is clear that the group belongs to up5 (Title: Berg
eye's Manual of Systematic
Bacteriology Vol. 3, Author: Ja
mes T. Staley, Publisher: Williams
& Wilkins, description: Fi on page 1843
g. 20.47).

【0033】次に、固定床型バイオリアクターに用いる
硫黄酸化細菌に適した固定化担体について説明する。
Next, an immobilized carrier suitable for sulfur-oxidizing bacteria used in a fixed-bed type bioreactor will be described.

【0034】下水、産業廃水の活性汚泥からpH4.0
〜7.0の中性あるいは弱酸性で馴養・増殖した硫黄酸
化細菌には糸状性細菌が多く、この硫黄酸化細菌を用い
た流動床型バイオリアクターにより還元性硫黄化合物を
含有する廃水を処理した場合、バルキングが発生し易
く、処理水に硫黄酸化細菌の汚泥が流出し、処理水質の
悪化を招くと共に、バイオリアクターの硫黄酸化細菌を
高濃度に維持できないため高効率処理が困難である。ま
た、固定床型バイオリアクターで同様の処理を行った場
合、樹脂、通常のセラミックス等を固定化担体に用いる
と硫黄酸化細菌の固定化が困難であり、先述の流動床型
バイオリアクターの場合と同様に硫黄酸化細菌の流出が
起こり、処理水質の悪化を招き、また、高効率処理が困
難である。
From activated sludge of sewage and industrial wastewater, pH 4.0
There are many filamentous bacteria among the sulfur-oxidizing bacteria that have been adapted and grown under neutral or weakly acidic conditions up to 7.0, and wastewater containing reducing sulfur compounds was treated by a fluidized-bed bioreactor using the sulfur-oxidizing bacteria. In this case, bulking is likely to occur, and sludge of sulfur-oxidizing bacteria flows out into the treated water, resulting in deterioration of the treated water quality. In addition, the sulfur-oxidizing bacteria in the bioreactor cannot be maintained at a high concentration, so that high-efficiency treatment is difficult. Further, when the same treatment is performed in a fixed-bed type bioreactor, it is difficult to immobilize sulfur oxidizing bacteria when resin, ordinary ceramics, etc. are used as an immobilization carrier, and the same as in the case of the fluidized-bed type bioreactor described above. Similarly, the outflow of sulfur-oxidizing bacteria occurs, resulting in deterioration of treated water quality, and it is difficult to perform highly efficient treatment.

【0035】発明者らは、固定床型バイオリアクターに
用いる硫黄酸化細菌に適した固定化担体について研究し
た結果、後述の固定化担体を用いると先述の問題点が解
決できることが明らかになった。
The present inventors have studied immobilized carriers suitable for sulfur-oxidizing bacteria used in a fixed-bed type bioreactor. As a result, it has been found that the aforementioned problems can be solved by using an immobilized carrier described below .

【0036】廃水に含まれている還元性硫黄化合物、例
えば、硫化物、チオ硫酸化合物、チオシアン化合物等
は、硫黄酸化細菌により好気性生物学的処理を行うと硫
酸に酸化される。この硫酸は、カルシウム化合物が存在
すれば硫酸カルシウム、即ち石膏を形成する。この硫黄
酸化細菌が生成する石膏を流動層型バイオリアクターの
硫黄酸化細菌の固定化担体に用いる方法が先述の特開昭
57−4296号公報記載の方法であるが、石膏が微細
なため散気管の閉塞原因になるので、この方法は流動層
型バイオリアクターに適用するのは好ましくない。
[0036] Reducing sulfur compounds, such as sulfides, thiosulfate compounds, and thiocyanate compounds, contained in wastewater are oxidized to sulfuric acid when subjected to aerobic biological treatment by sulfur-oxidizing bacteria. This sulfuric acid forms calcium sulfate, or gypsum, when calcium compounds are present. A method of using the gypsum produced by the sulfur-oxidizing bacteria as a carrier for immobilizing the sulfur-oxidizing bacteria in a fluidized bed bioreactor is the method described in the above-mentioned Japanese Patent Application Laid-Open No. 57-4296. This method is not preferable to be applied to a fluidized bed type bioreactor because it may cause clogging.

【0037】本発明者らは、このような問題点を解決す
るため石膏を固定床型バイオリアクターの固定化担体の
表面に形成させ、これに硫黄酸化細菌を固定化する方法
を考え、黄酸化細菌に適した固定化担体を発明した。
The present inventors have found that by forming on the surface of the immobilization carrier of the fixed bed type bioreactor gypsum order to solve such a problem, consider a method for immobilizing sulfur oxidizing bacteria to, sulfur An immobilized carrier suitable for oxidizing bacteria was invented.

【0038】本発明の固定床型バイオリアクターに用い
る硫黄酸化細菌に適した固定化担体は、カオリン族系粘
土にカルシウム化合物を配合し、成型後、焼成して得ら
れたセラミックスを用いることにより、硫黄酸化細菌が
還元性硫黄化合物を酸化して生成する硫酸と配合したカ
ルシウム化合物とが反応して、固定化担体の表面に微細
な石膏の粒子を形成する。この石膏に硫黄酸化細菌が付
着して固定化され、硫黄酸化細菌のバイオリアクターか
ら処理水への流出が抑制され、その結果、バイオリアク
ターの硫黄酸化細菌を高濃度に維持でき、還元性硫黄化
合物を含む廃水の高効率処理が可能になり、また、処理
水質が良好になる。
The immobilized carrier suitable for the sulfur-oxidizing bacteria used in the fixed-bed type bioreactor of the present invention is a kaolin-based viscosifier.
A calcium compound is added to the soil, molded and fired.
The Rukoto using the ceramic, a sulfur oxidizing bacteria reacts with calcium compounds formulated with sulfuric acid produced by oxidizing a reducing sulfur compound, to form particles of fine gypsum on the surface of the immobilizing carrier. Sulfur-oxidizing bacteria adhere to the gypsum and are immobilized, and the outflow of sulfur-oxidizing bacteria from the bioreactor to the treated water is suppressed. As a result, the sulfur-oxidizing bacteria in the bioreactor can be maintained at a high concentration, and reducing sulfur compounds The wastewater containing wastewater can be treated with high efficiency, and the quality of treated water can be improved.

【0039】このような硫黄酸化細菌の固定化担体は、
カルシウムを過剰に配合すると固定化担体からのカルシ
ウムの溶出が大量になり、その結果、硫黄酸化細菌が固
定化された石膏がバイオリアクター内を浮遊し、散気管
の閉塞の原因になる。また、固定化担体よりカルシウム
が大量に溶出すると、固定化担体の強度が不足する問題
点がある。一方、固定化担体のカルシウムの配合が不足
すると、固定化担体の表面に形成する石膏が十分でない
ので、硫黄酸化細菌の固定化が十分に行われないため、
硫黄酸化細菌の処理水への流出が起こり易く、その結
果、バイオリアクターの硫黄酸化細菌を高濃度に維持で
きないため還元性硫黄化合物を含む廃水の高効率処理が
困難になり、また、処理水質が低下する問題点がある。
The carrier for immobilizing such sulfur-oxidizing bacteria is as follows:
If calcium is excessively added, calcium is eluted from the immobilization carrier in a large amount. As a result, gypsum on which the sulfur-oxidizing bacteria are immobilized floats in the bioreactor, causing airflow tube obstruction. In addition, when a large amount of calcium is eluted from the immobilized carrier, there is a problem that the strength of the immobilized carrier is insufficient. On the other hand, if the amount of calcium in the immobilization carrier is insufficient, the amount of gypsum formed on the surface of the immobilization carrier is not sufficient, so that the sulfur-oxidizing bacteria are not sufficiently immobilized.
Outflow of sulfur oxidizing bacteria to the treated water is likely to occur, and as a result, the sulfur oxidizing bacteria in the bioreactor cannot be maintained at a high concentration, making it difficult to treat wastewater containing reducing sulfur compounds with high efficiency. There is a problem that decreases.

【0040】そこで、発明者らは、硫黄酸化細菌の固定
化性能が優れ、固定床型バイオリアクターの固定化担体
として十分な強度を有し、また、散気管の閉塞を起こさ
ない固定化担体について研究した結果、本発明の固定化
担体に達した。
Therefore, the present inventors have developed an immobilization carrier which has excellent immobilization performance for sulfur-oxidizing bacteria, has sufficient strength as an immobilization carrier for a fixed-bed type bioreactor, and does not cause clogging of a diffuser tube. As a result of research, the immobilized carrier of the present invention has been reached.

【0041】固定化担体の表面に適正量の石膏を形成
し、固定床型バイオリアクターの固定化担体として十分
な強度を有する固定化担体の組成について検討した結
果、CaO−Al23 −SiO2 が良く、SiO2
Al23 は強度を保持する。
As a result of forming an appropriate amount of gypsum on the surface of the immobilized carrier and examining the composition of the immobilized carrier having sufficient strength as the immobilized carrier of the fixed bed type bioreactor, CaO—Al 2 O 3 —SiO 2 is good, SiO 2 ,
Al 2 O 3 retains strength.

【0042】CaO−Al23 −SiO2 の混合物を
成型加工した後、900〜1500℃で焼成すると、C
ristobalite,Tridymite,Pse
udowollastonite,Anorthit
e,Gehlenite,CorundumおよびLi
meを形成することが知られている。これのうち、硫黄
酸化細菌の固定化担体に適している焼成物は、Anor
thite(CaO・Al23 ・2SiO2 )および
Gehlenite(2CaO・Al23 ・SiO
2 )で、この組成のCaOを1〜10%過剰の組成比に
して、900〜1250℃で焼成したものが最適である
ことが明らかになった。固定化担体の具体的配合比は、
CaOが14〜40%、Al23 が15〜25%、S
iO2 が5〜20%が適正である。
After molding a mixture of CaO—Al 2 O 3 —SiO 2 and firing at 900 to 1500 ° C.,
listolite, tridymite, Pse
udowolastonite, Anorthit
e, Gehlenite, Corundum and Li
It is known to form me. Among these, the calcined product suitable for the immobilization carrier for sulfur oxidizing bacteria is Anor
thite (CaO.Al 2 O 3 .2SiO 2 ) and Gehlenite (2CaO.Al 2 O 3 .SiO
2 ) It became clear that CaO of this composition with a composition ratio of 1 to 10% excess and calcined at 900 to 1250 ° C. was optimal. The specific mixing ratio of the immobilized carrier is
CaO is 14~40%, Al 2 O 3 is 15-25%, S
iO 2 from 5 to 20 percent is appropriate.

【0043】本発明の固定化担体に用いられる原料は、
Al23 −SiO2 についてはカオリン族系粘土鉱
が、また、CaO−Al23 −SiO2 については
高炉水砕スラグ等が適切で、これに上述の組成になるよ
うにカルシウム化合物、例えば水酸化カルシウムを添加
すれば良い。この固定化担体の形状は、サドル型、リン
グ型、円筒型、ボール状等のように化学工学的性状が優
れた形状が良い。
The raw materials used for the immobilized carrier of the present invention include:
Kaolin group clay minerals for Al 2 O 3 -SiO 2
For CaO—Al 2 O 3 —SiO 2 , granulated blast furnace slag or the like is appropriate, and a calcium compound such as calcium hydroxide may be added to the slag to obtain the above-mentioned composition. The shape of the immobilized carrier is preferably a shape having excellent chemical engineering properties, such as a saddle type, a ring type, a cylindrical type, and a ball type.

【0044】次に、本発明において固定床型バイオリア
クターの出口のORPを指標にして曝気を行う点につい
て説明する。
Next, the point of performing aeration using the ORP at the outlet of the fixed bed type bioreactor as an index in the present invention will be described.

【0045】本発明の固定化担体に固定化されている硫
黄酸化細菌が還元性硫黄化合物を硫酸に酸化する際、酸
素が必要である。即ち、硫黄酸化細菌が還元性硫黄化合
物を酸化する際の酸化エネルギーを用いて曝気用空気の
二酸化炭素を固定化して細胞の増殖を行う。従って、曝
気量が不足すると還元性硫黄化合物を酸化するのに必要
なORPに達せず、還元性硫黄化合物の酸化が充分に行
われないので、処理水の還元性硫黄化合物の濃度が高く
なり、また、酸化エネルギーが充分供給されないので硫
黄酸化細菌の増殖が充分に行われない。一方、過剰に曝
気を行うと固定化担体に固定化されている硫黄酸化細菌
が剥離し、処理水に流出して処理水の悪化を招く。
When the sulfur-oxidizing bacteria immobilized on the immobilization carrier of the present invention oxidize a reducing sulfur compound to sulfuric acid, oxygen is required. That is, the cells grow by immobilizing the carbon dioxide in the aeration air using the oxidation energy when the sulfur-oxidizing bacteria oxidize the reducing sulfur compounds. Therefore, if the amount of aeration is insufficient, the ORP required to oxidize the reducing sulfur compound will not be reached, and the oxidation of the reducing sulfur compound will not be sufficiently performed, so that the concentration of the reducing sulfur compound in the treated water will increase, Further, since the oxidizing energy is not supplied sufficiently, the growth of the sulfur-oxidizing bacteria is not sufficiently performed. On the other hand, when excessive aeration is performed, the sulfur-oxidizing bacteria immobilized on the immobilization carrier are peeled off and flow out into the treated water, causing deterioration of the treated water.

【0046】このような曝気の問題を解決するため、還
元性硫黄化合物の硫黄酸化細菌による酸化反応を化学反
応と同じと仮定して、この化学反応が起こるときの自由
反応エネルギーの変化量から酸化還元電位を計算で求
め、この酸化還元電位を指標にして曝気量を管理・制御
することとした。
To solve the problem of aeration, the oxidation reaction of reducing sulfur compounds by sulfur-oxidizing bacteria is assumed to be the same as the chemical reaction, and the amount of free reaction energy change at the time of this chemical reaction is determined. The reduction potential was calculated, and the amount of aeration was controlled and controlled using the oxidation-reduction potential as an index.

【0047】固定床型バイオリアクターの場合、バイオ
リアクター内部の酸化還元電位を測定することが困難な
ため、バイオリアクター出口の生物学処理が行われた処
理水のORPにより曝気量の管理・制御を行った。その
結果、還元性硫黄化合物が完全に酸化されて処理水に検
出されず、硫黄酸化細菌の馴養・増殖も充分に行われ、
また、硫黄酸化細菌の固定化担体からの剥離も殆ど起こ
らなかった。
In the case of a fixed-bed type bioreactor, it is difficult to measure the oxidation-reduction potential inside the bioreactor. Therefore, the aeration amount is controlled and controlled by the ORP of the treated water at the outlet of the bioreactor. went. As a result, the reducing sulfur compounds are completely oxidized and are not detected in the treated water, and the acclimation and growth of sulfur-oxidizing bacteria are sufficiently performed.
In addition, peeling of the sulfur-oxidizing bacteria from the immobilized carrier hardly occurred.

【0048】しかし、硫黄酸化細菌の増殖によりバイオ
リアクターの硫黄酸化細菌が増加すると固定化担体から
剥離し、処理水に流出して処理水質を悪化する原因とな
る。この剥離した硫黄酸化細菌は砂濾過などにより除去
することができるが、砂の閉塞が起こり易く、度々逆洗
する必要がある。砂濾過に代わる濾過法としてサドル型
セラミックスを充填した濾過装置を用いると、濾過処理
水の浮遊性物質(SS)が5mg/l以下の良好な処理
水質が得られ、また、濾過装置のSS保持量がサドル型
セラミックス1m3 当たり3〜7kgもあり、このため
濾過装置の閉塞が起こりにくいので逆洗頻度が著しく少
なくて済む。
However, when the number of sulfur-oxidizing bacteria in the bioreactor increases due to the growth of sulfur-oxidizing bacteria, the bacteria are separated from the immobilized carrier and flow out into the treated water, causing deterioration of the treated water quality. The exfoliated sulfur-oxidizing bacteria can be removed by sand filtration or the like, but the sand tends to be clogged, and it is necessary to frequently wash the back. If a filtration device filled with saddle-type ceramics is used as a filtration method instead of sand filtration, a good treated water quality with a suspended substance (SS) of 5 mg / l or less can be obtained. The amount is 3 to 7 kg per 1 m 3 of the saddle-type ceramics, so that the filter is hardly clogged, so that the frequency of backwashing can be significantly reduced.

【0049】本発明の方法による還元性硫黄化合物を含
む廃水の連続的処理を、硫黄酸化細菌の馴養・増殖の段
階から説明する。
The continuous treatment of wastewater containing a reducing sulfur compound according to the method of the present invention will be described from the stage of acclimation and growth of sulfur-oxidizing bacteria.

【0050】図1に示すORP制御装置およびpH制御
装置を備えた好気性の固定床型バイオリアクター8に
発明の固定化担体を充填する。このバイオリアクター8
に下水または産業廃水の処理を行っている活性汚泥処理
装置の曝気槽より採取した活性汚泥混合液を入れ、バイ
オリアクター8のORP値を廃水に含まれている還元性
硫黄化合物の仮定した酸化反応の自由エネルギー変化量
より計算で求めたORP値、例えば還元性硫黄化合物が
チオ硫酸化合物の場合は約+140〜160mV(Ag
/AgCl電極基準)に設定し、バイオリアクター8に
還元性硫黄化合物としてチオ硫酸化合物、硫化物等の還
元性硫黄化合物を含有する廃水を処理時間が8時間にな
るように供給する。廃水の供給当初はORPが設定値ま
で上昇しないが、徐々に上昇して約10〜15日間で設
定値に達し、ORP制御が行われる。なお、処理水の還
元性硫黄化合物は、ORPが約+100mVになると殆
ど検出されなくなり、また、処理水のCODも著しく低
下する。ORPが設定値に達したら、廃水の供給量を7
〜10日間毎に処理時間が6時間→4時間→3時間→2
時間になるように徐々に増加する。
[0050] This in ORP controller and pH controller fixed bed bioreactor 8 aerobic having a shown in FIG. 1
The immobilized carrier of the invention is filled. This bioreactor 8
Activated sludge mixed liquid collected from the aeration tank of the activated sludge treatment equipment that treats sewage or industrial wastewater is put into the reactor, and the ORP value of the bioreactor 8 is assumed to be the oxidation reaction of the reducing sulfur compound contained in the wastewater assuming the reduction reaction. ORP value calculated from the amount of change in free energy of, for example, about +140 to 160 mV (Ag when the reducing sulfur compound is a thiosulfate compound)
/ AgCl electrode standard), and wastewater containing a reducing sulfur compound such as a thiosulfate compound or a sulfide as a reducing sulfur compound is supplied to the bioreactor 8 such that the treatment time is 8 hours. Although the ORP does not rise to the set value at the beginning of the supply of the wastewater, it gradually rises and reaches the set value in about 10 to 15 days, and the ORP control is performed. The reducing sulfur compound in the treated water is hardly detected when the ORP is about +100 mV, and the COD of the treated water is significantly reduced. When the ORP reaches the set value, reduce the wastewater supply to 7
Processing time every 6 to 10 days → 6 hours → 3 hours → 3 hours → 2
Increase gradually as time goes on.

【0051】この際、硫黄酸化細菌の馴養・増殖が進む
につれて還元性硫黄化合物の酸化が進み硫酸を生成する
ため曝気槽のpHは低下し、何も対策をうたないと特開
昭56−67589号公報、特開昭57−4296号公
報に記載されているようにpH1.9〜2.0まで低下
する。このようにpHが低下した状態で馴養・増殖した
硫黄酸化細菌は、強酸性で活性なThiobacill
us属が優先種となり、先に説明したような問題点が発
生する。このため、バイオリアクターのpHは4.0〜
7.5の範囲になるようにアルカリ剤により管理・制御
する必要がある。このように曝気槽のpHを管理・制御
すると、pH4.0〜7.5の範囲で活性で還元性硫黄
化合物を酸化する硫黄酸化細菌を馴養・増殖することが
でき、先に説明したようなThiobacillus属
の硫黄酸化細菌が有している問題点を解決することがで
きる。
At this time, as the acclimatization and growth of the sulfur-oxidizing bacteria progress, the oxidation of the reducing sulfur compound proceeds to generate sulfuric acid, so that the pH of the aeration tank decreases. As described in JP-A-57-4296, the pH decreases to 1.9 to 2.0. Sulfur-oxidizing bacteria acclimated and grown in a state where the pH is lowered as described above are strongly acidic and active Thiobacill.
The genus us becomes the priority species, and the problems described above occur. For this reason, the pH of the bioreactor is 4.0 to 4.0.
It is necessary to control and control with an alkaline agent so as to be in the range of 7.5. By controlling and controlling the pH of the aeration tank in this way, sulfur-oxidizing bacteria that oxidize active reducing sulfur compounds in the pH range of 4.0 to 7.5 can be acclimated and propagated, as described above. It is possible to solve the problems of the sulfur-oxidizing bacteria belonging to the genus Thiobacillus.

【0052】この廃水処理において、バイオリアクター
8への曝気は、バイオリアクター8出口のORPが設定
値より低下するとORPセンサー13(金−銀/塩化銀
複合電極)がキャッチし、ORP制御装置14によりル
ーツブロアー15の回転数を上げて曝気量を増やし、設
定値に回復したらルーツブロアー15の回転数を下げて
曝気量を低減する比例制御方式により制御する。また、
バイオリアクター8のpHは、pHセンサー16、pH
制御装置17によりpHが4.0〜7.5の範囲になる
ようにアルカリ剤、酸により管理・制御する。
In this wastewater treatment, when the ORP at the outlet of the bioreactor 8 falls below a set value, the ORP sensor 13 (gold-silver / silver chloride composite electrode) catches the aeration of the bioreactor 8 and the ORP controller 14 The rotation rate of the roots blower 15 is increased to increase the amount of aeration. When the set value is restored, control is performed by a proportional control method in which the rotation number of the roots blower 15 is reduced to reduce the amount of aeration. Also,
The pH of the bioreactor 8 is measured by a pH sensor 16
The control unit 17 controls and controls with an alkali agent and an acid so that the pH is in the range of 4.0 to 7.5.

【0053】なお、バイオリアクター8より硫黄酸化細
菌を固定化した石膏が固定化担体より剥離して若干流出
するので、この石膏がそのまま処理水に流出すると処理
水質の悪化を招く。この石膏を除去するため、バイオリ
アクターの後にサドル型セラミックス等を充填したセラ
ミックス濾過装置11を設置して石膏を除去すると、良
好な処理水が得られる。
Since the gypsum on which the sulfur-oxidizing bacteria are immobilized is separated from the immobilization carrier and slightly flows out from the bioreactor 8, if the gypsum flows directly into the treated water, the quality of the treated water deteriorates. In order to remove the gypsum, a ceramic filtration device 11 filled with saddle-type ceramics or the like is installed after the bioreactor to remove the gypsum, whereby good treated water can be obtained.

【0054】[0054]

【実施例】次に、本発明の方法を製鉄所のスラグエージ
ングヤードなどから発生するチオ硫酸化合物、硫化物等
の還元性硫黄化合物を高濃度に含有し、またpHが12
〜14と高アルカリ性で、CODが300〜600mg
/lと高い廃水(高炉スラグ廃水)の処理、鋼管の腐食
試験に用いたpHが12〜14と高アルカリ性で、CO
Dが300〜600mg/lと高い硫化水素を含有した
廃水、および、チオシアン化合物を含む高炉ガスのドレ
ン水の処理に適用した実施例を説明する。なお、以下の
実施例では固定化担体としてカオリン族系粘土を用いた
が、これにさらに高炉水砕スラグを配合しても同様に効
率的な廃水の処理が可能であった。
EXAMPLE Next, the method of the present invention was carried out at a high concentration of reducing sulfur compounds such as thiosulfate compounds and sulfides generated from a slag aging yard of an ironworks, and when the pH was 12 or less.
~ 14 and highly alkaline, COD 300 ~ 600mg
/ L high wastewater (blast furnace slag wastewater) treatment, pH of 12-14 used for corrosion test of steel pipe, high alkalinity, CO2
An example in which D is applied to the treatment of wastewater containing hydrogen sulfide as high as 300 to 600 mg / l and drain water of blast furnace gas containing a thiocyanate compound will be described. In addition, the following
In Examples, kaolin-based clay was used as an immobilization carrier.
However, the addition of granulated blast furnace slag to this also has the same effect.
Efficient wastewater treatment was possible.

【0055】[0055]

【実施例1】図1のORP制御固定床型バイオリアクタ
ー8に、カオリン族粘土100重量部に対して水酸化カ
ルシウムを38重量部混合し、これを1インチの大きさ
のサドル型に成型後、焼成して得られた固定化担体を充
填し、バイオリアクター8に下水の処理を行っている活
性汚泥濃度:1500〜2000mg/lの活性汚泥混
合液を入れ、固定化した。バイオリアクター8出口の処
理水のORPを約+150mV(Ag/AgCl電極基
準)に設定し、バイオリアクター8の底より曝気を行っ
た。pHを6.0〜6.5に制御しながら、表2に性状
の一例を示す高炉スラグ廃水を、バイオリアクター8に
おける滞留時間が8時間になるように供給した。
Example 1 38 parts by weight of calcium hydroxide was mixed with 100 parts by weight of kaolin clay in an ORP control fixed bed type bioreactor 8 of FIG. 1 and the mixture was molded into a 1-inch saddle mold. Then, the immobilized carrier obtained by calcination was filled, and a bioreactor 8 was charged with an activated sludge mixed solution having a treated sewage concentration of 1500 to 2000 mg / l, and immobilized. The ORP of the treated water at the outlet of the bioreactor 8 was set to about +150 mV (based on the Ag / AgCl electrode), and aeration was performed from the bottom of the bioreactor 8. While controlling the pH to 6.0 to 6.5, blast furnace slag wastewater whose properties are shown in Table 2 was supplied such that the residence time in the bioreactor 8 was 8 hours.

【0056】[0056]

【表2】高炉スラグ廃水および処理水質の一例 (水
質:pH以外はmg/l) (注) N.D. :検出されず
[Table 2] Example of blast furnace slag wastewater and treated water quality (Water quality: mg / l except pH) (Note) ND: Not detected

【0057】高炉スラグ廃水を供給してから約7〜10
日後に、処理水にチオ硫酸化合物、硫化物が検出されな
くなり、CODが約50mg/l程度に低下した。次
に、処理時間を7〜10日毎に6時間→4時間→3時間
→2時間と短縮すると、処理水にチオ硫酸化合物、硫化
物などの還元性硫黄化合物が検出されず、処理水のCO
Dは10mg/l以下に除去され、下水の活性汚泥から
の硫黄酸化細菌の馴養が完了した。硫黄酸化細菌の馴養
が完了したら、処理時間が2〜3時間になるように高炉
スラグ廃水を供給して、高炉スラグ廃水の連続処理を行
うことができた。
After supplying the blast furnace slag wastewater, about 7 to 10
After a day, no thiosulfate compound or sulfide was detected in the treated water, and the COD was reduced to about 50 mg / l. Next, if the treatment time is reduced from 6 hours → 4 hours → 3 hours → 2 hours every 7 to 10 days, no reducing sulfur compounds such as thiosulfate compounds and sulfides are detected in the treated water,
D was removed to 10 mg / l or less, and the adaptation of sulfur-oxidizing bacteria from activated sludge of sewage was completed. When the acclimation of the sulfur-oxidizing bacteria was completed, the blast furnace slag wastewater was supplied so that the treatment time became 2 to 3 hours, and the blast furnace slag wastewater could be continuously treated.

【0058】曝気槽のpH制御に用いる10%硫酸は、
硫黄酸化細菌の馴養が段々進むにつれて消費量が減少
し、硫黄酸化細菌の馴養が完了して処理時間が2〜3時
間の連続処理の段階では殆ど消費しなくなる。これは、
チオ硫酸化合物、硫化物などの還元性硫黄化合物が硫酸
に酸化され、この硫酸により外部から酸を添加する事な
く曝気槽のpHを適性値に維持することができるためで
ある。
The 10% sulfuric acid used for controlling the pH of the aeration tank is as follows:
As the acclimation of the sulfur-oxidizing bacteria progresses, the consumption decreases, and the acclimation of the sulfur-oxidizing bacteria is completed, and the consumption is hardly consumed in the stage of the continuous treatment in which the treatment time is 2 to 3 hours. this is,
This is because reducing sulfur compounds such as thiosulfate compounds and sulfides are oxidized to sulfuric acid, and the sulfuric acid can maintain the pH of the aeration tank at an appropriate value without adding an acid from the outside.

【0059】なお、処理を行った高炉スラグ廃水の水質
例と、硫黄酸化細菌の馴養期間の処理時間と、その後の
処理時間が2〜3時間の連続処理を行ったときの処理水
質の例も表2にまとめて示す。この結果、連続処理の処
理水からはチオ硫酸化合物、硫化物などの還元性硫黄化
合物が検出されず、CODが10mg/l以下でpHも
6.0〜6.5なので、このまま公共用水域に放流する
ことができる。
Examples of the water quality of the treated blast furnace slag wastewater, the processing time during the acclimatization period of the sulfur-oxidizing bacteria, and the example of the treated water quality when the continuous processing is performed for a subsequent processing time of 2 to 3 hours are also described. The results are shown in Table 2. As a result, reducing sulfur compounds such as thiosulfate compounds and sulfides were not detected from the treated water of the continuous treatment, and the COD was 10 mg / l or less and the pH was 6.0 to 6.5. Can be released.

【0060】本発明の方法によれば、下水の処理を行っ
ている活性汚泥から高炉スラグ廃水を用いて硫黄酸化細
菌の馴養を7〜10日で完了した。即ち、硫黄酸化細菌
の馴養は、処理水にチオ硫酸化合物、硫化物などの還元
性硫黄化合物が検出されなくなった段階で完了したと考
えられ、その後は還元性硫黄化合物の処理負荷量を増加
し、即ち、処理時間を7〜10日毎に6時間→4時間→
3時間と逐次短縮して硫黄酸化細菌の増殖を計った。こ
の硫黄酸化細菌の増殖期間でも処理水に還元性硫黄化合
物が検出されず、CODが10mg/l以下と良好であ
った。硫黄酸化細菌の増殖完了後、高炉スラグ廃水を処
理時間が2〜3時間の高効率処理しても処理水に還元性
硫黄化合物が検出されず、また、処理水のCODが10
mg/l以下と良好であった。
According to the method of the present invention, acclimation of sulfur-oxidizing bacteria was completed in 7 to 10 days by using blast-furnace slag wastewater from activated sludge that is undergoing sewage treatment. That is, it is considered that the habituation of the sulfur-oxidizing bacteria was completed when the reducing sulfur compounds such as thiosulfate compounds and sulfides were not detected in the treated water, and thereafter, the treatment load of the reducing sulfur compounds was increased. That is, the processing time is changed every 6 to 10 days from 6 hours to 4 hours.
The growth of sulfur oxidizing bacteria was measured by successively shortening to 3 hours. No reducing sulfur compounds were detected in the treated water even during the growth period of the sulfur-oxidizing bacteria, and the COD was as good as 10 mg / l or less. After the completion of the growth of the sulfur-oxidizing bacteria, even if the blast furnace slag wastewater is treated with high efficiency for a treatment time of 2 to 3 hours, no reducing sulfur compound is detected in the treated water, and the COD of the treated water is 10%.
mg / l or less was good.

【0061】[0061]

【実施例2】鋼管の腐食試験に用いたpHが12〜14
と高アルカリ性で、CODが600〜1200mg/
l、硫化水素を300〜600mg/l含有した廃水の
処理を行った。
Example 2 The pH used in the corrosion test of steel pipe was 12-14.
And highly alkaline, with a COD of 600-1200 mg /
1, wastewater containing 300 to 600 mg / l hydrogen sulfide was treated.

【0062】まず、硫化水素を酸化する硫黄酸化細菌を
実施例1の方法により馴養・増殖した。硫黄酸化細菌の
馴養・増殖の段階は、実施例1の高炉スラグ廃水を用い
た。高炉スラグ廃水が2〜3時間で処理できるようにな
ったら、pH8〜9に調整した腐食試験廃液を処理時間
が8時間になるようにバイオリアクターに供給した。処
理水のCODが10〜20mg/l以下になったら、7
〜10日毎に処理時間を6時間→4時間→3時間と逐次
短縮し、硫黄酸化細菌を腐食試験廃液に馴養した。硫黄
酸化細菌の腐食廃液への馴養が完了したら処理時間2〜
3時間で連続処理を行うと、処理水に硫化水素が検出さ
れず、また、pHが6.0〜6.5、CODが10mg
/l、SSが5mg/l以下の処理水が得られた。
First, sulfur-oxidizing bacteria that oxidize hydrogen sulfide were acclimated and grown by the method of Example 1. The blast furnace slag wastewater of Example 1 was used for the stage of acclimation and propagation of the sulfur-oxidizing bacteria. When the blast furnace slag wastewater could be treated in 2 to 3 hours, the corrosion test wastewater adjusted to pH 8 to 9 was supplied to the bioreactor so that the treatment time was 8 hours. When the COD of the treated water becomes 10 to 20 mg / l or less, 7
Every 10 to 10 days, the treatment time was gradually reduced from 6 hours to 4 hours to 3 hours, and the sulfur-oxidizing bacteria were adapted to the corrosion test wastewater. When the acclimation of the sulfur oxidizing bacteria to the corrosive waste liquid is completed, the treatment time
When continuous treatment is performed for 3 hours, hydrogen sulfide is not detected in the treated water, and the pH is 6.0 to 6.5 and the COD is 10 mg.
/ L, treated water with SS of 5 mg / l or less was obtained.

【0063】腐食試験廃液の処理においても、バイオリ
アクターのpHは6.0〜6.5に調整し、また、バイ
オリアクターの曝気は、バイオリアクター出口の生物処
理水のORPが100〜150mV(銀/塩化銀電極基
準)になるように、バイオリアクターの底部より行っ
た。
In the treatment of the corrosion test waste liquid, the pH of the bioreactor was adjusted to 6.0 to 6.5, and the aeration of the bioreactor was carried out when the ORP of the biological treatment water at the outlet of the bioreactor was 100 to 150 mV (silver). / Silver chloride electrode reference) from the bottom of the bioreactor.

【0064】なお、下水の活性汚泥からの硫黄酸化細菌
の馴養・増殖を腐食試験廃液で直接行うと、硫黄酸化細
菌が充分に増殖していないのでバイオリアクターから高
濃度の硫化水素を含有した排気が出て、周囲の環境を悪
化するので好ましくない。このため、硫黄酸化細菌の馴
養・増殖は高炉スラグ廃水を用いた方が良い。また、バ
イオリアクターの前で、腐食試験廃液をpH8〜9に調
整するpH調整槽から硫化水素が漏れることがあるの
で、バイオリアクターの曝気用ブロアーの吸い込み口を
pH調整槽に接続して、硫化水素を含んだ空気をバイオ
リアクターの曝気に用いると、pH調整槽からの硫化水
素の漏れを防ぐことができる。
When the acclimatization and propagation of sulfur oxidizing bacteria from activated sludge of sewage are directly performed in the wastewater from the corrosion test, the sulfur oxidizing bacteria are not sufficiently grown, and the exhaust gas containing high concentration hydrogen sulfide is discharged from the bioreactor. , Which is not preferable because it deteriorates the surrounding environment. Therefore, it is better to use blast furnace slag wastewater for acclimation and propagation of sulfur oxidizing bacteria. In addition, hydrogen sulfide may leak from the pH adjustment tank that adjusts the corrosion test wastewater to pH 8 to 9 in front of the bioreactor, so the suction port of the aeration blower of the bioreactor is connected to the pH adjustment tank, When air containing hydrogen is used for aeration of the bioreactor, leakage of hydrogen sulfide from the pH adjustment tank can be prevented.

【0065】このような硫化水素を含む廃液の本発明方
法による処理は、化学的処理に比べて処理が安定してい
るため処理水質が優れており、また、ランニングコスト
を大幅に低減することができる。
The treatment of the waste liquid containing hydrogen sulfide according to the method of the present invention is excellent in treated water quality because the treatment is more stable than the chemical treatment, and the running cost can be greatly reduced. it can.

【0066】[0066]

【実施例3】高炉ガスのドレン水はチオシアン化合物を
10〜500mg/l含んでおり、このチオシアン化合
物に起因するCODが高いためチオシアン化合物の処理
が必要である。そこで、実施例1の方法で馴養・増殖し
た硫黄酸化細菌のバイオリアクターによりこのドレン水
の処理を行った結果、2〜3時間の処理時間で、チオシ
アン化合物は1mg/l以下に、また、CODは15m
g/l以下に低下した。
Embodiment 3 Drain water of a blast furnace gas contains 10 to 500 mg / l of a thiocyan compound, and since the COD caused by the thiocyan compound is high, it is necessary to treat the thiocyan compound. Then, as a result of treating this drain water with a bioreactor of sulfur oxidizing bacteria acclimated and grown by the method of Example 1, the thiocyan compound was reduced to 1 mg / l or less and COD in a treatment time of 2 to 3 hours. Is 15m
g / l or less.

【0067】[0067]

【発明の効果】本発明により下水、産業廃水の処理を行
っている活性汚泥より還元性硫黄化合物をpH4.0〜
7.5近辺で酸化する硫黄酸化細菌の馴養・増殖が著し
く促進され、この硫黄酸化細菌の馴養・増殖を短期間で
行うことが可能になる。また、硫黄酸化細菌を用いるこ
とにより還元性硫黄化合物を含む廃水の処理が容易にな
り、処理設備、処理コストの低減が可能になる。
According to the present invention, a reducing sulfur compound having a pH of 4.0 to 4.0 can be obtained from activated sludge which is treating sewage and industrial wastewater.
The acclimation and growth of sulfur-oxidizing bacteria that oxidize around 7.5 are remarkably promoted, and the acclimation and growth of the sulfur-oxidizing bacteria can be performed in a short period of time. In addition, the use of sulfur-oxidizing bacteria facilitates the treatment of wastewater containing a reducing sulfur compound, thereby reducing treatment equipment and treatment costs.

【図面の簡単な説明】[Brief description of the drawings]

【図1】硫黄酸化細菌を用いて還元性硫黄化合物を含む
廃水を処理するのに用いるORP制御固定床型バイオリ
アクターの一例を示す図である。
FIG. 1 is a diagram showing an example of an ORP-controlled fixed-bed bioreactor used for treating wastewater containing a reducing sulfur compound using sulfur-oxidizing bacteria.

【図2】本発明の方法で馴養した硫黄酸化細菌のチオ硫
酸イオンの酸化速度(活性度)とpHとの関係を示す図
である。
FIG. 2 is a graph showing the relationship between thiosulfate ion oxidation rate (activity) and pH of sulfur-oxidizing bacteria acclimated by the method of the present invention.

【図3】硫黄酸化細菌の分類を示す図である。FIG. 3 is a diagram showing classification of sulfur-oxidizing bacteria.

【符号の説明】[Explanation of symbols]

1 廃水タンク 2 廃水供給ポンプ 3 pH調整槽 4 pHセンサー 5 pH制御装置 6 酸供給ポンプ 7 アルカリ供給ポンプ 8 固定床型バイオリアクター 9 散気管 10 ORP測定用槽 11 セラミックス濾過装置 12 処理水 13 ORPセンサー 14 ORP制御装置 15 ルーツブロアー 16 pHセンサー 17 pH制御装置 18 アルカリ供給ポンプ Reference Signs List 1 wastewater tank 2 wastewater supply pump 3 pH adjustment tank 4 pH sensor 5 pH controller 6 acid supply pump 7 alkali supply pump 8 fixed-bed type bioreactor 9 diffuser 10 ORP measurement tank 11 ceramics filtration device 12 treated water 13 ORP sensor 14 ORP controller 15 Roots blower 16 pH sensor 17 pH controller 18 Alkaline supply pump

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−4296(JP,A) 特開 昭62−106822(JP,A) 特開 昭63−236596(JP,A) 特開 平4−16297(JP,A) (54)【発明の名称】 硫黄酸化細菌に適した固定化担体、硫黄酸化細菌を固定化担体に固定化する方法、固定床型バイ オリアクターに硫黄酸化細菌を馴養・増殖する方法、および還元性硫黄化合物を含む廃水の生物 学的処理方法 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-57-4296 (JP, A) JP-A-62-106822 (JP, A) JP-A-63-236596 (JP, A) JP-A-4- 16297 (JP, A) (54) [Title of the Invention] Immobilized carrier suitable for sulfur oxidizing bacteria, method for immobilizing sulfur oxidizing bacteria on immobilized carrier, acclimation of sulfur oxidizing bacteria to fixed bed type bioreactor Propagation method and biological treatment method for wastewater containing reducing sulfur compounds

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 還元性硫黄化合物を含む廃水を硫黄酸化
細菌を用いた固定床型バイオリアクターにより処理する
ための硫黄酸化細菌の固定化担体において、カオリン族
系粘土にカルシウム化合物を配合し、成型後、焼成して
得られたセラミックスを用いたことを特徴とする硫黄酸
化細菌に適した固定化担体。
1. A fixed carrier for sulfur-oxidizing bacteria for treating wastewater containing a reducing sulfur compound by a fixed-bed type bioreactor using sulfur-oxidizing bacteria, comprising a kaolin family.
Blend the calcium compound into the clay, fire after molding
An immobilized carrier suitable for sulfur-oxidizing bacteria, characterized by using the obtained ceramics .
【請求項2】 さらに高炉水砕スラグを配合した請求項
記載の硫黄酸化細菌に適した固定化担体。
2. A method according to claim, further formulated with water-granulated blast furnace slag
An immobilized carrier suitable for the sulfur-oxidizing bacteria according to 1 .
【請求項3】 請求項1または2記載の固定化担体を固
定床型バイオリアクターに充填し、これに下水の活性汚
泥処理の曝気槽より採取した活性汚泥混合液を入れ、下
水の活性汚泥を固定化担体に固定化した後、固定床型バ
イオリアクターのpHおよびORPを所定の条件に維持
して硫黄酸化細菌を馴養・増殖し、硫黄酸化細菌を固定
化担体に固定化する方法。
3. The immobilized carrier according to claim 1 or 2 is filled in a fixed-bed type bioreactor, and an activated sludge mixed solution collected from an aeration tank for sewage activated sludge treatment is added thereto. A method in which, after immobilization on an immobilization carrier, the pH and ORP of the fixed-bed type bioreactor are maintained under predetermined conditions to acclimate and grow the sulfur-oxidizing bacteria, and immobilize the sulfur-oxidizing bacteria on the immobilization carrier.
【請求項4】 請求項記載の方法において、固定床型
バイオリアクターのpHを4.0〜7.5の範囲に管理
・制御し、また、固定床型バイオリアクターの曝気を固
定床型バイオリアクター出口の処理水のORPを指標に
して行うことを特徴とする固定床型バイオリアクターに
硫黄酸化細菌を馴養・増殖する方法。
4. The method according to claim 3 , wherein the pH of the fixed-bed type bioreactor is controlled and controlled in a range of 4.0 to 7.5, and the aeration of the fixed-bed type bioreactor is controlled by a fixed-bed type bioreactor. A method for acclimating and growing sulfur-oxidizing bacteria in a fixed-bed type bioreactor, wherein the process is performed using the ORP of the treated water at the outlet of the reactor as an index.
【請求項5】 請求項記載の方法において、ORP
を、廃水に含まれている還元性硫黄化合物が化学的に硫
酸に酸化される反応に関する自由反応エネルギーの変化
量から計算で求めたORPに管理・制御することを特徴
とする固定床型バイオリアクターに硫黄酸化細菌を馴養
・増殖する方法。
5. The method of claim 4 , wherein the ORP
A fixed-bed type bioreactor, wherein the ORP calculated and calculated from the amount of change in free reaction energy relating to the reaction in which the reducing sulfur compound contained in the wastewater is chemically oxidized to sulfuric acid is controlled and controlled. A method of acclimating and growing sulfur-oxidizing bacteria.
【請求項6】 還元性硫黄化合物を含む廃水を、請求項
または2記載の固定化担体に請求項記載の方法、ま
たは請求項もしくは記載の方法により馴養・増殖し
た硫黄酸化細菌を固定化した固定床型バイオリアクター
で処理することを特徴とする還元性硫黄化合物を含む廃
水の生物学的処理方法。
6. A method according to claim 3 , wherein the wastewater containing a reducing sulfur compound is applied to the immobilization carrier according to claim 1 or 2 , and the sulfur-oxidizing bacteria acclimated and grown by the method according to claim 4 or 5. A biological treatment method for wastewater containing a reducing sulfur compound, which is treated in an immobilized fixed-bed bioreactor.
【請求項7】 請求項記載の方法において、固定床型
バイオリアクターのpHを所定の値に制御し、また、固
定床型バイオリアクターに供給する曝気量を固定床型バ
イオリアクター出口の処理水のORPを指標にして管理
・制御することを特徴とする還元性硫黄化合物を含む廃
水の生物学的処理方法。
7. The method according to claim 6 , wherein the pH of the fixed-bed bioreactor is controlled to a predetermined value, and the amount of aeration supplied to the fixed-bed bioreactor is treated water at the outlet of the fixed-bed bioreactor. A biological treatment method for wastewater containing a reducible sulfur compound, wherein the wastewater treatment includes control and control using the ORP as an index.
【請求項8】 請求項または記載の方法において、
還元性硫黄化合物が硫化水素および/またはチオ硫酸化
合物で、固定床型バイオリアクターのpHを4.0〜
7.5の範囲に、固定床型バイオリアクター出口の処理
水のORPを+100〜+200mV(銀/塩化銀電極
基準)の範囲にそれぞれ管理・制御することを特徴とす
る還元性硫黄化合物を含む廃水の生物学的処理方法。
8. The method of claim 6 or 7, wherein,
The reducing sulfur compound is a hydrogen sulfide and / or thiosulfate compound, and the pH of the fixed-bed type bioreactor is adjusted to 4.0 to 4.0.
Wastewater containing a reducing sulfur compound, wherein the ORP of the treated water at the outlet of the fixed-bed type bioreactor is controlled and controlled within a range of 7.5 to +100 to +200 mV (based on a silver / silver chloride electrode), respectively. Biological treatment method.
JP4197485A 1992-07-02 1992-07-02 Immobilized carrier suitable for sulfur oxidizing bacteria, method of immobilizing sulfur oxidizing bacteria on immobilized carrier, method of acclimating and growing sulfur oxidizing bacteria in fixed bed bioreactor, and biology of wastewater containing reducing sulfur compounds Processing method Expired - Fee Related JP2622649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4197485A JP2622649B2 (en) 1992-07-02 1992-07-02 Immobilized carrier suitable for sulfur oxidizing bacteria, method of immobilizing sulfur oxidizing bacteria on immobilized carrier, method of acclimating and growing sulfur oxidizing bacteria in fixed bed bioreactor, and biology of wastewater containing reducing sulfur compounds Processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4197485A JP2622649B2 (en) 1992-07-02 1992-07-02 Immobilized carrier suitable for sulfur oxidizing bacteria, method of immobilizing sulfur oxidizing bacteria on immobilized carrier, method of acclimating and growing sulfur oxidizing bacteria in fixed bed bioreactor, and biology of wastewater containing reducing sulfur compounds Processing method

Publications (2)

Publication Number Publication Date
JPH0615294A JPH0615294A (en) 1994-01-25
JP2622649B2 true JP2622649B2 (en) 1997-06-18

Family

ID=16375260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4197485A Expired - Fee Related JP2622649B2 (en) 1992-07-02 1992-07-02 Immobilized carrier suitable for sulfur oxidizing bacteria, method of immobilizing sulfur oxidizing bacteria on immobilized carrier, method of acclimating and growing sulfur oxidizing bacteria in fixed bed bioreactor, and biology of wastewater containing reducing sulfur compounds Processing method

Country Status (1)

Country Link
JP (1) JP2622649B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2769973B2 (en) * 1994-03-29 1998-06-25 シャープ株式会社 Method and apparatus for treating water to be treated containing organic sulfur compounds
US6610268B1 (en) * 1999-04-12 2003-08-26 Phillips Petroleum Company Method for the microbiological production of sulfuric acid
JP5267190B2 (en) * 2008-03-26 2013-08-21 Jfeスチール株式会社 Method for treating wastewater containing sulfur-based COD components
JP6540437B2 (en) * 2014-12-16 2019-07-10 日本製鉄株式会社 Biological treatment method of treated water by aerobic fluidized bed
JP6540438B2 (en) * 2014-12-16 2019-07-10 日本製鉄株式会社 Biological treatment method of treated water by aerobic fixed bed
CN106277684B (en) * 2016-09-09 2023-05-26 九江学院 Immobilized sulfur oxidizing bacteria biological rotating disc reaction device and application
CN115404080B (en) * 2022-07-21 2024-05-14 同济大学 Mine polluted soil restoration agent and preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591398B2 (en) * 1980-06-10 1984-01-11 同和鉱業株式会社 Method for biologically removing COD in wastewater caused by sulfur oxides
JPS62106822A (en) * 1985-11-01 1987-05-18 Cosmo Shokuhin Kk Desulfurizing method utilizing sulfur oxidizing
JPH0669555B2 (en) * 1987-03-25 1994-09-07 新日本製鐵株式会社 Wastewater activated sludge treatment method
JPH0416297A (en) * 1990-05-11 1992-01-21 Nippon Steel Corp Immobilizing carrier for fixed bed type activated sludge treatment of waste water and treatment of waste water

Also Published As

Publication number Publication date
JPH0615294A (en) 1994-01-25

Similar Documents

Publication Publication Date Title
EP0575314B1 (en) Method and reactor for purification of water
JP2622649B2 (en) Immobilized carrier suitable for sulfur oxidizing bacteria, method of immobilizing sulfur oxidizing bacteria on immobilized carrier, method of acclimating and growing sulfur oxidizing bacteria in fixed bed bioreactor, and biology of wastewater containing reducing sulfur compounds Processing method
JPS63236596A (en) Treatment of waste water with activated sludge
JP3749617B2 (en) Method of acclimatizing sulfur-oxidizing bacteria and method of removing nitrogen from wastewater using sulfur-oxidizing bacteria
JPH01262996A (en) Method and apparatus for aerobic treatment of organic waste water
JP2618164B2 (en) Conditioning and propagation of sulfur oxidizing bacteria by addition of inorganic coagulant and biological treatment of wastewater containing reducing sulfur compounds
HU217681B (en) Process for removing sulphur compounds from water
JPH06493A (en) Method of biologically treating waste water
JP2582695B2 (en) Biological treatment method for wastewater containing hydrogen sulfide
JP3506394B2 (en) Method and apparatus for desulfurizing clay using sulfur-oxidizing bacteria
KR900009152B1 (en) Process for activated-sludge teratment of sewage or industrial waste water
JPH06106187A (en) Domestication and multiplication of sulfur oxidizing bacteria by addition of organic compound and biological treatment of waste water containing reducing sulfur compound
JP5267190B2 (en) Method for treating wastewater containing sulfur-based COD components
JP2663227B2 (en) Biological treatment of wastewater containing reducing sulfur compounds
JPH06106189A (en) Domestication and multiplication of sulfur oxidizing bacteria by addition of carbonate and biological treatment of waste water containing reducing sulfur compound
JP2622643B2 (en) Biological treatment of wastewater containing reducing sulfur compounds
JP2509099B2 (en) Method for acclimatizing and growing microorganisms that oxidatively decompose reducing sulfur compounds, and method for biological treatment of wastewater containing reducing sulfur compounds
JP2693099B2 (en) Biological treatment method and acclimation method of microorganisms
JP2540150B2 (en) Biological denitrification equipment
CN215855636U (en) System for compound desorption COD of coking wastewater
KR20020040125A (en) The Method and Apparatus of Biological High Efficiency Wastewater Treatment Using the Contacting Media for Activated Sludge
JPH07251195A (en) Treatment of waste water containing reductive sulfur compound
JP3241565B2 (en) Treatment of wastewater containing reducing sulfur compounds by microorganisms
JPH01151998A (en) Method for purifying water using ceramics
JP2509098B2 (en) Microorganisms for oxidizing or degrading reducing sulfur compounds and aromatic organic compounds having sulfone groups, method of breeding, and biological of wastewater containing reducing sulfur compounds and aromatic organic compounds having sulfone groups Processing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970107

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100411

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 14

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees