JP2621387B2 - Variable power optical system with anti-vibration function - Google Patents

Variable power optical system with anti-vibration function

Info

Publication number
JP2621387B2
JP2621387B2 JP63186536A JP18653688A JP2621387B2 JP 2621387 B2 JP2621387 B2 JP 2621387B2 JP 63186536 A JP63186536 A JP 63186536A JP 18653688 A JP18653688 A JP 18653688A JP 2621387 B2 JP2621387 B2 JP 2621387B2
Authority
JP
Japan
Prior art keywords
lens
optical system
positive
variable power
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63186536A
Other languages
Japanese (ja)
Other versions
JPH0235406A (en
Inventor
章市 山崎
浩二 大泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63186536A priority Critical patent/JP2621387B2/en
Priority to US07/261,231 priority patent/US5270857A/en
Publication of JPH0235406A publication Critical patent/JPH0235406A/en
Application granted granted Critical
Publication of JP2621387B2 publication Critical patent/JP2621387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/16Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group
    • G02B15/177Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective with interdependent non-linearly related movements between one lens or lens group, and another lens or lens group having a negative front lens or group of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143503Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -+-
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は振動による撮影画像のブレを補正する機能、
所謂防振機能を有した変倍光学系に関し、特に防振用の
可動レンズ群を、例えば光軸と直交する方向に移動させ
て防振効果を発揮させたときの光学性能の低下の防止を
図った防振機能を有した変倍光学系に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides a function of correcting blurring of a captured image due to vibration,
Regarding a variable power optical system having a so-called anti-vibration function, particularly, a movable lens group for anti-vibration, for example, is moved in a direction perpendicular to the optical axis to prevent a decrease in optical performance when exerting an anti-vibration effect. The present invention relates to a variable power optical system having an anti-vibration function.

(従来の技術) 進行中の車や航空機等移動物体上から撮影をしようと
すると撮影系に振動が伝わり撮影画像にブレが生じる。
(Prior Art) When an image is taken from a moving object such as a car or an aircraft in progress, vibration is transmitted to an image taking system, and a blurred image occurs.

従来より撮影画像のブレを防止する機能を有した防振
光学系が、例えば特開昭50−80147号公報や特公昭56−2
1133号公報、特開昭61−223819号公報等で提案されてい
る。
Conventionally, an image stabilizing optical system having a function of preventing blurring of a photographed image has been disclosed in Japanese Patent Application Laid-Open No. 50-80147 and Japanese Patent Publication No. 56-2
No. 1133, Japanese Patent Application Laid-Open No. Sho 61-223819, and the like.

特開昭50−80147号公報では2つのアフォーカルの変
倍系を有するズームレンズにおいて第1の変倍系の角倍
率をM1、第2の変倍系の角倍率をM2としたときM1=1−
1/M2なる関係を有するように各変倍系で変倍を行うと共
に、第2の変倍系を空間的に固定して画像のブレを補正
して画像の安定化を図っている。
Japanese Patent Application Laid-Open No. 50-80147 discloses a zoom lens having two afocal variable power systems in which the first variable power system has an angular magnification of M 1 and the second variable power system has an angular magnification of M 2. M 1 = 1−
In each zooming system, zooming is performed so as to have a relationship of 1 / M 2 , and the second zooming system is spatially fixed to correct image blur and stabilize the image.

特公昭56−21133号公報では光学装置の振動状態を検
知する検知手段からの出力信号に応じて、一部の光学部
材を振動による画像の振動的変位を相殺する方向に移動
させることにより画像の安定化を図っている。
In Japanese Patent Publication No. 56-21133, according to an output signal from a detecting means for detecting a vibration state of an optical device, some optical members are moved in a direction to cancel the vibrational displacement of the image due to vibration. We are stabilizing.

特開昭61−223819号公報では最も被写体側に屈折型可
変頂角プリズムを配置した撮影系において、撮影系の振
動に対応させて該屈折型可変頂角プリズムの頂角を変化
させて画像を偏向させて画像の安定化を図っている。
Japanese Patent Application Laid-Open No. 61-223819 discloses a photographing system in which a refraction type variable apex angle prism is disposed closest to the subject, and an image is formed by changing the apex angle of the refraction type apex angle prism in accordance with the vibration of the imaging system. The image is stabilized by deflection.

この他、特公昭56−34847号公報、特公昭57−7414号
公報等では撮影系の一部に振動に対して空間的に固定の
光学部材を配置し、この光学部材の振動に対して生ずる
プリズム作用を利用することにより撮影画像を偏向させ
結像面上で静止画像を得ている。
In addition, JP-B-56-34847 and JP-B-57-7414 dispose a spatially fixed optical member with respect to vibration in a part of the photographing system, and generate the optical member with respect to the vibration of the optical member. The still image is obtained on the imaging plane by deflecting the captured image by utilizing the prism action.

又、加速度センサーを利用して撮影系の振動を検出
し、このとき得られる信号に応じ、撮影系の一部のレン
ズ群を光軸と直交する方向に振動させることにより静止
画像を得る方法も行なわれている。
Also, a method of detecting a vibration of a photographing system using an acceleration sensor and obtaining a still image by vibrating a part of a lens group of the photographing system in a direction orthogonal to an optical axis according to a signal obtained at this time is also available. Is being done.

一般に撮影系の一部のレンズ群を振動させて撮影画像
のブレをなくし、静止画像を得る機構には画像のブレの
補正量と可動レンズの移動量との関係を単純化し、変換
の為の演算時間の短縮化を図った簡易な構成の撮影系が
要求されている。
In general, a mechanism for obtaining a still image by vibrating a part of the lens group of the photographing system to reduce the blur of the photographed image simplifies the relationship between the amount of correction of the image blur and the amount of movement of the movable lens, and provides a mechanism for conversion. There is a demand for a photographing system having a simple configuration for shortening the calculation time.

又、可動レンズ群を偏心させたとき偏心コマ、偏心非
点収差、そして偏心像面弯曲等が多く発生すると画像の
ブレを補正したとき偏心収差の為、画像がボケてくる。
例えば、偏心歪曲収差が多く発生すると光軸上の画像の
移動量と周辺部の画像の移動量が異ってくる。この為、
光軸上の画像を対象に画像のブレを補正しようと可動レ
ンズ群を偏心させると、周辺部では画像のブレと同様な
現象が発生してきて光学特性を著るしく低下させる原因
となってくる。
Also, when the movable lens group is decentered, if the eccentric coma, the eccentric astigmatism, and the eccentric curvature of field occur frequently, the image is blurred due to the eccentric aberration when the image blur is corrected.
For example, if a large amount of eccentric distortion occurs, the amount of movement of the image on the optical axis and the amount of movement of the peripheral image differ. Because of this,
If the movable lens group is decentered in order to correct the image blur on the image on the optical axis, a phenomenon similar to the image blur occurs in the peripheral portion, which causes a remarkable decrease in optical characteristics. .

このように防振用の撮影系、特に変倍光学系において
は可動レンズ群を光軸と直交する方向に移動させ偏心状
態にしたとき、偏心収差発生量が少なく光学性能の低下
の少ないこと及び簡易な機構であることが要求されてい
る。
As described above, when the movable lens group is moved in a direction perpendicular to the optical axis to be in an eccentric state, the amount of eccentric aberration is small, the optical performance is not reduced, and the imaging system for image stabilization, especially in the variable power optical system, A simple mechanism is required.

しかしながら、以上の諸条件を全て満足させた撮影系
を得るのは一般に大変困難で、特に撮影系の一部の屈折
力を有したレンズ群を偏心させると光学性能が大きく低
下し、良好なる画像が得られない欠点があった。
However, it is generally very difficult to obtain an imaging system that satisfies all of the above conditions. In particular, decentering a lens group having a part of refractive power of the imaging system greatly reduces the optical performance, resulting in a good image. There was a drawback that was not obtained.

(発明が解決しようとする問題点) 本発明は変倍光学系の一部のレンズ群を光軸と直交す
る方向に移動させて画像のブレを補正する際、可動レン
ズ群の機構上の簡素化を図ると共に、例えば可動レンズ
群を移動させて平行偏心させたときの前述の各種の偏心
収差の発生量が少なく良好なる光学性能が得られる防振
機能を有した変倍光学系の提供を目的とする。
(Problems to be Solved by the Invention) In the present invention, when a part of the lens units of the variable power optical system is moved in a direction perpendicular to the optical axis to correct image blurring, the mechanism of the movable lens group is simplified. For example, the present invention provides a variable power optical system having an image stabilizing function that can obtain good optical performance with a small amount of the above-described various eccentric aberrations when the movable lens group is moved and parallel decentered, for example. Aim.

(問題点を解決する為の手段) 物体側より順に負の屈折力の第1群、正の屈折力の第
2群、そして負の屈折力の第3群の3つのレンズ群を有
し、該第1,第2,第3群を移動させて変倍を行う変倍光学
系であって、該第3群は正の第31レンズ、負の第32レン
ズ、そして正の第33レンズの3つのレンズを有してお
り、該変倍光学系の傾きにより生ずる撮影画像のブレを
ブレ検出手段により検出し、該ブレ検出手段からの出力
信号に応じて駆動手段により前記3群を光軸と直交する
方向に移動させることにより撮影画像のブレを補正した
ことである。
(Means for Solving the Problems) In order from the object side, there are three lens groups of a first group of negative refractive power, a second group of positive refractive power, and a third group of negative refractive power, A variable power optical system for performing zooming by moving the first, second, and third groups, wherein the third group includes a positive 31st lens, a negative 32nd lens, and a positive 33rd lens. The camera has three lenses, and the blur of the photographed image caused by the inclination of the variable power optical system is detected by a blur detecting means, and the driving means drives the three lens groups according to an output signal from the blur detecting means. That is, the movement of the captured image is corrected by moving the captured image in a direction perpendicular to the direction.

(実施例) 第1図〜第3図は本発明に係る変倍光学系の後述する
数値実施例1〜3のレンズ断面図である。
(Example) FIGS. 1 to 3 are lens cross-sectional views of Numerical Examples 1 to 3 of the variable power optical system according to the present invention, which will be described later.

同図においてIは負の屈折力の第1群、IIは正の屈折
力の第3群、IIIは負の屈折力の第3群であり、これら
3つのレンズ群を矢印のように移動させて広角端から望
遠端への変倍を行っている。又、第1群若しくはレンズ
系全体を移動させてフォーカスを行っている。そして変
倍光学系が傾いて、画像にブレが生じたときは不図示の
公知のブレ検出手段等によりこのときのブレを検出して
いる。そして該ブレ検出手段からの出力信号に応じて不
図示の駆動手段により第3群を光軸と直交する方向に移
動させている。これにより撮影画像のブレを補正してい
る。
In the figure, I is a first group having a negative refractive power, II is a third group having a positive refractive power, and III is a third group having a negative refractive power. These three lens groups are moved as indicated by arrows. Zoom from the wide-angle end to the telephoto end. Further, focusing is performed by moving the first group or the entire lens system. When the zoom optical system is tilted and the image is blurred, the blur at this time is detected by a known blur detecting means (not shown). The third unit is moved in a direction orthogonal to the optical axis by a driving unit (not shown) in accordance with an output signal from the shake detecting unit. This corrects the blur of the captured image.

本実施例において第3レンズ群であるブレ補正用の可
動レンズ群の平行偏心量Eは画像のブレ量をδy、可動
レンズ群の偏心敏感度をSとしたとき E=−δy/S ……(1) となる。
In the present embodiment, the parallel eccentricity E of the movable lens group for shake correction, which is the third lens group, is E = -δy / S, where δy is the image blur amount and S is the eccentric sensitivity of the movable lens group. (1)

偏心敏感度Sは可動レンズ群の平行偏心量に対する結
像面上での像点の移動量の比である。
The eccentric sensitivity S is a ratio of the amount of movement of the image point on the image plane to the amount of parallel eccentricity of the movable lens group.

本実施例では画像のブレ量δyをカメラ内部のブレ検
出手段により検知し、変倍光学系に固有の可動レンズ群
の偏心敏感度Sを基にして、画像のブレ補正の為の可動
レンズ群の平行偏心量Eを(1)式より得ている。そし
て駆動手段により可動レンズ群を所定量偏心させて画像
のブレを補正している。
In this embodiment, the blur amount δy of the image is detected by the blur detecting means inside the camera, and the movable lens group for image blur correction is based on the eccentric sensitivity S of the movable lens group unique to the variable power optical system. Is obtained from equation (1). The drive unit decenters the movable lens group by a predetermined amount to correct image blur.

次に一般の変倍光学系において、画像のブレ量と該ブ
レ量を補正する為の補正用の可動レンズ群の移動量との
関係を示す。ブレ量は各種のブレ検出手段により種々の
形で検知されるが、以下簡単の為に全てブレ量|δy|に
換算して説明する。
Next, the relationship between the blur amount of an image and the movement amount of a movable lens group for correction for correcting the blur amount in a general zoom optical system will be described. The shake amount is detected in various forms by various shake detection means, but for the sake of simplicity, all the shake amounts will be described in terms of the shake amount | δy |.

今、変倍光学系全体が角度εだけ傾いたとき像面上で
の画像のブレ量δyは変倍光学系全体の焦点距離をfと
したとき δy=f・ε ……(2) となる。このとき画像のブレ補正用の可動のレンズ群P
の近軸横倍率をβP、レンズ群Pよりも像面側に配置さ
れているレンズ系全体の近軸横倍率をβqとするとレン
ズ群Pの偏心敏感度SPは SP=(1−βP)・βq ……(3) となる。(1)式のSと(3)式のSPは同じものとして
取り扱うことができるからS=SPとおいて(2),
(3)式より(1)式は となる。
Now, when the entire variable power optical system is tilted by the angle ε, the blur amount δy of the image on the image plane is given by δy = f · ε (2) where f is the focal length of the entire variable power optical system. . At this time, a movable lens group P for image blur correction
Is the paraxial lateral magnification of βP, and βq is the paraxial lateral magnification of the entire lens system arranged on the image plane side of the lens group P, the eccentric sensitivity SP of the lens group P is SP = (1−βP) · βq (3) Since S in equation (1) and SP in equation (3) can be treated as the same, S = SP and (2),
From equation (3), equation (1) is Becomes

(4)式において は変倍光学系の変倍位置における固有の定数であるか
ら、これを画像のブレ補正定数Kとおくと(4)式は E=K・ε ……(5) と極めて簡単な式で表わすことができる。
In equation (4) Is a constant unique to the variable power position of the variable power optical system, and if this is defined as an image blur correction constant K, the equation (4) is expressed as a very simple equation as follows: E = K… ε (5) be able to.

ただし、実際的には種々の物体距離や種々の収差発生
状態により画像安定化を図る必要がある。従って(4)
式は近似的に取り扱うのが画像の安定化を効果的に行う
場合に好ましい。
However, in practice, it is necessary to stabilize an image by various object distances and various aberration occurrence states. Therefore (4)
It is preferable to treat the expression approximately when effective stabilization of the image is performed.

本実施例では変倍光学系が全体として角度ε傾いて撮
影画像のブレが生じたとき、前記第3レンズ群を 程度平行偏心させたとき、該撮影画像のブレが補正され
るように前記複数のレンズ群の光学的諸定数を設定して
いることを特徴としている。
In the present embodiment, when the variable magnification optical system as a whole is tilted by an angle ε and the captured image is blurred, the third lens group is moved. The optical constants of the plurality of lens groups are set such that blurring of the photographed image is corrected when the eccentricity is substantially parallel.

一般に光学系の一部のレンズ群を平行偏心させて画像
のブレを補正しようとすると偏心収差の発生により結像
性能が低下してくる。
Generally, when an attempt is made to correct image blurring by decentering some lens groups of the optical system in parallel, the imaging performance is reduced due to the occurrence of eccentric aberration.

そこで、次に任意の屈折力配置において可動レンズ群
を光軸と直交する方向に移動させて画像のブレを補正す
るときの偏心収差の発生について収差論的な立場より、
第23回応用物理学講演会(1962年)に松居より示された
方法に基づいて説明する。
Then, from the viewpoint of aberration theory, the occurrence of eccentric aberration when the movable lens group is moved in a direction perpendicular to the optical axis in an arbitrary refractive power arrangement to correct image blurring,
Explained based on the method presented by Matsui at the 23rd Lecture on Applied Physics (1962).

変倍光学系の一部のレンズ群PをEだけ平行偏心させ
たときの全系の収差量ΔY1は(a)式の如く偏心前の収
差量ΔYと偏心によって発生した偏心収差量ΔY(E)
との和になる。ここで収差量ΔYは球面収差(I)、コ
マ収差(II)、非点収差(III)、パッシバール和
(P)、歪曲収差(Y)で表わされる。
When a part of the lens unit P of the variable power optical system is decentered in parallel by E, the aberration amount ΔY1 of the entire system becomes the aberration amount ΔY before decentering and the eccentric aberration amount ΔY (E )
And the sum of Here, the aberration amount ΔY is represented by spherical aberration (I), coma aberration (II), astigmatism (III), passive-bar sum (P), and distortion (Y).

又、偏心収差ΔY(E)は(C)式に示す様に1次の
偏心コマ収差(II E)、1次の偏心非点収差(III
E)、1次の偏心像面弯曲(PE)、1次の偏心歪曲収差
(VE1)、1次の偏心歪曲附加収差(VE2)、そして1次
の原点移動(ΔE)で表わされる。
The eccentric aberration ΔY (E) is expressed by the first-order eccentric coma (II E) and the first-order eccentric astigmatism (III) as shown in the equation (C).
E) First-order eccentric field curvature (PE), first-order eccentric distortion (VE1), first-order eccentricity additive aberration (VE2), and first-order origin movement (ΔE).

又、(d)式から(i)式の(ΔE)〜(VE2)まで
の収差はレンズ群Pを平行偏心させる変倍光学系におい
てレンズ群Pへの光線の入射角をαP,▲▼としたと
きにレンズ群Pの収差係数IP,IIP,IIIP,PP,VPと、又、
同様にレンズ群Pより像面側に配置したレンズ群を全体
として1つの第qレンズ群としたときの収差係数をIq,I
Iq,IIIq,Pq,Vqを用いて表わされる。
The aberrations from (E) to (VE2) in equations (d) to (i) are caused by changing the angle of incidence of light rays on the lens group P by α P , ▲ ▼ in a variable power optical system for parallel decentering the lens group P. And the aberration coefficients I P , II P , III P , P P , V P of the lens group P, and
Similarly, when the lens units arranged on the image plane side from the lens unit P as a whole are the q-th lens unit, the aberration coefficients are I q and I q
It is represented using I q , III q , P q , and V q .

ΔY1=ΔY+ΔY(E) (a) (ΔE)=−2(α′−α)=−2hPφ (d) (II E)=α′PIIq−α(IIP+IIq) −▲▼PIq(IP+Iq) =hPφPIIq−αPIIPφPIqPIP (e) (III E)=α′PIIIq−α(IIIP+IIIq) −▲▼PIIq(IIP+IIq) =hPφPIIIq−αPIIIP −(φPIIqPIIP) (f) (PE)=α′PPq−α(PP+Pq) =hPφPPq−αPPP (g) (VE1)=α′PVq−α(VP+Vq) −▲▼PIIIq(IIIP+IIIq) =hPφPVq−αPVP −(φPIIIqPIIIP) (h) (VE2)=▲▼PPq(PP+Pq) =φPPqPPP (i) 以上の式から偏心収差の発生を小さくする為にはレン
ズ群Pの諸収差係数IP,IIP,IIIP,PP,VPを小さな値とす
るか、若しくは(a)式〜(i)式に示すように諸収差
係数を互いに打ち消し合うようにバランス良く設定する
ことが必要となってくる。そしてレンズ群Pにおいては
球面収差、コマ収差、ペッツバール和の他に非点収差、
歪曲収差を良好に補正することが必要となってくる。
ΔY1 = ΔY + ΔY (E) (a) (ΔE) = - 2 (α 'P -α P) = - 2h P φ P (d) (II E) = α' P II q -α P (II P + II q) - ▲ ▼ P I q + P (I P + I q) = h P φ P II q -α P II P - P φ P I q - P I P (e) (III E) = α 'P III q -α P (III P + III q) − ▲ ▼ P II q + P (II P + II q ) = h P φ P III q −α P III P − ( P φ P II qP II P ) (f) (PE) = α ' P P q -α P (P P + P q ) = h P φ P P q -α P P P (g) (VE1) = α 'P V q -α P (V P + V q) - ▲ ▼ P III q + P (III P + III q ) = h P φ P V q −α P V P − ( P φ P III qP III P ) (h) (VE2) = ▲ ▼ P P qP (P P + P q ) small P P P (i) more aberrations coefficients I P lens group P in order to reduce the occurrence of decentering aberration formulas, II P, III P, P P, the V P - = P phi P P q Values, or as shown in equations (a) to (i), It becomes necessary to balance well set to such a cancel each other. In the lens group P, in addition to spherical aberration, coma, and Petzval sum, astigmatism,
It becomes necessary to satisfactorily correct distortion.

一般にレンズ群Pにおける軸上収差と共に軸外収差を
バランス良く補正するには、レンズ群P中における軸上
光線の高さhと軸外光線の主光線の高さとが互いに異
った値をとるようにレンズ系を構成することが必要とな
ってくる。
In general, in order to correct off-axis aberrations as well as on-axis aberrations in the lens group P in a well-balanced manner, the height h of the on-axis rays in the lens group P and the height of the principal ray of the off-axis rays take different values. It is necessary to configure the lens system as described above.

この為、本実施例では第3レンズ群を後述する数値実
施例で示すように複数のレンズより構成することにより
第3レンズ群を偏心させたときの偏心収差の発生量を少
なくしている。
For this reason, in the present embodiment, the amount of eccentric aberration generated when the third lens group is decentered is reduced by configuring the third lens group with a plurality of lenses as shown in numerical examples described later.

尚、本実施例において第3群を偏心させて画像のブレ
を補正するときの光学性能を良好に維持する為には第31
レンズを像面側に凸面を向けたレンズ形状とし、又第32
レンズを物体側に凹面を向けたレンズ形状とし、前記第
3群の第i番目のレンズ面の曲率半径をR3−i、全系の
広角端のズーム位置での焦点距離をfwとしたとき −0.4<R3−2/R3−1<0.4 ……(イ) −0.7<R3−2/fw<−0.1 ……(ロ) −0.7<R3−3/fw<−0.1 ……(ハ) −0.5<R3−3/R3−4<0 ……(ニ) なる条件を満足することが良い。
In this embodiment, in order to maintain good optical performance when the third lens unit is decentered and image blur is corrected, it is necessary to use the 31st lens.
The lens has a lens shape with the convex surface facing the image plane side.
When the lens has a lens shape with the concave surface facing the object side, the radius of curvature of the i-th lens surface of the third group is R3-i, and the focal length at the zoom position at the wide-angle end of the entire system is fw. 0.4 <R3−2 / R3-1 <0.4 (a) −0.7 <R3−2 / fw <−0.1 (b) −0.7 <R3−3 / fw <−0.1 (c) −0.5 <R3−3 / R3−4 <0 It is preferable to satisfy the following condition.

条件式(イ)は第31レンズのレンズ形状に関し、下限
値を越えて物体側のレンズ面の曲率が強くなると望遠側
で非点収差を良好に補正するのが難しくなり、又望遠側
での偏心非点収差が増大してくる。逆に上限値を越えて
像面側のレンズ面が像面側に強い凸面を向けるようにな
ると、望遠側と広角側において高次球面収差が多く発生
し、又望遠側において高次の偏心コマ収差が増大するの
でよくない。
Conditional expression (a) relates to the lens shape of the thirty-first lens. When the curvature of the lens surface on the object side exceeds the lower limit value, it becomes difficult to satisfactorily correct astigmatism on the telephoto side. Decentered astigmatism increases. Conversely, if the lens surface on the image side becomes strongly convex toward the image side beyond the upper limit, a large amount of high-order spherical aberration occurs on the telephoto side and the wide-angle side, and a high-order eccentric lens on the telephoto side. It is not good because aberration increases.

条件式(ロ),(ハ)は第31レンズと第32レンズとで
形成される空気レンズに関する。条件式(ロ),(ハ)
の下限値を越えて各レンズ面の曲率が緩くなると望遠側
での非点収差が大きくなると共に偏心非点収差が多く発
生してくる。逆に上限値を越えると高次収差になるフレ
アーが多くなってくるので良くない。
The conditional expressions (b) and (c) relate to the air lens formed by the 31st lens and the 32nd lens. Conditional expressions (b), (c)
If the curvature of each lens surface is reduced below the lower limit of the above, the astigmatism on the telephoto side increases, and a large amount of decentered astigmatism occurs. Conversely, if the value exceeds the upper limit, flare that causes higher-order aberrations increases, which is not preferable.

条件式(ニ)は負の第32レンズのレンズ形状に関し、
主に広角側の偏心歪曲収差を良好に補正する為のもので
ある。下限値を越えると像面側のレンズ面において正の
歪曲収差が多く発生し、偏心歪曲収差を小さくするのが
難しくなってくる。逆に上限値を越えると物体側のレン
ズ面の曲率が強くなり高次の偏心コマ収差を良好に補正
するのが難しくなってくる。
Conditional expression (d) relates to the lens shape of the negative 32nd lens,
This is mainly for satisfactorily correcting decentering distortion on the wide-angle side. If the lower limit value is exceeded, a large amount of positive distortion will occur on the lens surface on the image side, making it difficult to reduce eccentric distortion. Conversely, if the value exceeds the upper limit, the curvature of the lens surface on the object side becomes strong, and it becomes difficult to satisfactorily correct high-order decentering coma.

本実施例において第3群から発生するペッツバール和
を小さくし像面特性を良好に維持する為には、前記第31
レンズと第33レンズの材質の平均屈折率を▲▼、前
記第32レンズの材質の屈折率を▲▼としたとき ▲▼−▲▼>0.15 ……(ホ) なる条件を満足することが良い。
In the present embodiment, in order to reduce the Petzval sum generated from the third lens unit and to maintain good image surface characteristics, it is necessary to use the 31st lens.
When the average refractive index of the material of the lens and the 33rd lens is represented by ▲ and the refractive index of the material of the 32nd lens is represented by ▼, it is preferable that the following condition is satisfied. .

条件式(ホ)を外れると偏心像面湾曲が大きくなり、
所謂片ボケが発生しやすくなるので良くない。
If conditional expression (e) is not satisfied, the eccentric field curvature increases,
This is not good because so-called one-sided blur is likely to occur.

又、本実施例において第3群のレンズ系全体の小型化
を図りつつ、効果的に画像のブレを補正する為には、前
記第3群の焦点距離をf3、全系の広角端のズーム位置に
おける焦点距離をfwとしたとき −1.8<fw/f3<−0.5 ……(ヘ) なる条件を満足することが良い。
In this embodiment, in order to reduce the size of the entire lens system of the third unit and effectively correct image blurring, the focal length of the third unit is set to f3, and the zoom at the wide-angle end of the entire system is set. When the focal length at the position is fw, it is preferable to satisfy the following condition: -1.8 <fw / f3 <-0.5 (f).

条件式(ヘ)の下限値を越えて、第3群の焦点距離が
短くなりすぎるとレンズ全長は短くなるが諸収差の発生
が多くなり、これを良好に補正するのが難しくなってく
る。又、上限値を越えて焦点距離が長くなってくると偏
心に伴う移動量が多くなりすぎレンズ系全体が大型化し
てくるので良くない。
If the lower limit of conditional expression (f) is exceeded and the focal length of the third lens unit is too short, the overall length of the lens will be short, but the occurrence of various aberrations will increase, making it difficult to satisfactorily correct them. On the other hand, if the focal length becomes longer than the upper limit, the amount of movement due to eccentricity becomes too large, which is not good because the entire lens system becomes large.

尚、本実施例において第3群を平行偏心させて画像の
ブレを補正するときに発生する偏心収差を更に良好に補
正する為には、第31レンズの像面側の凸面若しくは第33
レンズの物体側の凹面の少なくとも一方に非球面を施す
のが良い。
In this embodiment, in order to correct the eccentric aberration which occurs when the third lens unit is decentered in parallel to correct the image blur, it is necessary to use the convex surface on the image plane side of the 31st lens or the 33rd lens.
Preferably, at least one of the object-side concave surfaces of the lens has an aspheric surface.

このときの非球面形状は光軸方向にX軸、光軸と垂直
方向にH軸、光の進行方向を正としRを近軸曲率半径、
A,B,C,D,Eを各々非球面係数とし なる式で表わしたとき、(ここでパラメータX,R,Hは長
さのディメンション(次元)を持ち、非球面係数A,B,C,
D,Eのディメンションは各々、長さの1乗,3乗,5乗,7乗,
9乗の逆数を有している。例えばX,R,Hを単位mmで表現し
たときには非球面係数A〜Eのディメンションは各々
(mm-1),(mm-3),(mm-5),(mm-7),(mm-9)と
なる。ここでは非球面係数については簡単の為に特にデ
ィメンションを付記しないが、本明細書中で用いている
他の非球面係数のディメンションについても同様であ
る。)第31レンズの凸面に施すときは −7×10-5<B<−2×10-5 ……(ト) 1×10-7<C<8×10-7 ……(チ) なる条件を満足することである。
The aspherical shape at this time has an X axis in the optical axis direction, an H axis in a direction perpendicular to the optical axis, a positive traveling direction of light, R is a paraxial radius of curvature,
Let A, B, C, D, and E be aspheric coefficients, respectively. Where the parameters X, R, and H have a length dimension, and the aspheric coefficients A, B, C,
The dimensions of D and E are the first, third, fifth and seventh power of the length, respectively.
It has a reciprocal of 9th power. For example X, R, each dimension of the aspherical coefficients A~E is when expressing the H in units mm (mm -1), (mm -3), (mm -5), (mm -7), (mm - 9 ) Here, the dimension of the aspherical coefficient is not particularly added for simplicity, but the same applies to the dimensions of other aspherical coefficients used in this specification. ) When applied to the convex surface of the 31st lens, the following condition is satisfied: −7 × 10 −5 <B <−2 × 10 −5 (g) 1 × 10 −7 <C <8 × 10 −7 (h) Is to satisfy.

又、第33レンズの凹面に施すときは 6×10-6<B<8×10-5 ……(リ) なる条件を満足することが良い。When the concave surface of the 33rd lens is applied, it is preferable to satisfy the following condition: 6 × 10 −6 <B <8 × 10 −5 .

条件式(ト),(チ)は主に3次収差と高次収差とを
バランス良く補正する為のものである。条件式(ト),
(チ)の下限値を越えると3次の球面収差が補正不足と
なり、又上限値を越えると逆に3次の球面収差が補正過
剰となり、3次収差と高次収差をバランス良く補正する
のが難しくなってくる。
The conditional expressions (g) and (h) are mainly for correcting the third-order aberration and the high-order aberration in a well-balanced manner. Conditional expression (g),
When the value exceeds the lower limit of (h), the third-order spherical aberration is insufficiently corrected, and when the value exceeds the upper limit, the third-order spherical aberration is excessively corrected, and the third-order aberration and the high-order aberration are corrected in a well-balanced manner. Becomes more difficult.

条件式(リ)は主に望遠側の偏心コマ収差を良好に補
正する為のものである。条件式(リ)の下限値を越える
と負の偏心コマ収差が増大し、又上限値を越えると望遠
側で高次の偏心コマ収差が多く発生してくるので良くな
い。
The condition (1) is mainly for favorably correcting decentered coma on the telephoto side. Exceeding the lower limit of conditional expression (I) will increase negative eccentric coma, while exceeding the upper limit will cause a large amount of higher-order eccentric coma on the telephoto side, which is not good.

この他本実施例において全系の基準状態での収差をバ
ランス良く補正する為には、特に軸上収差を良好に補正
する為には光線のレンズ面への入射高||の大きい第
1群中の正の屈折力のレンズ面に次の条件を満足する非
球面を施すのが良い。
In addition, in the present embodiment, in order to correct aberrations in the reference state of the entire system in a well-balanced manner, and in particular to correct axial aberrations in a satisfactory manner, the first lens unit having a large incident height || It is preferable to apply an aspherical surface satisfying the following condition to the lens surface having a positive refractive power in the middle.

即ち前述のように非球面形状を表わしたとき −2×10-5<B<0 ……(ヌ) なる条件を満足することである。That is, when the aspherical shape is expressed as described above, the condition of -2 × 10 -5 <B <0 (nu) is satisfied.

次に本発明の数値実施例を示す。数値実施例において
Riは物体側より順に第i番目のレンズ面の曲率半径、Di
は物体側より第i番目のレンズ厚及び空気間隔、Niとν
iは各々物体側より順に第i番目のレンズのガラスの屈
折率とアッベ数である。
Next, numerical examples of the present invention will be described. In numerical examples
Ri is the radius of curvature of the i-th lens surface in order from the object side,
Is the i-th lens thickness and air gap from the object side, Ni and ν
i is the refractive index and Abbe number of the glass of the i-th lens in order from the object side.

又前述の各条件式と数値実施例における諸数値との関
係を表−1に示す。
Table 1 shows the relationship between the above-described conditional expressions and various numerical values in the numerical examples.

非球面係数 R3 B=−9.349×10-6 C=−6.576×10-9 D=−6.939×10-11 非球面係数 R19 B=−4.621×10-5 C=3.168×10-7 D=−8.952×10-9 非球面係数 R3 B=−6.910×10-9 C=−1.673×10-8 D=3.808×10-11 非球面係数 R20 B=1.505×10-5 C=8.823×10-8 D=−9.685×10-11 非球面係数 R3 B=−1.202×10-6 C=−4.505×10-9 D=5.615×10-12 非球面係数 R15 B=−1.537×10-5 C=3.07×10-7 D=−5.578×10-9 (発明の効果) 本発明によれば前述の構成の変倍光学系の各レンズ群
のうち、前述の条件を満す第3レンズ群を偏心させるこ
とにより画像のブレを補正すると共に、偏心に伴う偏心
収差の発生量を極力押さえた高い光学性能を維持するこ
とのできる防振機能を有した変倍光学系を達成すること
ができる。
Aspherical surface coefficient R3 B = -9.349 × 10 -6 C = −6.576 × 10 -9 D = −6.939 × 10 -11 Aspherical surface coefficient R19 B = −4.621 × 10 -5 C = 3.168 × 10 -7 D = − 8.952 × 10 -9 Aspheric coefficient R3 B = −6.910 × 10 −9 C = −1.673 × 10 −8 D = 3.808 × 10 −11 Aspheric coefficient R20 B = 1.505 × 10 −5 C = 8.823 × 10 −8 D = −9.685 × 10 -11 Aspheric coefficient R3 B = -1.202 x 10 -6 C = -4.505 x 10 -9 D = 5.615 x 10 -12 Aspheric coefficient R15 B = -1.537 x 10 -5 C = 3.07 x 10 -7 D = -5.578 × 10 -9 (Effects of the Invention) According to the present invention, among the lens groups of the variable power optical system having the above-described configuration, the third lens group that satisfies the above-described condition is decentered to correct image blurring and reduce eccentricity. A variable power optical system having an image stabilizing function capable of maintaining high optical performance while minimizing the amount of accompanying eccentric aberration can be achieved.

又、本発明によれば所定の非球面を第1群又は第3群
に用いることにより、レンズ系全体の小型化を図った変
倍光学系を達成することができる。
Further, according to the present invention, by using a predetermined aspheric surface for the first or third lens unit, it is possible to achieve a variable power optical system in which the entire lens system is reduced in size.

【図面の簡単な説明】[Brief description of the drawings]

第1〜第3図は本発明に係る変倍光学系の数値実施例1
〜3のレンズ断面図、第4図〜第6図は本発明に係る変
倍光学系の数値実施例1〜3の諸収差図である。 収差図において(A),(C)は各々基準状態での広角
端と望遠端での収差図、(B),(D)は変倍光学系が
全体に1/2度傾いたとき、第3群で補正したときの広角
端と望遠端での横収差図である。 図中、I,II,IIIは各々第1,第2,第3群、ΔSはサジタル
像面、ΔMはメリディオナル像面である。
FIGS. 1 to 3 show a numerical example 1 of a variable power optical system according to the present invention.
4 to 6 are various aberration diagrams of Numerical Examples 1 to 3 of the variable power optical system according to the present invention. In the aberration diagrams, (A) and (C) are aberration diagrams at the wide-angle end and the telephoto end in the reference state, respectively, and (B) and (D) are graphs when the variable power optical system is inclined by 1/2 degree as a whole. FIG. 9 is a lateral aberration diagram at the wide-angle end and at the telephoto end when correction is performed by three groups. In the figure, I, II, and III are the first, second, and third lens units respectively, ΔS is a sagittal image plane, and ΔM is a meridional image plane.

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体側より順に負の屈折力の第1群、正の
屈折力の第2群、そして負の屈折力の第3群の3つのレ
ンズ群を有し、該第1,第2,第3群を移動させて変倍を行
う変倍光学系であって、該第3群は正の第31レンズ、負
の第32レンズ、そして正の第33レンズの3つのレンズを
有しており、該変倍光学系の傾きにより生ずる撮影画像
のブレをブレ検出手段により検出し、該ブレ検出手段か
らの出力信号に応じて駆動手段により前記3群を光軸と
直交する方向に移動させることにより撮影画像のブレを
補正し、該第3群の第i番目のレンズ面の曲率半径をR3
−i、全系の広角端のズーム位置での焦点距離をfwとし
たとき −0.4<R3−2/R3−1<0.4 −0.7<R3−2/fw<−0.1 −0.7<R3−3/fw<−0.1 −0.5<R3−3/R3−4<0 なる条件を満足することを特徴とする防振機能を有した
変倍光学系。
A first lens unit having a negative refractive power, a second lens unit having a positive refractive power, and a third lens unit having a negative refractive power. 2. A variable power optical system for performing zooming by moving a third lens group, the third lens group including three lenses: a positive 31st lens, a negative 32nd lens, and a positive 33rd lens. The blurring of the photographed image caused by the inclination of the variable power optical system is detected by the blur detecting means, and the three groups are moved in the direction orthogonal to the optical axis by the driving means according to the output signal from the blur detecting means. By moving the lens unit, the blur of the captured image is corrected, and the radius of curvature of the i-th lens surface of the third unit is set to R3.
−i, when the focal length at the zoom position at the wide-angle end of the entire system is fw −0.4 <R3−2 / R3-1 <0.4 −0.7 <R3−2 / fw <−0.1 −0.7 <R3−3 / A variable power optical system having an anti-vibration function, which satisfies the following condition: fw <−0.1−0.5 <R3−3 / R3−4 <0.
【請求項2】物体側より順に負の屈折力の第1群、正の
屈折力の第2群、そして負の屈折力の第3群の3つのレ
ンズ群を有し、該第1,第2,第3群を移動させて変倍を行
う変倍光学系であって、該第3群は正の第31レンズ、負
の第32レンズ、そして正の第33レンズの3つのレンズを
有しており、該変倍光学系の傾きにより生ずる撮影画像
のブレをブレ検出手段により検出し、該ブレ検出手段か
らの出力信号に応じて駆動手段により前記3群を光軸と
直交する方向に移動させることにより撮影画像のブレを
補正し、該第31レンズの像面側のレンズ面は像面側に凸
面を向けており、該凸面には非球面が施されており、該
非球面形状は光軸方向にX軸、光軸と垂直方向にH軸、
光の進行方向を正としRを近軸曲率半径、A,B,C,D,Eを
各々非球面係数とし なる式で表わしたとき −7×10-5<B<−2×10-5 1×10-7<C<8×10-7 なる条件を満足することを特徴とする防振機能を有した
変倍光学系。
2. A lens system comprising: a first lens unit having a negative refractive power, a second lens unit having a positive refractive power, and a third lens unit having a negative refractive power. 2. A variable power optical system for performing zooming by moving a third lens group, the third lens group including three lenses: a positive 31st lens, a negative 32nd lens, and a positive 33rd lens. The blurring of the photographed image caused by the inclination of the variable power optical system is detected by the blur detecting means, and the three groups are moved in the direction orthogonal to the optical axis by the driving means according to the output signal from the blur detecting means. By correcting the blur of the captured image by moving, the lens surface on the image surface side of the 31st lens has a convex surface facing the image surface side, and the convex surface has an aspheric surface, and the aspheric shape is X axis in the optical axis direction, H axis in the direction perpendicular to the optical axis,
Let R be the paraxial radius of curvature, A, B, C, D, and E be the aspherical coefficients, respectively, with the light traveling direction being positive. When it is expressed by the following formula, the following condition is satisfied: −7 × 10 −5 <B <−2 × 10 −5 1 × 10 −7 <C <8 × 10 −7 Variable power optical system.
【請求項3】物体側より順に負の屈折力の第1群、正の
屈折力の第2群、そして負の屈折力の第3群の3つのレ
ンズ群を有し、該第1,第2,第3群を移動させて変倍を行
う変倍光学系であって、該第3群は正の第31レンズ、負
の第32レンズ、そして正の第33レンズの3つのレンズを
有しており、該変倍光学系の傾きにより生ずる撮影画像
のブレをブレ検出手段により検出し、該ブレ検出手段か
らの出力信号に応じて駆動手段により前記3群を光軸と
直交する方向に移動させることにより撮影画像のブレを
補正し、該第31レンズと第33レンズの材質の平均屈折率
を▲▼、該第32レンズの材質の屈折率を▲▼と
したとき ▲▼−▲▼>0.15 なる条件を満足することを特徴とする防振機能を有した
変倍光学系。
3. A lens system comprising: a first lens unit having a negative refractive power, a second lens unit having a positive refractive power, and a third lens unit having a negative refractive power. 2. A variable power optical system for performing zooming by moving a third lens group, the third lens group including three lenses: a positive 31st lens, a negative 32nd lens, and a positive 33rd lens. The blurring of the photographed image caused by the inclination of the variable power optical system is detected by the blur detecting means, and the three groups are moved in the direction orthogonal to the optical axis by the driving means according to the output signal from the blur detecting means. By moving, the blur of the photographed image is corrected, and when the average refractive index of the material of the 31st lens and the 33rd lens is ▲ ▼, and the refractive index of the material of the 32nd lens is ▲ ▼, ▲ ▼-▲ ▼ A variable power optical system having an anti-vibration function, which satisfies the condition of> 0.15.
【請求項4】物体側より順に負の屈折力の第1群、正の
屈折力の第2群、そして負の屈折力の第3群の3つのレ
ンズ群を有し、該第1,第2,第3群を移動させて変倍を行
う変倍光学系であって、該第3群は正の第31レンズ、負
の第3レンズ、そして正の第33レンズの3つのレンズを
有しており、該変倍光学系の傾きにより生ずる撮影画像
のブレをブレ検出手段により検出し、該ブレ検出手段か
らの出力信号に応じて駆動手段により前記3群を光軸と
直交する方向に移動させることにより撮影画像のブレを
補正し、該第33レンズの物体側のレンズ面は凹面であり
該凹面には非球面が施されており、該非球面形状は光軸
方向にX軸、光軸と垂直方向にH軸、光の進行方向を正
としRを近軸曲率半径、A,B,C,D,Eを各々非球面係数と
なる式で表わしたとき 6×10-6<B<8×10-5 なる条件を満足することを特徴とする請求項1記載の防
振機能を有した変倍光学系。
4. A lens system comprising: a first lens unit having a negative refractive power, a second lens unit having a positive refractive power, and a third lens unit having a negative refractive power. 2. A variable power optical system for performing zooming by moving a third lens unit, the third lens unit having three lenses: a positive 31st lens, a negative 3rd lens, and a positive 33rd lens. The blurring of the photographed image caused by the inclination of the variable power optical system is detected by the blur detecting means, and the three groups are moved in the direction orthogonal to the optical axis by the driving means according to the output signal from the blur detecting means. By moving the lens, the blur of the captured image is corrected, the object-side lens surface of the 33rd lens is a concave surface, and the concave surface is provided with an aspherical surface. H axis perpendicular to the axis, the traveling direction of light is positive, R is the paraxial radius of curvature, and A, B, C, D, and E are aspherical coefficients, respectively. 2. A variable power optical system having an anti-vibration function according to claim 1, wherein the following condition is satisfied: 6 × 10 −6 <B <8 × 10 −5 .
【請求項5】物体側より順に負の屈折力の第1群、正の
屈折力の第2群、そして負の屈折力の第3群の3つのレ
ンズ群を有し、該第1,第2,第3群を移動させて変倍を行
う変倍光学系であって、該第3群は正の第31レンズ、負
の第32レンズ、そして正の第33レンズの3つのレンズを
有しており、該変倍光学系の傾きにより生ずる撮影画像
のブレをブレ検出手段により検出し、該ブレ検出手段か
らの出力信号に応じて駆動手段により前記3群を光軸と
直交する方向に移動させることにより撮影画像のブレを
補正し、該第3群の焦点距離をf3、全系の広角端のズー
ム位置における焦点距離をfwとしたとき −1.8<fw/f3<−0.5 なる条件を満足することを特徴とする防振機能を有した
変倍光学系。
5. A lens system comprising: a first lens unit having a negative refractive power, a second lens unit having a positive refractive power, and a third lens unit having a negative refractive power. 2. A variable power optical system for performing zooming by moving a third lens group, the third lens group including three lenses: a positive 31st lens, a negative 32nd lens, and a positive 33rd lens. The blurring of the photographed image caused by the inclination of the variable power optical system is detected by the blur detecting means, and the three groups are moved in the direction orthogonal to the optical axis by the driving means according to the output signal from the blur detecting means. When the focal length of the third group is f3 and the focal length at the zoom position at the wide-angle end of the entire system is fw, the condition of -1.8 <fw / f3 <-0.5 is satisfied. A variable power optical system having an anti-vibration function characterized by satisfying.
JP63186536A 1987-10-30 1988-07-26 Variable power optical system with anti-vibration function Expired - Fee Related JP2621387B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63186536A JP2621387B2 (en) 1988-07-26 1988-07-26 Variable power optical system with anti-vibration function
US07/261,231 US5270857A (en) 1987-10-30 1988-10-24 Optical system for stabilizing an image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63186536A JP2621387B2 (en) 1988-07-26 1988-07-26 Variable power optical system with anti-vibration function

Publications (2)

Publication Number Publication Date
JPH0235406A JPH0235406A (en) 1990-02-06
JP2621387B2 true JP2621387B2 (en) 1997-06-18

Family

ID=16190211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63186536A Expired - Fee Related JP2621387B2 (en) 1987-10-30 1988-07-26 Variable power optical system with anti-vibration function

Country Status (1)

Country Link
JP (1) JP2621387B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2581193B2 (en) * 1988-09-19 1997-02-12 キヤノン株式会社 Variable power optical system with anti-vibration function
US5283693A (en) * 1990-06-13 1994-02-01 Minolta Camera Kabushiki Kaisha Compact zoom lens system
JP2974522B2 (en) * 1992-11-19 1999-11-10 キヤノン株式会社 Small zoom lens
US6061180A (en) * 1996-10-29 2000-05-09 Canon Kabushiki Kaisha Zoom lens
JP3486532B2 (en) * 1997-08-04 2004-01-13 キヤノン株式会社 Zoom lens having vibration compensation function and camera having the same
JP4585776B2 (en) 2004-02-26 2010-11-24 キヤノン株式会社 Zoom lens and imaging apparatus having the same
US7583441B2 (en) 2004-07-09 2009-09-01 Canon Kabushiki Kaisha Photographic lens system and image pickup apparatus
JP4865239B2 (en) * 2005-02-21 2012-02-01 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5063224B2 (en) 2007-07-03 2012-10-31 キヤノン株式会社 Projection lens and image projection apparatus
JP5430130B2 (en) * 2008-11-27 2014-02-26 キヤノン株式会社 Zoom lens and imaging apparatus having the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58132209A (en) * 1982-02-01 1983-08-06 Canon Inc Wide angle zoom lens
JPS6247012A (en) * 1985-08-26 1987-02-28 Canon Inc Vibration-proof optical device

Also Published As

Publication number Publication date
JPH0235406A (en) 1990-02-06

Similar Documents

Publication Publication Date Title
JP2918115B2 (en) Variable power optical system with vibration proof function
JP3359131B2 (en) Variable power optical system with anti-vibration function
JP3412964B2 (en) Optical system with anti-vibration function
JP3141681B2 (en) Optical system with anti-vibration function
JP3072815B2 (en) Variable power optical system
JP3003370B2 (en) Variable power optical system with anti-vibration function
JPH10197786A (en) Optical system having vibrationproofing function
JP2605326B2 (en) Variable power optical system with anti-vibration function
JP2560377B2 (en) Variable magnification optical system with anti-vibration function
JP3919580B2 (en) Zoom lens and optical apparatus having the same
JPH11237550A (en) Variable power optical system provided with vibration proof function
JP2621280B2 (en) Variable power optical system with anti-vibration function
JP2535969B2 (en) Variable magnification optical system with anti-vibration function
JP2621387B2 (en) Variable power optical system with anti-vibration function
JP3706644B2 (en) Variable magnification optical system with anti-vibration function
JP4829445B2 (en) Zoom lens and optical apparatus having the same
JPH05224160A (en) Variable power optical system with vibration proof function
JP2001066500A (en) Variable magnification optical system having vibration- proof function
JP4095131B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JP2001124992A (en) Variable power optical system having vibration-proof function, and optical equipment equipped with the same
JPH10260355A (en) Variable power optical system with vibration-proof function
JP3927684B2 (en) Variable magnification optical system with anti-vibration function
JP4314248B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JP2002162565A (en) Zoom lens and optical equipment using the same
JP3070592B2 (en) Variable power optical system with anti-vibration function

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees