JP2621901B2 - Method for manufacturing phosphoric acid type fuel cell - Google Patents

Method for manufacturing phosphoric acid type fuel cell

Info

Publication number
JP2621901B2
JP2621901B2 JP63020705A JP2070588A JP2621901B2 JP 2621901 B2 JP2621901 B2 JP 2621901B2 JP 63020705 A JP63020705 A JP 63020705A JP 2070588 A JP2070588 A JP 2070588A JP 2621901 B2 JP2621901 B2 JP 2621901B2
Authority
JP
Japan
Prior art keywords
porous
carbon plate
phosphoric acid
separator
porous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63020705A
Other languages
Japanese (ja)
Other versions
JPH01197968A (en
Inventor
曽根  勇
淳 幹
昇平 魚住
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63020705A priority Critical patent/JP2621901B2/en
Publication of JPH01197968A publication Critical patent/JPH01197968A/en
Application granted granted Critical
Publication of JP2621901B2 publication Critical patent/JP2621901B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリン酸型燃料電池の製造方法に関するもので
ある。
The present invention relates to a method for producing a phosphoric acid fuel cell.

〔従来の技術〕[Conventional technology]

リン酸型燃料電池はリン酸を電解質水溶液とし、通
常、炭化ケイ素を主成分とするマトリツクスにリン酸を
保持させて電解質層としている。この電解質層の前後に
触媒層を設け、この触媒層の夫々に水素を主成分とする
燃料ガスと、酸素を主成分とする酸化剤ガス(通常は空
気)を供給することにより、リン酸型燃料電池は電極反
応を生じて発電し、通常、170〜220℃程度で運転され
る。リン酸型燃料電池はその単電池の構成によつて、例
えば高橋武彦著「燃料電池」共立出版(昭60)のよう
に、リブ付セパレータ形とリブ付電極形とに大別され
る。
Phosphoric acid type fuel cells use phosphoric acid as an aqueous electrolyte solution, and usually use a matrix mainly composed of silicon carbide to hold phosphoric acid to form an electrolyte layer. By providing a catalyst layer before and after the electrolyte layer, and supplying a fuel gas containing hydrogen as a main component and an oxidizing gas (usually air) containing oxygen as a main component to each of the catalyst layers, a phosphoric acid type is provided. The fuel cell generates an electrode reaction to generate power and is usually operated at about 170 to 220 ° C. Phosphoric acid type fuel cells are roughly classified into rib-type separator type and rib-type electrode type, as in, for example, "Fuel Cell" written by Takehiko Takahashi, Kyoritsu Shuppan (Showa 60).

リブ付セパレータ形は第16図に示されているように、
平坦で薄い電極基板(通常は多孔質カーボン板)1を触
媒層2の外側に接して設け。電極基板1の外側にガス不
透過性の無孔質カーボン板(セパレータ3)が設けてあ
る、反応ガスはこのセパレータ3に設けたリブ溝から電
極基板1の内部を触媒層2まで拡散していき、白金触
媒,リン酸,反応ガスの三者が接する触媒層2の界面で
電極反応が起きる。このリブ付セパレータ形は(1)薄
い(例えば約0.4mm程度)電極基板1が機械的に脆く、
取扱いに注意を要する、(2)運転中に徐々に発散する
リン酸電解液を貯蔵できないので、電池寿命が短い等の
欠点があり、リブ付電極形が開発された。すなわちリブ
付セパレータ形は同図に示されているように、平坦で薄
い電極基板1に触媒層2を設け、ガス通路のリブ溝を設
けたセパレータ3が積層されているが、電極基板1が薄
いので反応ガスの触媒層2への拡散はスムーズで高性能
セルとなるが、リン酸貯蔵ができないので電池寿命が短
いのである。なお同図において4は電解質層である。
As shown in Fig. 16, the ribbed separator type
A flat and thin electrode substrate (usually a porous carbon plate) 1 is provided in contact with the outside of the catalyst layer 2. A gas-impermeable nonporous carbon plate (separator 3) is provided outside the electrode substrate 1, and the reaction gas diffuses from the rib grooves provided in the separator 3 through the inside of the electrode substrate 1 to the catalyst layer 2. An electrode reaction occurs at the interface of the catalyst layer 2 where the platinum catalyst, phosphoric acid, and the reaction gas come into contact. This ribbed separator type is (1) a thin (eg, about 0.4 mm) electrode substrate 1 is mechanically fragile,
(2) Since the phosphoric acid electrolyte which gradually evolves during operation cannot be stored, there are drawbacks such as a short battery life, and a ribbed electrode type has been developed. That is, as shown in the figure, the separator with ribs has a catalyst layer 2 provided on a flat and thin electrode substrate 1 and a separator 3 provided with rib grooves for gas passages. The diffusion of the reaction gas into the catalyst layer 2 is smooth due to the thinness, and a high-performance cell is obtained. However, since the phosphoric acid cannot be stored, the battery life is short. In the figure, reference numeral 4 denotes an electrolyte layer.

リブ付電極形は第17図に示されているように電極基板
5を2〜2.5mm程度に厚くし、電解質層4に接する面は
平坦のままで、その逆の面に反応ガスを供給するリブ溝
を設けてあるのが特徴である。単電池を積層化する場合
には、ガスの混合防止とガス通路確保のために、0.8mm
程度のガス不透過性の無孔質カーボン板(セパレータ
6)をリブ溝のある面に密着させて使用する。ガス通路
を設けたリブ付電極では、電極基板5がリブ突起部5a、
リブ溝部(ガス通路部)およびこれら両者を所定の間隔
に保持している平坦部5bの三者で構成されている。通
常、平坦部5bにはPTFF等の樹脂で適度な撥水処理を行
い、リブ突起部にのみリン酸を貯蔵している。平坦部の
撥水処理を行わずに電極基板5全部(リブ突起部,平坦
部)にリン酸貯蔵した場合には、反応ガスが平坦部に貯
蔵したリン酸で遮断されて、電極基板5の内部を触媒層
2まで拡散することができなくなる。すなわちガス拡散
不良でセル性能が低くなる。一方、平坦部の撥水処理を
過度に行う場合には、リブ突起部に貯蔵したリン酸が電
極反応場である触媒層2から完全に遮断されて孤立する
ことになる。このようになると、運転中に徐々に発散す
るリン酸をリブ突起部から触媒層2へ移動する貯蔵リン
酸で補充することができなくなり、リン酸貯蔵した効果
がなくなる。電極基板5の平坦部を適度に撥水処理する
ことにより、リブ付電極形はリブ付セパレータ形より電
池寿命の長いセル構成となる。すなわちリブ付電極形は
同図に示されているように、ガス通路用のリブ溝を設け
た電極基板5に触媒層2を設け、平坦なセパレータ6を
積層する。多孔質リブ部5aにはリン酸貯蔵できるので、
リブ付セパレータ形より長寿命となる。しかし多孔質平
坦部5bにはリン酸貯蔵できないので、貯蔵リン酸量に限
界がある。しかも機械強度を確保するために、多孔質平
坦部5bを多孔質リブ部5aと同程度の厚さにしてある。こ
のためセル厚みが厚くなり、反応ガスの拡散不良,内部
電気抵抗の増加、材料コストの上昇になるのである。以
上、リブ付セパレータ形からリブ付電極形へリン酸型燃
料電池のセル構成が変遷した理由を要約したが、現在主
流になつているリブ付電極形にも克服すべき課題は多
い。
In the electrode type with ribs, as shown in FIG. 17, the electrode substrate 5 is thickened to about 2 to 2.5 mm, the surface in contact with the electrolyte layer 4 is kept flat, and the reaction gas is supplied to the opposite surface. The feature is that a rib groove is provided. When stacking cells, use 0.8mm to prevent gas mixing and secure gas passages.
A gas-impermeable nonporous carbon plate (separator 6) is used in close contact with the surface having rib grooves. In a ribbed electrode provided with a gas passage, the electrode substrate 5 has rib projections 5a,
It is composed of a rib groove portion (gas passage portion) and a flat portion 5b which holds both of them at a predetermined interval. Normally, the flat portion 5b is appropriately water-repellent treated with a resin such as PTFF, and phosphoric acid is stored only in the rib protrusions. When phosphoric acid is stored in the entire electrode substrate 5 (rib protrusion, flat portion) without performing the water repellent treatment on the flat portion, the reaction gas is blocked by the phosphoric acid stored in the flat portion, and the electrode substrate 5 The inside cannot be diffused to the catalyst layer 2. That is, cell performance is lowered due to poor gas diffusion. On the other hand, when the water repellent treatment of the flat portion is excessively performed, the phosphoric acid stored in the rib protrusion portion is completely shut off from the catalyst layer 2 which is an electrode reaction field and becomes isolated. In this case, the phosphoric acid gradually escaping during operation cannot be supplemented by the stored phosphoric acid moving from the rib projections to the catalyst layer 2, and the effect of storing phosphoric acid is lost. By appropriately treating the flat portion of the electrode substrate 5 with water repellency, the electrode configuration with ribs has a cell configuration having a longer battery life than the separator configuration with ribs. That is, in the electrode type with ribs, as shown in the figure, a catalyst layer 2 is provided on an electrode substrate 5 provided with rib grooves for gas passages, and a flat separator 6 is laminated. Since phosphoric acid can be stored in the porous rib portion 5a,
Longer service life than ribbed separator type. However, since phosphoric acid cannot be stored in the porous flat portion 5b, the amount of stored phosphoric acid is limited. Moreover, in order to secure mechanical strength, the porous flat portion 5b has a thickness approximately equal to that of the porous rib portion 5a. For this reason, the cell thickness becomes large, which results in poor diffusion of the reaction gas, an increase in internal electric resistance, and an increase in material cost. The above summarizes the reasons why the cell configuration of the phosphoric acid type fuel cell has changed from the ribbed separator type to the ribbed electrode type.

第1の課題は、電池の長寿命化のために貯蔵リン酸量
を多くしようとした場合、リブ突起部だけでは限界があ
ることである。リブ突起部の高さを高くしてリン酸を貯
蔵する容積を多くすると、電極基板が厚くなる欠点があ
る。
A first problem is that there is a limit to the amount of phosphoric acid stored in order to prolong the life of the battery, if only the rib projections are used. Increasing the height of the rib projections to increase the volume for storing phosphoric acid has the disadvantage of increasing the thickness of the electrode substrate.

第2の課題は、電極基板は多孔質カーボンであり機械
的強度が弱いので、電極基板の平坦部を厚くして電却基
板が取扱い中に破損しないような設計で電極寸法が決つ
ていることである。電極基板の取扱いに支障がない限
り、電極基板の厚みは薄い方が望ましい。特に、反応ガ
スが拡散する平坦部の厚みは、薄い方がセル性能が高
い。このガス拡散性の点を比較すると、リブ付電極形の
電極基板の平坦部よりリブ付セパレータ形の電極基板の
方が薄いので、セル性能は高くなる。リブ付電極形では
電極基板の厚み、特に平坦部の厚みを薄くすることが課
題となる。薄いセルを作成すれば、材料コストも低下す
る。リブ付セパレータ形とリブ付電極形との長所を合わ
せた試みとして、例えば特開昭59−154770号公報のよう
に、電解質層の一方側をリブ付電極形の構成とし、他方
側をリブ付セパレータ形の構成としたハイブリツドタイ
プのセル構成も考案されている。セル厚みはリブ付電極
形より薄くなる可能性はあるが、上述の第1の課題に対
しては解決策とはなつていない。
The second problem is that the electrode substrate is made of porous carbon and has low mechanical strength. Therefore, the electrode dimensions are determined by designing the electrode substrate so that the flat portion of the electrode substrate is thick and the electroplated substrate is not damaged during handling. It is. As long as the handling of the electrode substrate is not hindered, it is desirable that the thickness of the electrode substrate be thin. In particular, the thinner the flat portion where the reaction gas diffuses, the higher the cell performance. Comparing the gas diffusivity, the cell performance is higher because the ribbed separator type electrode substrate is thinner than the flat part of the ribbed electrode type electrode substrate. The problem with the ribbed electrode type is to reduce the thickness of the electrode substrate, especially the thickness of the flat portion. Creating thin cells also reduces material costs. As an attempt to combine the advantages of the ribbed separator type and the ribbed electrode type, for example, as disclosed in JP-A-59-154770, one side of the electrolyte layer is configured as a ribbed electrode type, and the other side is provided with a rib. A hybrid type cell configuration having a separator type configuration has also been devised. Although the cell thickness may be smaller than that of the electrode with ribs, it is not a solution to the first problem described above.

また、特開昭60−236460号公報,特開昭60−236461号
公報のように、反応ガス通路を設けた多孔質電極基板を
無孔質カーボン板の両面に一体に焼成・成形して複合電
極とする方法がある。これはリブ付電極形の長所を保持
し、機械強度を中央の無孔質カーボン板で補強する効果
があるので、取扱いが容易になる。しかしセル厚みはリ
ブ付電極形と変わらないので、上述の第1,第2の課題の
解決策とはなつていない。リブ付電極形の欠点を克服す
るためには、新しいセル構成が必要である。第1,第2の
課題を同時に解決した長寿命・高性能のセル構成とし、
かつその製造コストは従来のリブ付電極と同等または同
等以下にする必要がある。リン酸型燃料電池の従来のリ
ブ付セパレータ形とリブ付電極形とでは不十分であつた
長寿命・高性能化,低コスト化を達成するための方策が
上述のように、ハイブリツドタイプも複合電極も配慮さ
れていなかつた。
Further, as disclosed in JP-A-60-236460 and JP-A-60-236461, a porous electrode substrate provided with a reaction gas passage is integrally fired and molded on both sides of a nonporous carbon plate to form a composite. There is a method using electrodes. This retains the advantages of the ribbed electrode type and has the effect of reinforcing the mechanical strength with the central non-porous carbon plate, thereby facilitating handling. However, since the cell thickness is not different from that of the electrode with ribs, it is not a solution to the above-described first and second problems. A new cell configuration is needed to overcome the disadvantages of the ribbed electrode type. A long-life, high-performance cell configuration that solves the first and second issues simultaneously,
Moreover, the manufacturing cost must be equal to or less than that of the conventional ribbed electrode. As mentioned above, measures to achieve long life, high performance, and low cost, which were insufficient with the conventional ribbed separator type and ribbed electrode type of the phosphoric acid type fuel cell, are also described above. The electrodes were not considered.

また、リブ付セパレータ単品の改良例として特開昭58
−119163号公報のように、無孔質カーボン板の表面にカ
ーボンペーパを基板とした多孔質帯状片を貼合せて反応
ガス通路を確保する方法もある。しかし中央の無孔質カ
ーボンに使用されているバインダとは別のバインダでカ
ーボンペーパ積層体を両面に形成した場合は、カーボン
ペーパの層間およびカーボンペーパと無孔質カーボン板
との界面で剥離し易い、また、無孔質カーボン板の製作
工程のあとでカーボンペーパを接着加熱する工程が必要
となるので、製造コストの上昇にもなる。
In addition, as an example of an improved rib-only separator, see Japanese Unexamined Patent Publication No.
As disclosed in JP-A-119163, there is also a method in which a porous strip having carbon paper as a substrate is attached to the surface of a nonporous carbon plate to secure a reaction gas passage. However, if the carbon paper laminate is formed on both sides with a binder different from the binder used for the non-porous carbon in the center, it is peeled off between the carbon paper layers and at the interface between the carbon paper and the non-porous carbon plate. Further, since a step of bonding and heating the carbon paper is required after the step of manufacturing the nonporous carbon plate, the production cost is increased.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

リン酸型燃料電池で従来のリブ付セパレータ形とリブ
付電極形とは高性能・長寿命の点について不十分であ
る。その後に考案されたハイブリツドタイプ,複合電極
のセル構成でもセル厚みを薄くして、かつ高性能・長寿
命化を達成する点について配慮されておらず、従来のリ
ブ付電極形と同程度のリン酸しか貯蔵できない等の問題
点があつた。
In a phosphoric acid fuel cell, the conventional ribbed separator type and ribbed electrode type are insufficient in terms of high performance and long life. Even the cell structure of the hybrid type and the composite electrode, which was devised after that, did not consider thinning the cell and achieving high performance and long life. There was a problem that only acids could be stored.

本発明は以上の点に鑑みなされたものであり、リブ付
電極形に比較して高性能・長寿命で、かつ製作容易にし
て製作工数の低減が図られ、かつ機械的にも堅牢となる
この種リン酸型燃料電池の製造方法を提供することを目
的とするものである。
The present invention has been made in view of the above points, and has higher performance and longer life than a ribbed electrode type, and can be manufactured easily to reduce the number of manufacturing steps, and is mechanically robust. It is an object of the present invention to provide a method for producing such a phosphoric acid type fuel cell.

〔課題を解決するための手段〕[Means for solving the problem]

すなわち本発明は、電解質水溶液を保持したマトリッ
クスと、このマトリックスの両面に配置された触媒層
と、この触媒層の外側に接して設けられ、かつ反応ガス
通路を有するセパレータとを備えたリン酸型燃料電池の
製造方法において、前記反応ガス通路を有するセパレー
タを形成するに際し、未硬化状態の樹脂分を含む無孔質
カーボン板の表面に、カーボン粉またはカーボン繊維を
用いて3次元的にランダムに分布した気孔を有し、かつ
未硬化状態の樹脂分を含む多孔質カーボン板を、両者樹
脂が未硬化の状態で密着積層し、この状態で前記多孔質
カーボン板の表面に反応ガス通路となる溝の加工を行な
い、この反応ガス通路の加工後、積層されている前記無
孔質カーボン板と前記多孔質カーボン板とを焼成・炭化
してセパレータを形成するようにし所期の目的を達成す
るようにしたものである。
That is, the present invention provides a phosphoric acid type comprising a matrix holding an aqueous electrolyte solution, catalyst layers disposed on both sides of the matrix, and a separator provided in contact with the outside of the catalyst layer and having a reaction gas passage. In the fuel cell manufacturing method, when forming the separator having the reaction gas passage, the surface of the non-porous carbon plate containing the uncured resin component is randomly three-dimensionally formed using carbon powder or carbon fiber. A porous carbon plate having distributed pores and containing a resin component in an uncured state is closely adhered and laminated in a state where both resins are in an uncured state. In this state, a reactive gas passage is formed on the surface of the porous carbon plate. After processing the grooves and processing the reaction gas passages, the laminated non-porous carbon plate and the porous carbon plate are fired and carbonized to form a separator. It is obtained so as to achieve the desired object to so that.

またこの場合、前記無孔質カーボン板のバインダと前
記多孔質カーボン板のバインダとを同一材質の樹脂とし
たものである。
In this case, the binder of the non-porous carbon plate and the binder of the porous carbon plate are made of the same resin.

〔作用〕[Action]

すなわちこのようなリン酸型燃料電池の製造方法であ
ると、前記反応ガス通路を有するセパレータを形成する
に際し、未硬化状態の樹脂分を含む無孔質カーボン板の
表面に、4硬化状態の樹脂分を含む多孔質カーボン板
を、両者樹脂が未硬化の状態で密着積層し、この状態で
多孔質カーボン板の表面に反応ガス通路となる溝の加工
を行なうようにしていることから、多孔質カーボン板が
薄いものであっても無孔質カーボン板に補強された状態
で加工が行なわれることから、その加工作業は容易なも
のとなる。すなわち、一般に薄い多孔質カーボン板であ
ると、軟弱であることから、機械加工時には切削できる
だけの形に何等かの方法で保持しておかなければなら
ず、その作業にはいらぬ神経を費やすことになり、その
作業は難しいものとなるが、本発明の製造方法である
と、その加工作業は容易なものとなるのである。また、
従来電池の小型化を図るためにできるだけこの種のセパ
レータは薄いものとしたかったが、機械加工のこともあ
り、有る程度の厚みを有するものとしていたが、本発明
のものではこの機械加工のことを考慮することなく薄い
セパレータとすることができるのである。
That is, according to such a method for manufacturing a phosphoric acid type fuel cell, when forming the separator having the reaction gas passage, the surface of the non-porous carbon plate containing the uncured resin component is coated on the surface of the four-cured resin. The porous carbon plate containing the components is tightly laminated in a state where both resins are uncured, and in this state, the grooves serving as the reaction gas passages are formed on the surface of the porous carbon plate. Even if the carbon plate is thin, the processing is performed in a state of being reinforced by the non-porous carbon plate, so that the processing operation is easy. In other words, in general, a thin porous carbon plate is soft, so it must be held in a form that can be cut at the time of machining in some way. That is, the work becomes difficult, but the manufacturing method according to the present invention makes the processing work easy. Also,
Conventionally, this type of separator was intended to be as thin as possible in order to reduce the size of the battery.However, the separator was sometimes machined and had a certain degree of thickness. Therefore, a thin separator can be obtained without considering the above.

また本発明は、未硬化状態の樹脂分を含む無孔質カー
ボン板の表面に、未硬化状態の樹脂分を含む多孔質カー
ボン板を、両者樹脂が未硬化の状態で密着積層し、そし
て反応ガス通路となる溝の加工後に、焼成・炭化してセ
パレータを形成するようにしているので、無孔質カーボ
ン板と多孔質カーボン板とは同じ時点で硬化されるの
で、両者間にその硬化の際に生ずる収縮歪や残留応力が
生ずることもなく機械的に堅牢なものとすることができ
るのである。
The present invention also provides a porous carbon plate containing an uncured resin component on the surface of a non-porous carbon plate containing an uncured resin component, in which the two resins are adhered and laminated in an uncured state, and the reaction is carried out. Since the separator is formed by calcining and carbonizing after processing the groove to be the gas passage, the non-porous carbon plate and the porous carbon plate are cured at the same point in time, so that the It can be made mechanically robust without any shrinkage strain or residual stress generated at that time.

また単電池がこのような複合セパレータで形成される
ので、従つて複合セパレータの無孔質カーボン板が反応
ガスのガスセパレータの機能と、多孔質のガス通路を形
成する多孔質部を支持する機能とを果すようになつて、
従来のリブ付電極形に比べてその部品点数が低減できる
ようになり、製作工数が低減できるのみならず、多孔質
部と無孔質カーボン板とが一体に積層されるので、これ
ら多孔質部と無孔質カーボン板との接触抵抗がなくな
り、リブ付電極形に比べ性能を向上することができる。
そして複合セパレータの多孔質部にはリン酸を従来のリ
ブ付電極形より多く貯蔵できるようになつて、リブ付電
極形より寿命を長くすることができる。また、複合セパ
レータは未硬化の樹脂分を含む無孔質カーボン板と未硬
化の樹脂分を含む多孔質カーボン板とが一体に積層さ
れ、次いで反応ガス通路の加工を行ってから焼成・炭化
される。このようにして製造されるので、製作工数を従
来のリブ付電極形のセパレータ、すなわち無孔質平板セ
パレータと同一にすることができる。
Further, since the unit cell is formed of such a composite separator, the non-porous carbon plate of the composite separator accordingly has a function of a gas separator of a reactive gas and a function of supporting a porous portion forming a porous gas passage. So that
Compared with the conventional ribbed electrode type, the number of parts can be reduced, and not only the number of manufacturing steps can be reduced, but also since the porous portion and the non-porous carbon plate are integrally laminated, these porous portions The contact resistance between the electrode and the non-porous carbon plate is eliminated, and the performance can be improved as compared with the electrode type with ribs.
Further, phosphoric acid can be stored in the porous portion of the composite separator in a larger amount than in the conventional electrode with ribs, so that the life can be made longer than in the electrode with ribs. In addition, the composite separator is formed by integrally laminating a non-porous carbon plate containing an uncured resin component and a porous carbon plate containing an uncured resin component, and then calcining and carbonizing after processing the reaction gas passage. You. Since it is manufactured in this manner, the number of manufacturing steps can be made the same as that of a conventional electrode-type separator with ribs, that is, a nonporous flat plate separator.

すなわちリブ付電極形の構成部材について燃料電池と
しての機能を種々検討した結果、反応ガスが拡散して通
過する電極基板の平坦部分は表面にリブ突起部を保持す
るための支持材としての機能しか有していないことに気
づいた。多孔質のリブ突起部はリン酸電解質を貯蔵する
ために必要であり、リブ溝部も反応ガス通路として不可
欠である。しかし残りの平坦部分は反応ガス通路のリブ
突起部を所定間隔で保持するための支持材でしかない。
しかも電極基板は多孔質カーボンで機械的強度が小さく
脆いため、リブ溝加工・セル組立等で破損しないよう
に、厚板を使用している。電極基板でリブ突起部を支持
している平坦部分は、リブ突起部とほぼ同等の厚みであ
る。
In other words, as a result of various studies on the function of the ribbed electrode type component as a fuel cell, the flat portion of the electrode substrate through which the reaction gas diffuses and passes only functions as a support material for holding the rib projection on the surface. I noticed that I didn't have it. The porous rib projection is necessary for storing the phosphoric acid electrolyte, and the rib groove is also indispensable as a reaction gas passage. However, the remaining flat portion is only a support for holding the rib projections of the reaction gas passage at a predetermined interval.
Moreover, since the electrode substrate is made of porous carbon and has low mechanical strength and is brittle, a thick plate is used so as not to be damaged by rib groove processing, cell assembly and the like. The flat portion supporting the rib projection on the electrode substrate has a thickness substantially equal to that of the rib projection.

電極基板の平坦部を省略して無孔質カーボン板と一体
に多孔質リブ突起部を積層した複合セパレータにすれ
ば、セル厚みは大幅に薄くできる。しかもガス不透過性
を要求される無孔質カーボン板は緻密な構造となつてい
るので、電極基板より機械的強度が大きく、取扱いが容
易である。
By omitting the flat portion of the electrode substrate and forming a composite separator in which the porous rib protrusions are laminated integrally with the non-porous carbon plate, the cell thickness can be greatly reduced. In addition, since the nonporous carbon plate requiring gas impermeability has a dense structure, it has higher mechanical strength than the electrode substrate and is easy to handle.

このような複合セパレータを製作する場合に、従来の
平坦な無孔質セパレータの後工程で多孔質部を形成する
方法は、製作工数の増加になるので採用できない。特
に、焼成・炭化(約1000〜2000℃)の工程を1回ですま
せることが製作工程の増加を抑制する大きな要因であ
る。
In manufacturing such a composite separator, a method of forming a porous portion in a post-process of a conventional flat nonporous separator cannot be adopted because the number of manufacturing steps increases. In particular, a single firing / carbonization (about 1000 to 2000 ° C.) process is a major factor in suppressing an increase in the number of manufacturing processes.

そこで無孔質平板セパレータの従来の製作工程を一部
変更するのみで、表面に多孔質のリブ突起部を設けるよ
うにした。更に多孔質部と無孔質カーボン板とを強固に
一体形成するためには、多孔質部の基材としてカーボン
ファイバー,カーボンフイラー,カーボンパウダ等を用
いることと、多孔質部のバインダ,無孔質カーボン板の
バインダおよびこれら両者の界面のバインダを同一材質
のものとすることが必要である。このような基材を使用
すると、例えばカーボンフイラーが3次元的にランダム
に配向して多孔質部を形成するので、応力集中が発生せ
ずに強固に無孔質板と一体化する。カーボンペーパのよ
うに2次元配向した基材で多孔質部を形成すると、カー
ボンペーパ積層体の層間および無孔質カーボン板との界
面に応力集中が生じて剥離し易い。また、無孔質カーボ
ン板と多孔質カーボン板とを、未硬化の樹脂を含むグリ
ーンシートの状態で貼合せて加熱硬化したので、無孔質
カーボン板と多孔質カーボン板との界面で重縮合反応を
起こして、両者は強固に一体化される。更に、両者のバ
インダに同一材質の樹脂を使用するようにしたので、両
者を連続的に接合できる。樹脂としては、例えばフエノ
ール樹脂,フラン樹脂,ポリイミド樹脂等が使用され
る。
Therefore, the porous rib protrusions are provided on the surface by only partially changing the conventional manufacturing process of the nonporous flat plate separator. Furthermore, in order to form the porous portion and the non-porous carbon plate firmly and integrally, it is necessary to use carbon fiber, carbon filler, carbon powder or the like as a base material of the porous portion, and to use a binder and a non-porous material of the porous portion. It is necessary that the binder of the high quality carbon plate and the binder at the interface between them both be of the same material. When such a base material is used, for example, a carbon filler is three-dimensionally orientated randomly to form a porous portion, so that it is firmly integrated with the nonporous plate without generating stress concentration. When the porous portion is formed of a two-dimensionally oriented base material such as carbon paper, stress concentration occurs between the layers of the carbon paper laminate and at the interface with the non-porous carbon plate, so that the porous portion is easily separated. In addition, since the non-porous carbon plate and the porous carbon plate were bonded together in the state of a green sheet containing uncured resin and then cured by heating, polycondensation occurred at the interface between the non-porous carbon plate and the porous carbon plate. A reaction occurs, and the two are firmly integrated. Further, since the same material resin is used for both of the binders, both can be continuously joined. As the resin, for example, a phenol resin, a furan resin, a polyimide resin, or the like is used.

〔実施例〕〔Example〕

以下、図示した実施例に基づいて本発明を説明する。
第1図から第3図には本発明の一実施例が示されてい
る。なお従来と同じ部品には同じ符号を付したので説明
を省略する。触媒層2および電解質水溶液を保持するマ
トリツクスすなわち電解質層4を備えた単電池を有する
リン酸型燃料電池で、本実施例では単電池を、電解質層
4、この電解質層4の前後に設けた触媒層2およびこの
触媒層2の外側に夫々接して設け、かつガス不透過性の
無孔質カーボン板7の表面に一体に、カーボン粉または
カーボン繊維を用いて3次元的にランダムに分布した気
孔を有し、かつ反応ガス通路を設けた多孔質部8を持つ
た複合セパレータ9で形成した。そして複合セパレータ
9を第4図に示されているように、未硬化の樹脂分を含
む無孔質カーボン板と未硬化の樹脂分を含む多孔質カー
ボン板とを一体に積層し、次いで反応ガス通路の加工を
行つてから焼成・炭化して作成した。このようにするこ
とによりリブ付電極形に比較して高性能・長寿命で、か
つ製作工数が低減するようになつて、リブ付電極形に比
較して高性能・長寿命で、かつ製作工数の低減を可能と
したリン酸型燃料電池およびその製造方法を得ることが
できる。
Hereinafter, the present invention will be described based on the illustrated embodiments.
1 to 3 show one embodiment of the present invention. The same parts as those in the related art are denoted by the same reference numerals, and the description thereof will be omitted. This is a phosphoric acid type fuel cell having a unit cell provided with a matrix holding the catalyst layer 2 and the aqueous electrolyte solution, that is, an electrolyte layer 4. In this embodiment, the unit cell is provided with the electrolyte layer 4, a catalyst provided before and after the electrolyte layer 4. The pores which are provided in contact with the layer 2 and the outside of the catalyst layer 2 and which are randomly distributed three-dimensionally using carbon powder or carbon fiber integrally with the surface of the gas-impermeable nonporous carbon plate 7. And a composite separator 9 having a porous portion 8 provided with a reaction gas passage. Then, as shown in FIG. 4, the composite separator 9 is integrally laminated with a nonporous carbon plate containing an uncured resin component and a porous carbon plate containing an uncured resin component, and then reacting gas. After the passage was processed, it was made by firing and carbonizing. By doing so, it has higher performance and longer life than the electrode type with ribs, and the manufacturing man-hour is reduced. And a method of manufacturing the same, which can reduce the amount of phosphoric acid.

すなわち複合セパレータ9は無孔質カーボン板7とそ
の表面に一体形成された多孔質部8で構成される。端部
10は本実施例では無孔質部とした。このようにすること
により無孔質カーボン板7が反応ガスのガスセパレータ
の機能と多孔質部8を支持する機能とを兼用する。この
ような複合セパレータ9を使用すれば、リブ付電極形の
電極基板を使用しないで燃料電池が構成できる。従つて
使用するカーボン材料を低減し、部品点数を少なくする
ことができ、製作工数(材料コスト等)が低減できる。
またこの複合セパレータ9は多孔質部8と無孔質カーボ
ン板7とが一体に積層・形成されるので、これら多孔質
部8と無孔質カーボン板7との間の接触抵抗がなくな
り、電池性能が向上する。また端部10には無孔質カーボ
ンを使用することにより、端部10を貫通するガスリーク
は無視できるようになる。そしてまた、多孔質部8を多
孔質リブ部8a,多孔質平坦部8bで構成し、多孔質リブ部8
aが多孔質平坦部8bを介して無孔質カーボン板7の表面
で連続しているので、このように多孔質平坦部8bを設け
ると、多孔質平坦部8bにもリン酸貯蔵ができるようにな
る。多孔質平坦部8bにリン酸貯蔵しても反応ガスの拡散
を妨害しないので、原理的には無制限にリン酸貯蔵でき
る。更に多孔質リブ部8aが連続しているので、多孔質部
8でのリン酸の偏在がなく、貯蔵したリン酸は均一に分
散する。更に多孔質平坦部8bにリン酸を貯蔵すること
で、複合セパレータ9を薄くできるのみならず、多孔質
部8の機械強度が弱くても無孔質カーボン板7と一体化
しているので、取扱いが容易である。従つてこのような
複合セパレータ9を使用したリン酸型燃料電池は、上述
のように複合セパレータ9の多孔質リブ部8aだけでな
く、多孔質平坦部8bにもリン酸が貯蔵できるようになつ
て、多量のリン酸が貯蔵できるようになり、長寿命とな
る。
That is, the composite separator 9 includes the nonporous carbon plate 7 and the porous portion 8 integrally formed on the surface thereof. edge
Reference numeral 10 denotes a nonporous portion in this example. By doing so, the non-porous carbon plate 7 has both the function of the gas separator for the reactive gas and the function of supporting the porous portion 8. If such a composite separator 9 is used, a fuel cell can be configured without using an electrode substrate of the electrode type with ribs. Accordingly, the carbon material used can be reduced, the number of parts can be reduced, and the number of manufacturing steps (material cost, etc.) can be reduced.
Further, in the composite separator 9, since the porous portion 8 and the non-porous carbon plate 7 are integrally laminated and formed, contact resistance between the porous portion 8 and the non-porous carbon plate 7 is eliminated, and Performance is improved. Further, by using non-porous carbon for the end portion 10, gas leak penetrating the end portion 10 can be ignored. Further, the porous portion 8 is constituted by a porous rib portion 8a and a porous flat portion 8b.
Since a is continuous on the surface of the nonporous carbon plate 7 via the porous flat portion 8b, when the porous flat portion 8b is provided in this manner, phosphoric acid can be stored in the porous flat portion 8b. become. Even if phosphoric acid is stored in the porous flat portion 8b, the diffusion of the reaction gas is not hindered, so that in principle, phosphoric acid can be stored indefinitely. Further, since the porous rib portions 8a are continuous, there is no uneven distribution of phosphoric acid in the porous portion 8, and the stored phosphoric acid is uniformly dispersed. Further, by storing phosphoric acid in the porous flat portion 8b, not only can the composite separator 9 be made thinner, but even if the mechanical strength of the porous portion 8 is weak, it is integrated with the non-porous carbon plate 7, so that Is easy. Therefore, the phosphoric acid type fuel cell using such a composite separator 9 can store phosphoric acid not only in the porous rib portion 8a of the composite separator 9 but also in the porous flat portion 8b as described above. Therefore, a large amount of phosphoric acid can be stored, and the life is extended.

このような特性を有する複合セパレータ9は第4図に
示す工程で製作した。バインダとカーボン基材とを配合
して多孔質カーボン板となるグリーンシートNo.1と無孔
質カーボン板となるグリーンシートNo.2とをまず製造す
る。このグリーンシートNo.1とNo.2とを、第5図に示さ
れているように適度に加圧して貼合せる。これを半硬化
の状態まで加熱硬化させ、次いで反応ガス通路のリブ溝
を加工する。リブ溝加工後に焼成・炭化を行つた。この
ようにすることにより焼成・炭化は1回で複合セパレー
タが製造できるので、製作が容易となり、製造コストは
従来の無孔質平板セパレータとほぼ同じとなる。
The composite separator 9 having such characteristics was manufactured by a process shown in FIG. First, a green sheet No. 1 serving as a porous carbon plate and a green sheet No. 2 serving as a non-porous carbon plate are manufactured by blending a binder and a carbon base material. The green sheets No. 1 and No. 2 are bonded by applying an appropriate pressure as shown in FIG. This is heat-cured to a semi-cured state, and then the rib groove of the reaction gas passage is machined. After the rib groove processing, firing and carbonization were performed. By doing so, the composite separator can be manufactured in a single firing and carbonization step, so that the manufacturing is easy and the manufacturing cost is almost the same as that of a conventional nonporous flat plate separator.

この複合セパレータの製造に際してグリーンシートN
o.1とNo.2とは同一材質の樹脂をバインダとして使用し
たので、強固に一体化される。なお、本実施例では機械
加工でリブ溝加工したが、加工方法は特に規定しない。
このリブ溝加工を焼成・炭化後に実施することも考えら
れるが、焼成・炭化後ではバインダの硬化が進行して加
工が困難になるので、焼成・炭化前に行うのが望まし
い。
When manufacturing this composite separator, Green Sheet N
Since o.1 and No.2 use the same resin as the binder, they are firmly integrated. In this embodiment, the rib grooves are machined, but the machining method is not particularly limited.
It is conceivable that the rib groove processing is performed after firing and carbonization, but after the firing and carbonization, the hardening of the binder progresses and processing becomes difficult. Therefore, it is desirable to perform the processing before firing and carbonization.

このように本実施例によれば無孔質カーボン板に多孔
質部を一体形成した複合セパレータを容易(安価)に製
作できる。この複合セパレータを用いて構成したリン酸
型燃料電池は次に述べるような効果を奏することができ
る。
As described above, according to this embodiment, a composite separator in which a porous portion is integrally formed on a nonporous carbon plate can be easily (inexpensively) manufactured. The phosphoric acid type fuel cell constituted by using this composite separator can provide the following effects.

(1)多孔質リブ部にリン酸貯蔵でき、更に多孔質平坦
部にもリン酸貯蔵できるので、長寿命セルが構成でき
る。
(1) Since phosphoric acid can be stored in the porous rib portion and phosphoric acid can be stored in the porous flat portion, a long-life cell can be configured.

(2)多孔質部と無孔質カーボン板とが強固に一体形成
されるので、接触抵抗による内部損失がなく、セル性能
が向上する。
(2) Since the porous portion and the nonporous carbon plate are firmly and integrally formed, there is no internal loss due to contact resistance, and the cell performance is improved.

(3)反応ガスの触媒層への拡散経路に電極基板がない
ので、ガス拡散を妨害する要因がなく、セル性能が向上
する。
(3) Since there is no electrode substrate in the diffusion path of the reaction gas to the catalyst layer, there is no factor that hinders gas diffusion, and the cell performance is improved.

(4)機械強度の大きい無孔質カーボン板に強固に多孔
質部が一体形成されているので、従来の無孔質平板セパ
レータと同等の作業性を有し、取扱いが容易である。
(4) Since the porous portion is firmly formed integrally with the non-porous carbon plate having high mechanical strength, it has the same workability as a conventional non-porous flat plate separator and is easy to handle.

(5)無孔質平板セパレータの従来の製造工程を一部変
更して焼成・炭化を1回で製造する方法なので、製造コ
ストは従来とほぼ同じである。
(5) Since the conventional manufacturing process of the nonporous flat plate separator is partially changed and the firing and carbonization are manufactured in a single operation, the manufacturing cost is almost the same as the conventional one.

なお本実施例の複合セパレータによるリン酸型燃料電
池のセル構成では、触媒層が次に述べる機能を具備する
必要がある。
In the cell configuration of the phosphoric acid fuel cell using the composite separator according to the present embodiment, the catalyst layer needs to have the following functions.

(1)触媒層自身がシート状の構成となり、セル積層時
にリブ溝を閉塞しないように、機械強度が必要である。
(1) The catalyst layer itself has a sheet-like configuration and needs to have a mechanical strength so as not to close the rib groove when the cells are stacked.

(2)触媒層に適度の撥水処理を施して、多孔質部から
触媒層に補充されるリン酸の量を調整する必要がある。
(2) It is necessary to adjust the amount of phosphoric acid replenished from the porous portion to the catalyst layer by subjecting the catalyst layer to an appropriate water-repellent treatment.

なお本実施例では多孔質部8へのリン酸貯蔵量を反応
ガスの性質に応じ実質的に増量させることができるが、
それを次に説明する。すなわち上述の第3図に示されて
いるように複合セパレータ9の一方の面には燃料ガス、
他方の面には酸化剤ガスが供給されているが、燃料ガス
の主成分である水素は非常に拡散性がよく、また比重が
非常に小さいためガス通路を通る時の圧力損失が酸化剤
ガス側に比べて非常に小さい(約1/3〜1/5)。従つて燃
料ガス側においてはガス通路の数を少なくするか、ガス
通路の幅を狭くするかして多孔質リブ部8aの体積を増加
させ、これによつてリン酸貯蔵量を実質的に増量するこ
とができる。本発明者等の実験によれば複合セパレータ
9をガス通路の幅と多孔質リブ部8aの幅との比率を酸化
剤ガス側では1:1,燃料ガス側では1:7となるよう加工す
れば、燃料電池はその性能を損うことなく、リン酸貯蔵
量を約30%増量できた。
In this embodiment, the amount of phosphoric acid stored in the porous portion 8 can be substantially increased according to the properties of the reaction gas.
It will be described next. That is, as shown in FIG. 3 described above, the fuel gas,
Oxidant gas is supplied to the other surface, but hydrogen, which is the main component of the fuel gas, has a very good diffusivity, and the specific gravity is very small. Very small compared to the side (about 1/3 to 1/5). Accordingly, on the fuel gas side, the number of gas passages or the width of the gas passages is reduced to increase the volume of the porous rib portion 8a, thereby substantially increasing the phosphoric acid storage amount. can do. According to the experiments conducted by the present inventors, the composite separator 9 was machined so that the ratio of the width of the gas passage to the width of the porous rib portion 8a was 1: 1 on the oxidizing gas side and 1: 7 on the fuel gas side. For example, the fuel cell could increase its phosphate storage capacity by about 30% without compromising its performance.

なお、好適な比率の範囲は1:10以内であることも実験
的に確認できた。
In addition, it was experimentally confirmed that a preferable range of the ratio was within 1:10.

第6図には本発明の他の実施例が示されている。本実
施例では複合セパレータ9aを次のように構成した。端部
10を無孔質部とし、多孔質部8を多孔質リブ部8aで形成
した。このようにすることにより無孔質カーボン板7が
反応ガスのガスセパレータの機能と多孔質リブ部8aを支
持する機能とを兼用するようになつて、この複合セパレ
ータ9aを使用すれば、リブ付電極形の電極基板を使用せ
ずに燃料電池が構成できるようになり、前述の場合と同
様な作用効果を奏することができる。
FIG. 6 shows another embodiment of the present invention. In this embodiment, the composite separator 9a is configured as follows. edge
10 was a non-porous portion, and the porous portion 8 was formed by a porous rib portion 8a. By doing so, the non-porous carbon plate 7 has both the function of the gas separator of the reactive gas and the function of supporting the porous rib portion 8a. If this composite separator 9a is used, A fuel cell can be configured without using an electrode-type electrode substrate, and the same operation and effect as those described above can be achieved.

なおこの場合、複合セパレータ9aの製造方法は前述の
場合と同じである。
Note that, in this case, the method of manufacturing the composite separator 9a is the same as that described above.

また、この実施例においても上述のように、ガス通路
特に、燃料ガス側のガス通路の数あるいは幅を小さくし
てリン酸貯蔵量を増加させることが有効であり、上述の
第1図〜第3図の実施例に比べ多孔質平坦部がないた
め、セル厚みが前述の場合より小さくなる効果がある。
Also in this embodiment, as described above, it is effective to increase the phosphoric acid storage amount by reducing the number or width of the gas passages, in particular, the gas passages on the fuel gas side. Since there is no porous flat portion as compared with the embodiment of FIG. 3, there is an effect that the cell thickness becomes smaller than in the above-described case.

第7図から第9図には本発明の更に他の実施例が示さ
れている。本実施例は複合セパレータ9bの端部10を無孔
質部、多孔質部8を多孔質部リブ部8aとし、更に多孔質
リブ部8aのガス入口,出口部を、無孔質カーボン板7の
反対側の端部幅と同じ幅のみ、無孔質リブ部11とした。
このようにすることにより多孔質部(多孔質カーボン)
8と無孔質カーボン板(無孔質部)7との熱膨張率の差
によつて生じる応力を抑制することができるようになつ
て、前述の場合よりも複合セパレータ9bの多孔質部8と
無孔質カーボン板7との剥離防止の効果を奏することが
できる。
7 to 9 show still another embodiment of the present invention. In this embodiment, the end portion 10 of the composite separator 9b is a nonporous portion, the porous portion 8 is a porous rib portion 8a, and the gas inlet and outlet of the porous rib portion 8a are connected to a nonporous carbon plate 7a. Only the same width as the end width on the opposite side was used as the nonporous rib portion 11.
By doing so, the porous portion (porous carbon)
8 and the non-porous carbon plate (non-porous portion) 7 can suppress the stress caused by the difference in the coefficient of thermal expansion between the porous portion 8 and the porous portion 8 of the composite separator 9b. And the non-porous carbon plate 7 can be prevented from peeling off.

すなわち上述の他の実施例では多孔質部の気孔径を10
μ以上にして大形サイズの複合セパレータを試作する
と、リブ溝加工の工程でガス入口,出口部が剥離するこ
とがあつた。原因を詳細に検討した結果、多孔質部の気
孔径を10μ以上にして更に気孔率を大きくすると、無孔
質カーボン板と多孔質部との熱膨張率の差が大きくなつ
て、中央の無孔質カーボン板に対して両面が同質材料に
なつていない多孔質リブ部のガス入口,出口部に、半硬
化の工程で応力が集中して剥離し易いことが判明した。
第7図で有効電極面積となる中央の多孔質リブ部8aは、
リン酸電解質を貯蔵する目的で多孔質である必要がある
が、ガス入口,出口部は無孔質でも問題ない。そこで本
実施例ではガス入口,出口部を無孔質リブ部11としたの
である。
That is, in the other embodiments described above, the pore diameter of the porous portion is set to 10
When a large-sized composite separator was prototyped with a size of μ or more, the gas inlet and outlet parts sometimes peeled off during the rib groove processing process. As a result of detailed investigation of the cause, if the porosity is further increased by increasing the pore diameter of the porous portion to 10 μ or more, the difference in the thermal expansion coefficient between the nonporous carbon plate and the porous portion increases, and It has been found that stress is concentrated in the semi-hardening process at the gas inlet and outlet portions of the porous rib portion whose both surfaces are not made of the same material with respect to the porous carbon plate, and the porous rib portion is easily peeled off.
The central porous rib portion 8a which is the effective electrode area in FIG.
It is necessary to be porous for the purpose of storing the phosphoric acid electrolyte, but there is no problem if the gas inlet and outlet are nonporous. Therefore, in the present embodiment, the gas inlet and outlet portions are formed as non-porous rib portions 11.

この複合セパレータ9bは上述の第4図の製作工程で、
第10図に示されているように無孔質カーボン板7と多孔
質部8,無孔質リブ部11,端部10等とを貼合せ、半硬化し
て製造した。このような構成にすれば中央の無孔質カー
ボン板7に対して両面が同質材料であるので、気孔径を
大きく、気孔率を大きくしても剥離しなかつた。また、
同図に示されているように貼合せる工程で、端部10,多
孔質部8,無孔質リブ部11の間は密着させる必要はなく、
ある程度の隙間が生じても反応ガスの均一な流れを乱さ
ない限り問題がないので、製作が容易である。
This composite separator 9b is manufactured in the manufacturing process of FIG.
As shown in FIG. 10, a non-porous carbon plate 7 was bonded to a porous portion 8, a non-porous rib portion 11, an end portion 10 and the like, and semi-cured to produce a non-porous carbon plate. With such a configuration, since both surfaces are made of the same material with respect to the central nonporous carbon plate 7, peeling was not performed even if the pore diameter was large and the porosity was large. Also,
In the bonding step as shown in the figure, it is not necessary to make the end portion 10, the porous portion 8, and the non-porous rib portion 11 adhere to each other,
Since there is no problem even if a certain gap is formed as long as the uniform flow of the reaction gas is not disturbed, the production is easy.

このように複合セパレータ9bを構成すれば応力集中し
なくなり、一体化する多孔質部8の物性(気孔径,気孔
率等)の制限が緩和される特有の効果を奏することがで
きる。
When the composite separator 9b is configured in this manner, stress is not concentrated, and a unique effect that the limitation on the physical properties (pore diameter, porosity, etc.) of the integrated porous portion 8 is relaxed can be achieved.

第11図から第13図には本発明の更に他の実施例が示さ
れている。本実施例では複合セパレータ9cの多孔質リブ
部8aのガス入口,出口部を、無孔質リブ部11aと一連の
無孔質平坦部12とで形成した。この無孔質平坦部12は端
部10および多孔質リブ部8aと同一平面になるように、厚
み調整した。このようにすると、有効電極面積となる多
孔質リブ部8aの周囲を剛性のある無孔質平坦部12と無孔
質部よりなる端部10とで囲つたことになり、この複合セ
パレータ9cの上下に電極層,電解質層を積層して燃料電
池を構成する場合の界面ガスリークを、前述の場合より
も低減することができる。一方、同図に示されているよ
うに、ガス入口,出口部で反応ガス通路の断面積が減少
することになるが、無孔質平坦部12の幅は端部10の幅と
同じであるから、反応ガスの流れ方向の圧損上昇は僅か
であり、多孔質リブ部8aの厚みは上述の場合と同じであ
つても特に問題はない。
11 to 13 show still another embodiment of the present invention. In this embodiment, the gas inlet and outlet of the porous rib portion 8a of the composite separator 9c are formed by the non-porous rib portion 11a and a series of non-porous flat portions 12. The thickness of the nonporous flat portion 12 was adjusted so as to be flush with the end portion 10 and the porous rib portion 8a. In this manner, the periphery of the porous rib portion 8a, which is an effective electrode area, is surrounded by the rigid nonporous flat portion 12 and the end portion 10 formed of the nonporous portion. The interfacial gas leak when a fuel cell is formed by laminating an electrode layer and an electrolyte layer on the upper and lower sides can be reduced as compared with the case described above. On the other hand, as shown in the figure, the cross-sectional area of the reaction gas passage is reduced at the gas inlet and outlet, but the width of the nonporous flat portion 12 is the same as the width of the end portion 10. Therefore, there is no particular problem even if the pressure loss rise in the flow direction of the reaction gas is slight, and the thickness of the porous rib portion 8a is the same as that described above.

この複合セパレータ9cは第14図に示す工程で製作し
た。すなわち多孔質カーボン板となるようにバインダー
とカーボン基材とを配合したグリーンシートNo.1と、無
孔質カーボン板となるようにバインダとカーボン基材と
を配合したグリーンシートNo.2とを、第15図に示されて
いるように適度に加圧して貼合せる。すなわち無孔質カ
ーボン板7,加工前の一連の無孔質リブ部11a,多孔質部8,
端部10を加圧・貼合せる。次にこれを半硬化の状態まで
加熱硬化させて、反応ガス通路のリブ溝加工を行う。次
に、グリーンシートNo.2を無孔質リブ部11aの上に貼合
せて焼成する。
This composite separator 9c was manufactured by the process shown in FIG. That is, a green sheet No. 1 in which a binder and a carbon substrate are blended to form a porous carbon plate, and a green sheet No. 2 in which a binder and a carbon substrate are blended to form a non-porous carbon plate. Then, as shown in FIG. That is, a non-porous carbon plate 7, a series of non-porous rib portions 11a before processing, a porous portion 8,
The end 10 is pressed and bonded. Next, this is heat-cured to a semi-cured state, and rib grooves are formed in the reaction gas passage. Next, green sheet No. 2 is bonded onto nonporous rib portion 11a and fired.

このように本実施例によれば、上述のように界面ガス
リークを低減した燃料電池が構成できる。
As described above, according to the present embodiment, a fuel cell in which the interfacial gas leak is reduced as described above can be configured.

なお以上の各実施例でリブ溝加工を片面のみ行う場合
も本発明の範囲に入ることは云うまでもない。
Needless to say, the case where the rib groove processing is performed on only one side in each of the above embodiments falls within the scope of the present invention.

なおまた、上述の第1図〜第3図記載の実施例以外の
各実施例で複合セパレータの多孔質リブ部が、上述の第
1図〜第3図記載の実施例のように多孔質平坦部を介し
て無孔質カーボン板の表面で連続している場合も本発明
の範囲である。
In each of the embodiments other than the embodiment shown in FIGS. 1 to 3, the porous rib portion of the composite separator has a porous flat surface as in the embodiment shown in FIGS. 1 to 3. It is also within the scope of the present invention that it is continuous on the surface of the nonporous carbon plate via the portion.

〔発明の効果〕〔The invention's effect〕

以上説明してきたように本発明によれば、通常のリブ
付き電極のものの製造方法に比較して高性能・長寿命
で、かつ製作容易にして製作工数の低減が図られ、さら
に機械的にも堅牢であるこの種のリン酸型燃料電池を得
ることができる。
As described above, according to the present invention, as compared with a method of manufacturing a normal electrode with ribs, high performance, long life, and easy manufacturing can be achieved to reduce the number of manufacturing steps, and further, mechanically. This kind of phosphoric acid fuel cell which is robust can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のリン酸型燃料電池の一実施例の積層セ
ルの側面図、第2図は同じく一実施例の積層セルの断面
図、第3図は同じく一実施例の複合セパレータの斜視
図、第4図は本発明のリン酸型燃料電池の製造方法の一
実施例の複合セパレータ製作の工程図、第5図は同じく
一実施例による貼合せの状態を示す複合セパレータの斜
視図、第6図は本発明のリン酸型燃料電池の他の実施例
の複合セパレータの斜視図、第7図は本発明のリン酸型
燃料電池の更に他の実施例の複合セパレータの斜視図、
第8図は第7図の中央部の断面図、第9図は第7図の右
側面図、第10図は第7図の状態に加工する前の貼合せ状
態を示す複合セパレータの斜視図、第11図は本発明のリ
ン酸型燃料電池の更に他の実施例の複合セパレータの斜
視図、第12図は第11図の中央部の断面図、第13図は第11
図の右側面図、第14図は本発明のリン酸型燃料電池の製
造方法の他の実施例の複合セパレータ製作の工程図、第
15図は第14図の工程により製造した第11図の状態にする
前の貼合せ状態を示す複合セパレータの斜視図、第16図
は従来のリン酸型燃料電池のリブ付セパレータ形の積層
セルの側面図、第17図は従来のリン酸型燃料電池のリブ
付電極形の積層セルの側面図である。 2……触媒層、4……電解質層(電解質水溶液を保持す
るマトリツクス)、7……無孔質カーボン板、8……多
孔質部、8a……多孔質リブ部、8b……多孔質平坦部、9,
9a,9b,9c……複合セパレータ。
1 is a side view of a laminated cell according to one embodiment of the phosphoric acid fuel cell of the present invention, FIG. 2 is a cross-sectional view of the laminated cell according to one embodiment, and FIG. FIG. 4 is a perspective view of a composite separator according to an embodiment of the method for producing a phosphoric acid fuel cell of the present invention, and FIG. 5 is a perspective view of the composite separator showing a state of lamination according to the embodiment. FIG. 6 is a perspective view of a composite separator of another embodiment of the phosphoric acid fuel cell of the present invention, and FIG. 7 is a perspective view of a composite separator of still another embodiment of the phosphoric acid fuel cell of the present invention.
8 is a cross-sectional view of the central part of FIG. 7, FIG. 9 is a right side view of FIG. 7, and FIG. 10 is a perspective view of a composite separator showing a bonded state before being processed into a state of FIG. FIG. 11 is a perspective view of a composite separator according to still another embodiment of the phosphoric acid fuel cell of the present invention, FIG. 12 is a cross-sectional view of the central portion of FIG. 11, and FIG.
FIG. 14 is a right side view of the drawing, and FIG. 14 is a process diagram for producing a composite separator of another embodiment of the method for producing a phosphoric acid fuel cell of the present invention,
FIG. 15 is a perspective view of a composite separator showing the bonded state before the state of FIG. 11 manufactured by the process of FIG. 14, and FIG. 16 is a conventional ribbed separator type laminated cell of a phosphoric acid type fuel cell. FIG. 17 is a side view of a ribbed electrode type laminated cell of a conventional phosphoric acid fuel cell. 2 ... catalyst layer, 4 ... electrolyte layer (matrix holding electrolyte aqueous solution), 7 ... non-porous carbon plate, 8 ... porous part, 8a ... porous rib part, 8b ... porous flat Part 9,
9a, 9b, 9c …… Composite separator.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電解質水溶液を保持したマトリックスと、
このマトリックスの両面に配置された触媒層と、この触
媒層の外側に接して設けられ、かつ反応ガス通路を有す
るセパレータとを備えたリン酸型燃料電池の製造方法に
おいて、 前記反応ガス通路を有するセパレータを形成するに際
し、未硬化状態の樹脂分を含む無孔質カーボン板の表面
に、カーボン粉またはカーボン繊維を用いて3次元的に
ランダムに分布した気孔を有し、かつ未硬化状態の樹脂
分を含む多孔質カーボン板とを、両者樹脂が未硬化の状
態で密着積層し、この状態で前記多孔質カーボン板の表
面に反応ガスが流通する反応ガス通路の加工を行ない、
この反応ガス通路の加工後、積層されている前記無孔質
カーボン板と前記多孔質カーボン板とを焼成・炭化して
セパレータを形成するようにしたことを特徴とするリン
酸型燃料電池の製造方法。
1. A matrix holding an aqueous electrolyte solution,
A method for producing a phosphoric acid type fuel cell, comprising: a catalyst layer disposed on both sides of the matrix; and a separator provided in contact with the outside of the catalyst layer and having a reaction gas passage. When forming the separator, the surface of the non-porous carbon plate containing the resin in the uncured state has pores randomly distributed three-dimensionally using carbon powder or carbon fiber, and the resin in the uncured state And a porous carbon plate containing the components, both resins are closely adhered and laminated in an uncured state, and in this state, processing of a reaction gas passage through which a reaction gas flows on the surface of the porous carbon plate is performed,
After the processing of the reaction gas passage, the laminated non-porous carbon plate and the porous carbon plate are fired and carbonized to form a separator, thereby producing a phosphoric acid type fuel cell. Method.
【請求項2】前記無孔質カーボン板のバインダと前記多
孔質カーボン板のバインダとが同一材質の樹脂である特
許請求の範囲第1項記載のリン酸型燃料電池の製造方
法。
2. The method according to claim 1, wherein the binder of the non-porous carbon plate and the binder of the porous carbon plate are made of the same material.
JP63020705A 1988-01-30 1988-01-30 Method for manufacturing phosphoric acid type fuel cell Expired - Lifetime JP2621901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63020705A JP2621901B2 (en) 1988-01-30 1988-01-30 Method for manufacturing phosphoric acid type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63020705A JP2621901B2 (en) 1988-01-30 1988-01-30 Method for manufacturing phosphoric acid type fuel cell

Publications (2)

Publication Number Publication Date
JPH01197968A JPH01197968A (en) 1989-08-09
JP2621901B2 true JP2621901B2 (en) 1997-06-18

Family

ID=12034559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63020705A Expired - Lifetime JP2621901B2 (en) 1988-01-30 1988-01-30 Method for manufacturing phosphoric acid type fuel cell

Country Status (1)

Country Link
JP (1) JP2621901B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355051A (en) * 1991-05-31 1992-12-09 Oowada Carbon Kogyo Kk Separator for fuel cell
JP3489213B2 (en) * 1994-09-27 2004-01-19 昭和電工株式会社 Composite electrode substrate for fuel cell without separator plate and method for producing the same
JPH09266001A (en) * 1996-03-29 1997-10-07 Sanyo Electric Co Ltd Phosphoric acid fuel cell
JP4587632B2 (en) * 2002-02-07 2010-11-24 三菱鉛筆株式会社 Fuel cell separator and method for producing the same
JP4092965B2 (en) * 2002-07-05 2008-05-28 トヨタ自動車株式会社 Fuel cell vent layer, method for producing the same, and fuel cell having the vent layer
JP2011009147A (en) 2009-06-29 2011-01-13 Tokai Carbon Co Ltd Method for producing fuel cell separator
JP5924444B1 (en) * 2015-10-29 2016-05-25 富士電機株式会社 Phosphoric acid fuel cell and manufacturing method of phosphoric acid fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62154470A (en) * 1985-12-25 1987-07-09 Tokai Carbon Co Ltd Manufacture of carbon member for fuel cell
JPS62180963A (en) * 1986-02-05 1987-08-08 Tokai Carbon Co Ltd Manufacture of carbonaceous member for fuel cell

Also Published As

Publication number Publication date
JPH01197968A (en) 1989-08-09

Similar Documents

Publication Publication Date Title
GB2185247A (en) Electrode substrate for fuel cell
JPS6047702B2 (en) Fuel cell assembly and its manufacturing method
JP2000208153A (en) Solid polymer electrolyte fuel cell
JP2007172929A (en) Method of manufacturing membrane-electrode assembly and reinforced type electrolyte membrane for polymer electrolyte fuel cell, and membrane-electrode assembly and reinforced type electrolyte membrane obtained by the manufacturing method
JP2621901B2 (en) Method for manufacturing phosphoric acid type fuel cell
JP4585310B2 (en) Membrane electrochemical cell stack
US20090239119A1 (en) Electrolyte electrode assembly and method for producing the same
JP2008146928A (en) Gas diffusing electrode for fuel cell and its manufacturing method
WO2008056778A1 (en) Fuel cell and fuel cell manufacturing method
JP5295554B2 (en) Fuel cell and fuel cell separator
JP2004055458A (en) Manufacturing method of fuel cell
JPH08222239A (en) Carbon plate for fuel cell and its manufacture
JPH08138715A (en) Solid polymer fuel cell and manufacture thereof
JP4468678B2 (en) Method for producing solid oxide fuel cell
JP4181339B2 (en) Assembling method of fuel cell
WO2010095728A1 (en) Electrolyte electrode assembly and method for producing the same
US20230147601A1 (en) Gas diffusion member, gas diffusion unit, and fuel cell
JP2013140808A (en) Method for manufacturing gas diffusion electrode for fuel cell
JPS60230366A (en) Stacked unit of fuel cell and its manufacture
JP4253083B2 (en) Gas-impermeable carbon plate for fuel cells
JPS61128467A (en) Manufacture of electrode substrate for fuel cell
JPS61116760A (en) Fuel cell
JPH071697B2 (en) Fuel cell
JPH06260177A (en) Separator for fuel cell with solid highpolymer electrolyte and manufacture thereof
JPH0684526A (en) Separator with rib for fuel cell and its manufacture