JP2619231B2 - Vacuum equipment - Google Patents

Vacuum equipment

Info

Publication number
JP2619231B2
JP2619231B2 JP21025195A JP21025195A JP2619231B2 JP 2619231 B2 JP2619231 B2 JP 2619231B2 JP 21025195 A JP21025195 A JP 21025195A JP 21025195 A JP21025195 A JP 21025195A JP 2619231 B2 JP2619231 B2 JP 2619231B2
Authority
JP
Japan
Prior art keywords
vacuum
alloy
degree
present
vacuum apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21025195A
Other languages
Japanese (ja)
Other versions
JPH0857290A (en
Inventor
道彦 稲葉
功 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP21025195A priority Critical patent/JP2619231B2/en
Publication of JPH0857290A publication Critical patent/JPH0857290A/en
Application granted granted Critical
Publication of JP2619231B2 publication Critical patent/JP2619231B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、真空装置に関し、特に
真空度を向上させることが可能な合金を用いた真空装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vacuum apparatus, and more particularly to a vacuum apparatus using an alloy capable of improving the degree of vacuum.

【0002】[0002]

【従来の技術】従来、真空装置用の材料として、硬度、
耐酸化性に優れ、さらに非磁性材料であることからオー
ステナイト系ステンレス鋼等が用いられてきた。しかし
ながら、近年荷電粒子加速器、薄膜作成真空装置、表面
分析機器の需要の増大により超高真空の要求が高まって
きた。さらに加速器に至っては粒子の加速による熱の発
生が問題となり、放熱性をよくする方法が必要になって
きた。
2. Description of the Related Art Conventionally, hardness, hardness,
Austenitic stainless steel or the like has been used because of its excellent oxidation resistance and nonmagnetic material. However, in recent years, the demand for an ultra-high vacuum has increased due to an increase in demand for a charged particle accelerator, a vacuum apparatus for preparing a thin film, and a surface analysis device. Further, in the case of an accelerator, the generation of heat due to the acceleration of particles becomes a problem, and a method for improving heat dissipation is required.

【0003】この二つの問題点を解決するためにAl合
金の利用が一部行なわれ初めているが、Al合金の特徴
は以下の通りである。 (1) 軽量で加工性に優れているために、多方面にわ
たる真空装置の複雑な構造を実現できる。 (2) 加速器の粒子線の直撃をうけても熱放散性が早
い。 (3) 低原子番号材料であるために放射化しにくく、
かつ放射減衰が速やかである。
[0003] In order to solve these two problems, use of an Al alloy has been partially started. The characteristics of the Al alloy are as follows. (1) Since it is lightweight and excellent in workability, it is possible to realize a complicated structure of a vacuum apparatus in various fields. (2) The heat dissipation is fast even if the particle beam of the accelerator is hit directly. (3) It is hard to be activated because it is a low atomic number material,
In addition, radiation decay is rapid.

【0004】しかしながら、従来のAl合金を用いた真
空装置では高真空を実現することができないという問題
があった。
However, there has been a problem that a high vacuum cannot be realized with a conventional vacuum device using an Al alloy.

【0005】また、Al合金中にMgを添加することで
真空度を向上させることが試みられているが、まだ尚、
その真空度を十分に高めることができなかった。
It has been attempted to improve the degree of vacuum by adding Mg to the Al alloy.
The degree of vacuum could not be sufficiently increased.

【0006】[0006]

【発明が解決しようとする課題】上述したように、従来
のAl合金を用いた真空装置では、高真空を実現できな
いという問題があった。本発明はこのような問題点に鑑
み、複雑な構造を実現でき、熱放散性が早いなどの特性
を持つAl合金を用いつつ、高真空を実現し得る現像装
置を提供することを目的とする。
As described above, a conventional vacuum apparatus using an Al alloy has a problem that a high vacuum cannot be realized. The present invention has been made in view of the above problems, and has as its object to provide a developing device capable of realizing a high vacuum while using an Al alloy having characteristics such as a rapid heat dissipation property that can realize a complicated structure. .

【0007】[0007]

【課題を解決するための手段および作用】本願第1の発
明は、Be、Ca、Sm、Tm及びYbの群から選ばれ
る少なくとも一種を3重量%以下、Si、Cu、Zn、
Fe、Ni、MnおよびCrの群から選ばれる少なくと
も一種を10重量%以下、残部実質的にAlである合金
からなる内表面を有することを特徴とする真空装置であ
る。
According to the first invention of the present application, at least one element selected from the group consisting of Be, Ca, Sm, Tm and Yb is 3% by weight or less, and Si, Cu, Zn,
A vacuum apparatus having an inner surface made of an alloy in which at least one selected from the group consisting of Fe, Ni, Mn, and Cr is 10% by weight or less, and the balance is substantially Al.

【0008】本願第2の発明は、Ba、Li及びSrの
群から選ばれる少なくとも一種を3重量%以下、Si、
Cu、Zn、Fe、Ni、MnおよびCrの群から選ば
れる少なくとも一種を10重量%以下、残部実質的にA
lである合金からなる内表面を有することを特徴とする
真空装置である。
According to a second aspect of the present invention, at least one element selected from the group consisting of Ba, Li and Sr is contained in an amount of 3% by weight or less, Si,
At least one selected from the group consisting of Cu, Zn, Fe, Ni, Mn and Cr is not more than 10% by weight, and the balance is substantially A
1 is a vacuum apparatus having an inner surface made of an alloy that is 1.

【0009】前記Ba、Be、Li、Ca、Sr、S
m、TmあるいはYbは、合金強度を強くするために強
度改善成分であり、Si、Cu、Zn、Fe、Ni、M
nあるいはCrは、真空装置内の真空度を向上させるた
めの真空度向上成分である。
The above Ba, Be, Li, Ca, Sr, S
m, Tm or Yb is a strength improving component for increasing the strength of the alloy, and includes Si, Cu, Zn, Fe, Ni, M
n or Cr is a vacuum degree improving component for improving the degree of vacuum in the vacuum device.

【0010】本発明者らは、酸化物の標準生成自由エネ
ルギーΔG゜が低く、蒸気圧Pが高い元素がゲッター効
果が大きく、これらの元素を真空装置の内表面の合金中
に添加することで、真空装置内の真空度をより高める事
が可能になることに気付き本発明に至った。
The present inventors have found that elements having a low standard free energy of formation ΔG ゜ of oxides and a high vapor pressure P have a large getter effect. By adding these elements to the alloy on the inner surface of the vacuum apparatus, The present inventors have found that it is possible to further increase the degree of vacuum in the vacuum apparatus, and have reached the present invention.

【0011】具体的には、Al合金中に添加することで
ゲッター効果を有する元素は、少なくともAlよりも酸
化されやすいものである。また、蒸気圧力がAlよりも
低い元素は、全て合金表面に固定されてしまうため、A
lよりも酸化されやすく、かつ酸化物での蒸気圧力がA
lよりも高い元素を添加した場合にゲッター効果が大き
い。
Specifically, an element having a getter effect by being added to an Al alloy is one that is more easily oxidized than at least Al. In addition, since all elements having a lower vapor pressure than Al are fixed on the alloy surface, A
and the vapor pressure at the oxide is A
When an element higher than 1 is added, the getter effect is large.

【0012】すなわちAlの酸化物の標準生成自由エネ
ルギーをΔG゜(Al2 3 )、任意の元素の酸化物の
標準生成自由エネルギーをΔG゜(V)、Alの蒸気圧
をP(Al2 3 )、任意の元素の蒸気圧をP(V)と
した時に、 ΔG゜(Al2 3 ) =−1121.94+0.2163T (kJ) logP(Al2 3 )=−16380T-1−logT+2327(mmHg) であり(Tは絶対温度)、下記(1)、(2)式を満た
す元素がゲッター効果が大きく、このような元素を添加
したAl合金を真空装置に用いれば高真空を実現できる
ことを本発明者らは見出だしたのである。ただし、本発
明の真空装置は0〜873℃の温度範囲内で用いられる
ため、前記(1)および(2)式は0〜873Kの範囲
内で満たすものでよい。0K以下はありえない温度であ
り、873K以上にするとAl合金が軟らかくなり基体
としての役割を果たさなくなる。
That is, the standard free energy of formation of Al oxide is ΔG ゜ (Al 2 O 3 ), the standard free energy of formation of oxide of any element is ΔG ゜ (V), and the vapor pressure of Al is P (Al 2 O 3 ), when the vapor pressure of an arbitrary element is P (V), ΔG ゜ (Al 2 O 3 ) =-1121.94 + 0.2163T (kJ) log P (Al 2 O 3 ) =-16380T -1- logT + 2327 (mmHg) (T is an absolute temperature), and an element satisfying the following formulas (1) and (2) has a large getter effect. A high vacuum is realized by using an Al alloy to which such an element is added in a vacuum device. The present inventors have found out what can be done. However, since the vacuum apparatus of the present invention is used within a temperature range of 0 to 873 ° C., the above expressions (1) and (2) may be satisfied within the range of 0 to 873K. Below 0K is an impossible temperature, and above 873K, the Al alloy becomes soft and does not serve as a substrate.

【0013】 ΔG゜(V)<ΔG゜(Al2 3 )・・・(1) P(V) >P(Al2 3 ) ・・・(2) この条件を満たす元素としては、Ba、Be、Li、C
a、Sr、Sm、Tm、YbおよびMgが挙げれる。
ΔG ゜ (V) <ΔG ゜ (Al 2 O 3 ) (1) P (V)> P (Al 2 O 3 ) (2) An element satisfying this condition is Ba. , Be, Li, C
a, Sr, Sm, Tm, Yb and Mg.

【0014】本願第1の発明は、前記真空度改善成分の
うちBe、Ca、Sm、TmおよびYbを用いることを
特徴としており、これらの成分はLi、SrあるいはM
gなどに比べて酸化しやすいために、特に短時間の加熱
で大きなゲッター効果を得ることや、加熱温度を比較的
低温に設定してもゲッター効果を得ることが可能とな
る。
The first invention of the present application is characterized in that Be, Ca, Sm, Tm and Yb are used among the vacuum degree improving components, and these components are Li, Sr or Mb.
Since it is easily oxidized as compared with g or the like, it is possible to obtain a large getter effect particularly by heating for a short time, and to obtain a getter effect even if the heating temperature is set to a relatively low temperature.

【0015】本願第2の発明は、前記真空度改善成分の
うちBa、LiあるいはSrは他の真空度改善成分やM
gと比べ酸化物の蒸気圧が大きいために、真空装置内を
排気するための真空ポンプなどの負荷を軽減することが
可能となる。
In the second invention of the present application, among the above-mentioned vacuum degree improving components, Ba, Li or Sr is the other vacuum degree improving component or M
Since the oxide has a higher vapor pressure than g, the load of a vacuum pump or the like for exhausting the inside of the vacuum device can be reduced.

【0016】本発明に係る真空度改善成分の添加量を3
wt%以下としたのは、これ以上の添加量では加工性が
悪くなったり、Sm、Srなどの一部の金属は後に述べ
る強度改善成分と化合し、磁性体を作る可能性があるか
らである。これらの成分の好ましい添加量は0.01〜
0.7wt%である。
The amount of the vacuum degree improving component according to the present invention is 3
The reason why the content is set to be not more than wt% is that workability may be deteriorated if the added amount is more than that, and some metals such as Sm and Sr may combine with a strength improving component described later to form a magnetic material. is there. The preferred addition amount of these components is 0.01 to
0.7 wt%.

【0017】図1は、押出し成形により作製した直後
の、本発明の真空装置表面からの添加元素の深さ方向分
布をイオンマイクロアナライザーで分析したものであ
る。材料は0.3Ca−5Cu−1Si−Alを使用し
ており、図中の1がCa、2がAl、3がCu、4がS
i,5がOである。図より明らかなように表面にCaが
濃縮していることが分かりOとプロファイルが一致して
いることから一部は酸化物となっていることが推定され
る。
FIG. 1 shows an ion microanalyzer for analyzing the distribution in the depth direction of the added element from the surface of the vacuum apparatus of the present invention immediately after it is produced by extrusion molding. The material used is 0.3Ca-5Cu-1Si-Al, 1 in the figure is Ca, 2 is Al, 3 is Cu, 4 is S
i and 5 are O. As is clear from the figure, it was found that Ca was concentrated on the surface, and since the profile matched that of O, it was presumed that part of the oxide was formed.

【0018】この材料で直径300mmの円筒を作りロ
ータリーポンプを接続したターボ分子ポンプで排気速度
300l/Sで真空びきをし10時間後のイオンゲージ
で真空度を測定すると10-9mmHgに達した。その後
べーキングを150℃で15時間行った後常温に戻し真
空度を測ると10-11 mmHgとなっていた。この容器
を切出し内壁を先程と同様な方法でイオンマイクロアナ
ライザーを用いて測定したところ図2に示すようなプロ
ファイルを示した。この図より表面層のCaが欠乏して
いることが分かる。
[0018] reached 10 -9 mmHg when measuring the degree of vacuum in the ion gauge after vacuum Bikioshi 10 hours the material in diameter 300mm in the turbo molecular pump pumping speed 300 l / S which was connected to a rotary pump make cylinder . Thereafter, baking was carried out at 150 ° C. for 15 hours, and after returning to room temperature, the degree of vacuum was measured to be 10 −11 mmHg. The container was cut out, and the inner wall was measured using an ion microanalyzer in the same manner as described above, and a profile as shown in FIG. 2 was shown. From this figure, it can be seen that Ca in the surface layer is deficient.

【0019】同様な実験を5Cu−1Si−Alの材料
について行っても真空度は10-10mmHgまでしか上
昇しないためCaが表面層より蒸発して酸化物を作りゲ
ッター効果を起こしていることが分る。
Even if a similar experiment is performed on a 5Cu-1Si-Al material, the degree of vacuum rises only up to 10 -10 mmHg, so that Ca evaporates from the surface layer to form an oxide, causing a getter effect. I understand.

【0020】強度改善成分として10wt%までのS
i、Cu、Zn、Fe、Ni、MnあるいはCrを含む
のはAlを硬くするためであり、10wt%より多くす
ると加工性が悪くなる。これら成分の添加量は元素にも
よるが望ましくは0.5〜6wt%がよい。
Up to 10 wt% of S as a strength improving component
The inclusion of i, Cu, Zn, Fe, Ni, Mn or Cr is for hardening Al, and if it is more than 10 wt%, the workability is deteriorated. The addition amount of these components depends on the element, but is desirably 0.5 to 6% by weight.

【0021】また、通常真空装置の内表面は、H2 O、
CO2 が付着しないように鏡面加工を施したりして表面
積を小さくしているが、本発明に使用される合金は、表
面粗さを小さくする必要がない。すなわち表面積が大き
いとゲッター効果も大きくなるために鏡面加工などの工
程を省くことが可能となり、生産性を高めることが可能
となる。
In general, the inner surface of the vacuum device is H 2 O,
Although the surface area is reduced by mirror finishing or the like so that CO 2 does not adhere, the alloy used in the present invention does not need to reduce the surface roughness. That is, if the surface area is large, the getter effect also becomes large, so that it is possible to omit steps such as mirror finishing, and it is possible to increase productivity.

【0022】また、Al合金は、一般に硫化物、窒化物
あるいは燐化物などの介在物などが比較的多く、表面粗
さが小さいとこれら介在物がAl合金表面から脱離し、
真空ポンプの摺動部に負荷を与えたり、蒸着、スパッタ
などに真空装置をしようする場合などは、得られる薄膜
にこれらの介在物などが付着するなどの不具合が生じ
る。このようなことを考慮すれば、JISB0601で
示されるところの中心線、平均表面粗さRaを2〜40
μmの粗面であることが望ましい。
In addition, Al alloys generally contain relatively large amounts of inclusions such as sulfides, nitrides and phosphides, and when the surface roughness is small, these inclusions are detached from the surface of the Al alloy,
When a load is applied to a sliding portion of a vacuum pump or when a vacuum apparatus is used for vapor deposition, sputtering, or the like, problems such as adhesion of these inclusions to the obtained thin film occur. In consideration of this, the center line and the average surface roughness Ra shown in JIS B0601 are 2 to 40.
It is desirable that the surface be a rough surface of μm.

【0023】本発明の真空装置は、超高真空を得るため
の装置には全て応用でき、粒子加速路、表面分析機器、
蒸着・スパッタ・イオンプレーティング装置イオン注入
装置気相化学反応装置に利用できるばかりでなく、真空
ポンプ、真空ゲージ用部材、真空用の配管、つぎてにも
利用できる。
The vacuum apparatus of the present invention can be applied to any apparatus for obtaining an ultra-high vacuum, and includes a particle acceleration path, a surface analysis device,
It can be used not only for vapor deposition, sputtering, ion plating, ion implantation, gas phase chemical reaction, but also for vacuum pumps, vacuum gauge members, vacuum piping, and the like.

【0024】上述したように、本発明の真空装置は、ベ
ーキングすることで表面に濃縮下真空度向上成分がゲッ
ター作用をおこし、真空度がベーキングしない場合と比
べ向上する。さらに室温で本願発明の真空装置を放置し
ていると再び真空度向上成分が表面に濃縮し、次のベー
キング時にまた効果を発揮する。
As described above, in the vacuum apparatus of the present invention, a component for improving the degree of vacuum under concentration causes a getter effect on the surface by baking, and the degree of vacuum is improved as compared with a case where no baking is performed. Further, when the vacuum apparatus of the present invention is left at room temperature, the component for improving the degree of vacuum is concentrated on the surface again, and the effect is exhibited again at the next baking.

【0025】[0025]

【実施例】【Example】

実施例1 通常のバイヤ法によりアルミナを精製し、これを氷晶石
と混合して溶融塩電解を行い、アルミニウムに還元す
る。この際電解炉にたまった溶融アルミニウムを随時く
みだして真空炉に移し、4%のCu、1%のSi、0.
2%のBaを添加しガス酸化物を取り除いてインゴット
を作製する。このインゴットを340mmφの円柱とし
て切り出し、中空材前方押出し成形により肉厚20mm
の円筒材を作製した。その後円筒の両端部にTiNコー
ティングを行ったCuガスケットの接続用溝をつけたフ
ランジをアルゴンガスのもとでTIG溶接した。ヌード
イオンゲージが接続され、Cuガスケット用の溝の切ら
れた蓋をボルト締めして一端を密閉した。溝を切られた
部分は前と同様のTINコーティングを行ってある。も
う一方は、ベローズのつけた蓋で同様に密閉して、ベロ
ーズの先はロータリーポンプを直接接続したターボ分子
ポンプに接続した。以上のような構造は図3に示す。
Example 1 Alumina is purified by an ordinary viar method, mixed with cryolite, subjected to molten salt electrolysis, and reduced to aluminum. At this time, the molten aluminum accumulated in the electrolytic furnace was extracted at any time and transferred to a vacuum furnace, where 4% Cu, 1% Si, 0.
An ingot is prepared by adding 2% Ba and removing gas oxides. This ingot was cut out as a 340 mmφ cylinder, and the thickness of the ingot was reduced to 20 mm by extrusion extrusion.
Was manufactured. Thereafter, a flange having connection grooves of a Cu gasket coated with TiN on both ends of the cylinder was TIG-welded under argon gas. A nude ion gauge was connected and a lid with a groove for a Cu gasket was bolted to seal one end. The grooved portion has the same TIN coating as before. The other was similarly sealed with a lid fitted with bellows, and the tip of the bellows was connected to a turbo-molecular pump directly connected to a rotary pump. The above structure is shown in FIG.

【0026】200l/sの速度で真空排気を行い5時
間後イオンゲージで真空装置内の真空度を測定したとこ
ろ5×10-9mmHgになったが、それ以上は上昇しな
かった。その後、巻線ヒーターを装置の外側に巻き15
0℃で10時間加熱した後、室温に戻し、改めて真空度
の測定をしたところ7×10-11 mmHgになり真空度
は向上した。
Vacuum evacuation was performed at a rate of 200 l / s, and after 5 hours, the degree of vacuum in the vacuum apparatus was measured with an ion gauge. The result was 5 × 10 −9 mmHg, but it did not rise any more. After that, the winding heater is wound around the outside of the device.
After heating at 0 ° C. for 10 hours, the temperature was returned to room temperature, and the degree of vacuum was measured again. As a result, it was 7 × 10 −11 mmHg, and the degree of vacuum was improved.

【0027】実施例2〜9 基材を下に示す成分にして実施例1と同様な実験を行っ
た。
Examples 2 to 9 The same experiment as in Example 1 was carried out using the base materials shown below.

【0028】 2.4Ba−0.7Mu−3.5Cu−Al 1.2Be−8.5Si−3.3Cu−Al 0.3Li−9.2Si−3.2Cu−Al 0.8Sr−3.5Ni−3.0Cu−Al 1.0Sm−6.2Cu−0.4Ni−Al 1.3Tm−1.8Mn−2.2Cu−Al 0.5Yb−2.1Mn−0.6Si−Al 0.1Be−0.1Ca−3.5Cu−0.5Cr−A
l 同様な方法で真空度を測定したところ10-11 mmHg
台で良好な真空度が得られた。
2.4Ba-0.7Mu-3.5Cu-Al 1.2Be-8.5Si-3.3Cu-Al 0.3Li-9.2Si-3.2Cu-Al 0.8Sr-3.5Ni- 3.0Cu-Al 1.0Sm-6.2Cu-0.4Ni-Al 1.3Tm-1.8Mn-2.2Cu-Al 0.5Yb-2.1Mn-0.6Si-Al 0.1Be-0. 1Ca-3.5Cu-0.5Cr-A
l When the degree of vacuum was measured by the same method, 10-11 mmHg
Good vacuum was obtained on the table.

【0029】[0029]

【発明の効果】本発明の真空装置によれば、軽量で加工
性の優れたAl合金を用い、超高真空を実現することが
可能になる。
According to the vacuum apparatus of the present invention, it is possible to realize an ultra-high vacuum by using an aluminum alloy which is lightweight and has excellent workability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 イオンマイクロアナライザーによる本発明に
係る合金のベーキング前の各元素の深さ方向プロファイ
ル図。
FIG. 1 is a depth profile of each element before baking of an alloy according to the present invention by an ion microanalyzer.

【図2】 イオンマイクロアナライザーによる本発明に
係る合金のベーキング後の各元素の深さ方向プロファイ
ル図。
FIG. 2 is a depth profile of each element after baking of the alloy according to the present invention by an ion microanalyzer.

【図3】 本発明の真空装置の概略断面図。FIG. 3 is a schematic sectional view of a vacuum device of the present invention.

【符号の説明】 1…Ca 2…Al 3…Cu 4…Si 5…O 6…ヌードイオンゲージ 7…ベローズ 8…ターボ分子ポンプ 9…ロータリーポンプ[Description of Signs] 1 ... Ca 2 ... Al 3 ... Cu 4 ... Si 5 ... O 6 ... Nude ion gauge 7 ... Bellows 8 ... Turbo molecular pump 9 ... Rotary pump

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 「真空」第26巻第5号第9〜13頁 (1983) 田鍋他訳シュレーガー著「金属学入 門」(丸善株式会社)第162頁(昭34− 6−1) 「岩波理化学辞典第3版」(岩波書 店)第403頁ゲッター欄(1972−12−15) ────────────────────────────────────────────────── ─── Continuation of the front page (56) References “Vacuum” Vol. 26, No. 5, pp. 9-13 (1983) Tanabe et al. 34-6-1) "Iwanami Physical and Chemical Dictionary Third Edition" (Iwanami Shoten) Page 403, Getter column (1972-12-15)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Be、Ca、Sm、Tm及びYbの群か
ら選ばれる少なくとも一種を3重量%以下、Si、C
u、Zn、Fe、Ni、MnおよびCrの群から選ばれ
る少なくとも一種を10重量%以下、残部実質的にAl
である合金からなる内表面を有することを特徴とする真
空装置。
1. The method according to claim 1, wherein at least one selected from the group consisting of Be, Ca, Sm, Tm and Yb is 3% by weight or less, Si, C
at least one selected from the group consisting of u, Zn, Fe, Ni, Mn and Cr, at most 10% by weight, with the balance being substantially Al
A vacuum apparatus having an inner surface made of an alloy that is:
【請求項2】 Ba、Li及びSrの群から選ばれる少
なくとも一種を3重量%以下、Si、Cu、Zn、F
e、Ni、MnおよびCrの群から選ばれる少なくとも
一種を10重量%以下、残部実質的にAlである合金か
らなる内表面を有することを特徴とする真空装置。
2. The method according to claim 1, wherein at least one selected from the group consisting of Ba, Li and Sr is at most 3% by weight, Si, Cu, Zn, F
A vacuum apparatus having an inner surface made of an alloy in which at least one selected from the group consisting of e, Ni, Mn, and Cr is 10% by weight or less, and the balance is substantially Al.
JP21025195A 1995-07-27 1995-07-27 Vacuum equipment Expired - Lifetime JP2619231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21025195A JP2619231B2 (en) 1995-07-27 1995-07-27 Vacuum equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21025195A JP2619231B2 (en) 1995-07-27 1995-07-27 Vacuum equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP60195752A Division JPH0661446B2 (en) 1985-09-06 1985-09-06 Vacuum device

Publications (2)

Publication Number Publication Date
JPH0857290A JPH0857290A (en) 1996-03-05
JP2619231B2 true JP2619231B2 (en) 1997-06-11

Family

ID=16586290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21025195A Expired - Lifetime JP2619231B2 (en) 1995-07-27 1995-07-27 Vacuum equipment

Country Status (1)

Country Link
JP (1) JP2619231B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7462217B2 (en) 2003-12-08 2008-12-09 E.I. Du Pont De Nemours And Company Method of preparation for the high performance thermoelectric material indium-cobalt-antimony
US7371960B2 (en) 2003-12-08 2008-05-13 E.I. Du Pont De Nemours And Company Figure of merit in Ytterbium-Aluminum-Manganese intermetallic thermoelectric and method of preparation
EP1735846A2 (en) 2004-04-14 2006-12-27 E.I.Du pont de nemours and company High performance thermoelectric materials and their method of preparation
CN103981406B (en) * 2014-04-10 2016-04-13 安徽乾通教育制造有限公司 A kind of Physical Experiment cabinet aluminium alloy extrusions and preparation method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
「岩波理化学辞典第3版」(岩波書店)第403頁ゲッター欄(1972−12−15)
「真空」第26巻第5号第9〜13頁(1983)
田鍋他訳シュレーガー著「金属学入門」(丸善株式会社)第162頁(昭34−6−1)

Also Published As

Publication number Publication date
JPH0857290A (en) 1996-03-05

Similar Documents

Publication Publication Date Title
US20070251821A1 (en) Soft magnetic target material
EP0364903A1 (en) Amorphous aluminum Alloys
KR910009840B1 (en) Corrosion-resistant and heat-resistant amorphous aluminum -based alloy thin film and process for producing the same
JP3774472B2 (en) Oxidation resistant coating for titanium alloys
KR100305974B1 (en) Method of using a permanent magnet usable for ultra-high vacuum
JP2619231B2 (en) Vacuum equipment
JPS5819739A (en) Thin film magnetic recording medium
RU2212473C1 (en) Method for depositing of coatings on alloys
EP0366709A1 (en) Corrosion resistant tantalum and tungsten alloys
JP2019143179A (en) Sputtering target
JPH01139755A (en) Surface treated steel sheet having superior press formability
JPH09228030A (en) High workability zinc-magnesium alloy plated steel sheet having low magnesium concentration and its production
JPH0661446B2 (en) Vacuum device
CN1186190C (en) Antiseptic treatment process for magnesium alloy surface using hot pressing blooming
JP3009503B2 (en) Surface treatment member and method of manufacturing the same
RU2213801C2 (en) Method of applying coatings on alloys
WO2002088413B1 (en) Sputter targets comprising ti and zr
JPH10137915A (en) Metallic mold for casting
JP2002275657A (en) Surface treated steel sheet
JPH09137267A (en) Alloyed zinc-magnesium base plated steel sheet excellent in corrosion resistance and its production
JPS6320448A (en) Aluminum plated steel sheet having excellent heat resistance
JP3183904B2 (en) Vacuum flange
JPH0341703A (en) Sintered magnet of rare-earth-iron based alloy having p-xylylene polymer film and manufacture thereof
JPH09111438A (en) Zinc-magnesium alloy plated steel sheet excellent in corrosion resistance in edge face and its production
JP3265382B2 (en) Aluminum alloy foil for electrolytic capacitor anode