JP2617325B2 - Insulation resistance measurement method - Google Patents

Insulation resistance measurement method

Info

Publication number
JP2617325B2
JP2617325B2 JP30298487A JP30298487A JP2617325B2 JP 2617325 B2 JP2617325 B2 JP 2617325B2 JP 30298487 A JP30298487 A JP 30298487A JP 30298487 A JP30298487 A JP 30298487A JP 2617325 B2 JP2617325 B2 JP 2617325B2
Authority
JP
Japan
Prior art keywords
frequency
current
transformer
low
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30298487A
Other languages
Japanese (ja)
Other versions
JPH01143972A (en
Inventor
辰治 松野
Original Assignee
東洋通信機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋通信機株式会社 filed Critical 東洋通信機株式会社
Priority to JP30298487A priority Critical patent/JP2617325B2/en
Publication of JPH01143972A publication Critical patent/JPH01143972A/en
Application granted granted Critical
Publication of JP2617325B2 publication Critical patent/JP2617325B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は活線状態で電路の絶縁抵抗を測定する方法に
関する。
Description: TECHNICAL FIELD The present invention relates to a method for measuring the insulation resistance of an electric circuit in a live state.

(従来技術) 従来,電路や負荷設備の絶縁劣化による漏電等の早期
発見の為には第4図に示す如き絶縁抵抗測定方法を用い
るのが一般的であった。
(Prior Art) Conventionally, for early detection of electric leakage or the like due to insulation deterioration of an electric circuit or a load facility, an insulation resistance measuring method as shown in FIG. 4 has been generally used.

即ち,Zなる負荷を有する受電トランスTの接地線LE
周波数1なる測定用低周波電圧を発振する発振器OSCに
接続されたトランスOTのコアに貫通させるか,又は電路
L1,L2を上記トランスOTのコアに貫通させる等して電路
にVsinω1t(ω1=2π1)の電圧を印加し,前記接
地線もしくは前記電路L1,L2を貫通せしめた変流器ZCT
により電路(負荷機器も含む)と大地間に存在する絶縁
抵抗R0及び対地静電容量C0を介して前記接地線に帰還す
る漏洩電流を検出し,これを増幅器AMPで増幅した後,
フィルタFILに加え,周波数1の成分のみを選択してフ
ィルタの出力を整流器DETに加えて得られる出力を用い
て電路の絶縁抵抗を一括して測定するものであった。こ
のような被測定回路は第5図に示す如き等価回路で表示
することができる。即ち第5図においてR0は被測定電路
ならびに負荷機器と大地間の総合絶縁抵抗,C0は同じく
対地静電容量であって,rは接地線LEの接地抵抗である。
That is, whether to penetrate the receiving transformer T core of the transformer OT connected to an oscillator OSC which oscillates a low-frequency voltage measurement frequency 1 comprising a ground line L E of having Z becomes load, or electrical path
L 1, the L 2 by applying a voltage of V sin ω 1 t (ω 1 = 2π 1) in path and the like to penetrate into the core of the transformer OT, through the ground line or the path L 1, L 2 Current transformer ZCT
By detecting the leakage current returning to the ground line via the insulation resistance R 0 and the ground capacitance C 0 existing between the electric circuit (including the load device) and the ground, and amplifying the leakage current with the amplifier AMP,
In addition to the filter FIL, only the component of frequency 1 was selected, and the output of the filter was applied to the rectifier DET to measure the insulation resistance of the electrical circuit at once. Such a circuit to be measured can be represented by an equivalent circuit as shown in FIG. That R 0 is overall insulation resistance between electrical path and a load device and the ground to be measured in FIG. 5, C 0 is also a capacitance to ground, r is a ground resistance of a ground line L E.

同図において電路に印加した周波数1の低周波電圧
をVsinω1tとすれば,接地線LEに帰還する周波数1
漏洩電流J1は J1=(Asinω1t+Bcosω1t)V …… ここで となる。一般に絶縁抵抗R0は接地抵抗rより十分大であ
るからR0≫r又 (ω0C0r)2≪1 …… であるならば前記,式は Bω1C0 …… となり,漏洩電流I1の整流値 を実測することによって絶縁抵抗R0を推定していた。
If a low-frequency voltage having a frequency 1 applied to the path in the figure and V sin ω 1 t, the leakage current J 1 frequency 1 which returns to the ground line L E is J 1 = (A sin ω 1 t + B cos ω 1 t) V ... where Becomes In general, the insulation resistance R 0 is sufficiently larger than the ground resistance r. Therefore, if R 0 ≫r or (ω 0 C 0 r) 2 ≪1... 1 C 0 ……, the rectified value of the leakage current I 1 Was actually measured to estimate the insulation resistance R0 .

しかしながら、,式から明らかなように対地静電
容量C0が大きいとき,又周波数1が高くなると正確な
絶縁抵抗の推定が困難となり又,接地抵抗rが高い時も
同様に推定が困難であった。
However, as is clear from the equation, when the ground capacitance C 0 is large, or when the frequency 1 is high, it is difficult to accurately estimate the insulation resistance. Similarly, when the ground resistance r is high, the estimation is also difficult. Was.

(本発明の目的) 本発明は従来の問題を解決するものであって,測定用
低周波電圧の周波数が若干高くても,又対地静電容量が
大きくても,又更に接地抵抗が高くても正しく絶縁抵抗
の測定することのできる方法を提供することを目的とす
る。
(Object of the present invention) The present invention is to solve the conventional problems. Even if the frequency of the low-frequency voltage for measurement is slightly high, the capacitance to ground is large, and the ground resistance is high, Another object of the present invention is to provide a method capable of correctly measuring the insulation resistance.

(発明の概要) この目的を達成するために本発明に於いては被測定電
路又はその接地線に信号注入トランスと変流器とを電磁
誘導或は直接に挿入接続する手段等により結合すること
によって該電路に,前記注入トランスを介して12
なる互いに異なる周波数の低周波信号を印加すると共
に,前記注入トランスに巻線した信号線より又は前記信
号発生源から直接に得た前記低周波信号を90度移相した
うえでこれを前記変流器に前記電路とは逆相となる如く
貫通せしめた接続線に印加し,前記変流器中の前記低周
波信号成分が最小となる如く前記接続線に流れる電流を
調整したときの該電流値と前記変流器出力中の当該低周
波信号値とから絶縁抵抗を算出するよう構成する。
(Summary of the Invention) In order to achieve this object, in the present invention, the signal injection transformer and the current transformer are connected to the electric circuit to be measured or the ground line thereof by means of electromagnetic induction or direct insertion and connection. 1 , 2 via the injection transformer
And applying a low-frequency signal of a different frequency to each other and shifting the phase of the low-frequency signal obtained from the signal line wound on the injection transformer or directly from the signal source by 90 degrees. The current value when the current flowing through the connection line is adjusted so that the low-frequency signal component in the current transformer is minimized by applying the current to the connection line penetrating the transformer so that the phase is opposite to the electric circuit. And calculating the insulation resistance from the low-frequency signal value in the current transformer output.

(実施例) 以下,図示した実施例に基づいて本発明を詳細に説明
するが,その前に本発明の原理について少しく詳細に説
明する。
(Embodiment) Hereinafter, the present invention will be described in detail based on the illustrated embodiment, but before that, the principle of the present invention will be described in some detail.

即ち,前記,式を得るためには式の関係が必要
であるが,式は対地静電容量C0,接地抵抗r,低周波電
圧の周波数の関係に一定の条件を設ているからこの条件
からはずれる場合は,式は成立しない。
That is, in order to obtain the above equation, the relation of the equation is necessary. However, since the equation sets a certain condition in the relation of the ground capacitance C 0 , the ground resistance r, and the frequency of the low frequency voltage, this condition is set. If not, the expression does not hold.

そこで式の制限をなくせば,,式のA,Bは となる。If we eliminate the restriction of the equation, A and B of the equation become Becomes

そこで第3図に示す如く,電路L1,L2を周波数1
2を夫々発振する発振器OSC1,OSC2の出力を印加した
トランスOTのコアに貫通せしめることにより電路にVsin
ω1t,Vsinω2tの電圧(それぞれVとするが,必ずしも
等しい必要はない)を印加し,かつ変流器ZCTを電路に
貫通させる。トランスOTのコアに巻線(1ターンであっ
てもよい)することにより得た電圧を90度移相器Cに印
加し,周波数12の電圧の位相を90度シフトし,90
度移相器Cの出力電圧ecosω1t+ecosω2tを接続線Lp
を介して例えば抵抗Rで終端すると共に,接続線を変流
器に逆相となる如く貫通させる。変流器ZCTの出力を増
幅器AMPで増幅すれば,その出力に得られる周波数1
電流成分J1′は となる。ここでi1cosω1tは抵抗Rに流れる周波数
1の電流である。電流I1′の整流値が最小となるように
抵抗Rもしくは電圧eの大きさを調整する。
Therefore, as shown in Figure 3, frequency 1 path L 1, L 2,
Oscillator OSC 1 to 2 respectively oscillation, the path by which allowed to penetrate into the core of the transformer OT was applied to the output of OSC 2 V sin
A voltage of ω 1 t, V sin ω 2 t (each of which is V, but not necessarily equal) is applied, and the current transformer ZCT is passed through the electric circuit. The voltage obtained by winding (may be one turn) the core of the transformer OT is applied to a 90-degree phase shifter C, and the phases of the voltages 1 and 2 are shifted by 90 degrees.
The output voltage e cos ω 1 t + e cos ω 2 t of the phase shifter C is connected to the connection line Lp
, For example, is terminated by a resistor R, and the connection line is passed through the current transformer in opposite phase. When the output of the current transformer ZCT is amplified by the amplifier AMP, the current component J 1 ′ of frequency 1 obtained at the output becomes Becomes Where i 1cos ω 1 t is the frequency flowing through the resistor R
1 current. The magnitude of the resistor R or the voltage e is adjusted so that the rectified value of the current I 1 ′ is minimized.

上記整流値が最小となる抵抗Rを流れる電流をi1とす
れば, 式から となり,このときの最小値I1となる。一方増幅器AMP出力中に含まれる周波数2の成
分J2′は となる。ここでi2cosω2tは抵抗Rに流れる周波数
2の電流であるI2′の整流値が最小となるように抵抗R
もしくは電圧eの大きさを調整する。上記整流値が最小
となる抵抗Rを流れる電流をi2とすれば, となり,このときの最小値I2となる。
If the current flowing through the resistor R to the rectifier value is minimized and i 1, the formula And the minimum value I 1 at this time is Becomes On the other hand, the component J 2 ′ of frequency 2 contained in the output of the amplifier AMP is Becomes Where i 2cos ω 2 t is the frequency flowing through the resistor R
In order to minimize the rectified value of the current I 2 ′, the resistance R
Alternatively, the magnitude of the voltage e is adjusted. Assuming that the current flowing through the resistor R at which the rectified value is minimum is i 2 , And the minimum value I 2 at this time is Becomes

次に上記測定結果から絶縁抵抗を算出する。 Next, the insulation resistance is calculated from the measurement result.

式から 式から ,式の比をとると よって対地静電容量C0となる。一方,式から 又,式から ,式より 式のC0を式に代入し,整理すれば となる。From the formula From the formula , The ratio of the equations Therefore, the ground capacitance C 0 is Becomes On the other hand, from the equation Also, from the formula From the formula Substituting C 0 in the expression into the expression Becomes

したがって接続線に流れる電流を調整するに当たりも
し,抵抗Rの値を調整する場合,式において 即ちこの場合 となる。ここで,R1,R2はそれぞれの式のJ1′,式
のJ2′の整流値が最小となる抵抗Rの値である。
Therefore, when adjusting the value of the resistor R when adjusting the current flowing through the connection line, That is, in this case Becomes Here, R 1 and R 2 are the values of the resistor R at which the rectified value of J 1 ′ of each equation and J 2 ′ of the equation becomes minimum.

一方,抵抗Rを固定値とし電圧eを調整する場合式
において, 即ちこの場合 となる。ここでe1,e2はそれぞれ式のJ1′の整流値が
最小となる電圧eの大きさである。
On the other hand, when the resistance R is fixed and the voltage e is adjusted, That is, in this case Becomes Here, e 1 and e 2 are the magnitudes of the voltage e at which the rectified value of J 1 ′ in the equation becomes minimum.

上記の如く測定結果i1,i2,I1,I2ならびに を用いて式にて絶縁抵抗値ならびに印加した低周波電
圧の周波数12の影響を受けずに正確に測定しうる
ことが分る。
As described above, the measurement results i 1 , i 2 , I 1 , I 2 and It can be understood that the measurement can be performed accurately without being affected by the insulation resistance value and the frequencies 1 and 2 of the applied low-frequency voltage by using the equation.

又上記説明では電路に印加した周波数12の低周
波の電圧が共に等しくVとしたが,夫々がV1,V2のとき
は,式のVをV1,,式のVをV2におきかえるこ
とにより大地静電容量C0となり,絶縁抵抗R0式で与えられる。ここでi1,i2の関係はもしくは式
で与えられる。V1,V2は一定であるから式の演算処理
することにより,絶縁抵抗R0を測定しうることになる。
本願発明は上述した測定原理に基づいて電路の絶縁抵抗
を測定するものであり、以下、上記測定原理を用いた実
施例について説明する。
In the above description, the low-frequency voltages of frequencies 1 and 2 applied to the electric circuit are both equal to V. However, when they are V 1 and V 2 , respectively, V in the equation is V 1 , and V in the equation is V 2 By replacing it with the earth capacitance C 0 And the insulation resistance R 0 is Given by the formula. Here, the relationship between i 1 and i 2 is given by the following equation. Since V 1 and V 2 are constant, the insulation resistance R 0 can be measured by performing the arithmetic processing of the equation.
The present invention measures the insulation resistance of an electric circuit based on the above-described measurement principle. Hereinafter, an embodiment using the above measurement principle will be described.

第1図は,本発明に於いて用いる装置の一実施例を示
す図である。第3図,第4図と同一の記号は同一の意味
をもつものとする。
FIG. 1 is a view showing one embodiment of an apparatus used in the present invention. The same symbols as those in FIGS. 3 and 4 have the same meaning.

同図に於いて,電路へ周波数12の互いに等しい
大きさVの低周波電圧を印加するために,周波数1
2を発振する発振器OSC1,OSC2をトランスOTのコアの
巻線と接続する。トランスOTには第4図では接続線LE
貫通しているが,電路L1,L2を共に貫通させても同様に
電路に低周波電圧の印加が可能である。電路L1,L2を貫
通する変流器ZCTの出力を増幅器AMPで増幅し,その出力
を周波数1成分のみを選択するフィルタFIL1,周波数
2成分のみを選択するフィルタFIL2とに入力し,各フ
ィルタの出力は夫々整流器DET1,DET2とに入力する。ト
ランスOTのコアに貫通もしくは巻線して得る出力導線Lc
を90度移相器PSに印加し,周波数12の両成分の電
圧の位相が電路への印加電圧より90度移相するようにす
る。またトランスOTの印加電圧と導線Lcの電圧間の移相
推移がない場合は,導線LcをトランスOTの一次側,即ち
発振器出力から得てもよい。移相器PSの出力を増幅器PA
MPに印加し,その出力を例えば可変抵抗器Rで終端す
る。かくして抵抗Rと増幅器PAMPの出力を接続する接続
線Lpには電路への印加電圧より90度移相した電流が流れ
る。
In the figure, to apply a low-frequency voltage having a frequency 1, 2 mutually equal magnitude V to path, Frequency 1,
An oscillator OSC 1, OSC 2 for oscillating the 2 connected to the winding core of the transformer OT. The trans OT Although the Figure 4 extending through the connection line L E, it is possible to apply the path L 1, the low-frequency voltage to similarly path be together passed through the L 2. The output of the current transformer ZCT passing through the electric circuits L 1 and L 2 is amplified by the amplifier AMP, and the output is filtered by the filter FIL 1 that selects only one frequency component,
2 only enter into the filter FIL 2 to select the components, the output of each filter is input to a respective rectifier DET 1, DET 2. Output conductor Lc obtained by penetrating or winding through the core of transformer OT
Is applied to the 90-degree phase shifter PS so that the phase of the voltage of both the frequency components 1 and 2 is shifted by 90 degrees from the voltage applied to the electric circuit. If there is no phase shift between the applied voltage of the transformer OT and the voltage of the conductor Lc, the conductor Lc may be obtained from the primary side of the transformer OT, that is, from the oscillator output. Output of phase shifter PS to amplifier PA
It is applied to MP and its output is terminated, for example, by a variable resistor R. Thus, a current flowing through the connection line Lp connecting the resistor R and the output of the amplifier PAMP is shifted by 90 degrees from the voltage applied to the electric circuit.

この接続線を変流器ZCTに貫通させ,変流器の一次電
流として印加する。このとき接続線に流れる電流が丁
度,電路の大地静電容量を介して流れる漏洩電流と逆相
となるごとく貫通させる。
This connection line is passed through the current transformer ZCT and applied as the primary current of the current transformer. At this time, the current is passed through the connection line so that the current has a phase opposite to the leakage current flowing through the ground capacitance of the electric circuit.

先ず整流器DET1の出力OUT1が最小値を示すように抵抗
Rを調整し,そのときの抵抗Rの値をR1,またこのとき
の整流器の出力I1をコンデンサCMに記憶させるため,ス
イッチSWをオン→オフすることによりコンデンサCMに出
力I1が記憶される。次に整流器DET2の出力OUT2が最小値
を示すように抵抗Rを調整し,そのときの抵抗Rの値を
R2,またそのときの整流器DET2の出力をI2とする。
Since the first output OUT 1 of the rectifier DET 1 adjusts the resistor R as the minimum value, R 1 the value of the resistor R at the time, also stores the output I 1 of the rectifier in this case the capacitor CM, the switch output I 1 is stored in the capacitor CM by turning on → off SW. Then the output OUT 2 of the rectifier DET 2 adjusts the resistor R as the minimum value, the value of the resistor R at the time
R 2 and the output of the rectifier DET 2 at that time are I 2 .

上記測定値R1,R2の比R2/R1を求めることにより式
のi1/i2を知ることができる。したがってR2/R1の値と定
数値 の積をとることにより が得られ,この値を係数回路CF1に設定する。コンデン
サCMの出力を引算器SUB1の一方の入力に加える。又係数
回路CF1の出力は となるから,これを引算器SUB1の他の一方の入力に印加
すると引算器SUB1の出力は となる。これは式の分子に相当する。又直流電圧Eを
引算器SUB2の一方の入力に印加する。次に直流電圧Eを
係数回路CF1と同一の値の設定された係数回路CF2に印加
すると係数回路CF2の出力は となる。これを引算器CUB2の他の一方の入力に印加する
と,引算器SUB2の出力は となる。
By obtaining the ratio R 2 / R 1 of the measured values R 1 and R 2 , i 1 / i 2 of the equation can be known. Thus R 2 / R 1 value and the constant value By taking the product of Is obtained, this value is set to the coefficient circuits CF 1. The output of capacitor CM is applied to one input of subtractor SUB1. The output of the coefficient circuit CF 1 is Since the, which the output of the subtractor SUB 1 and applied to the other one input of the subtracter SUB 1 is Becomes This corresponds to the numerator of the formula. The application of a DC voltage E to one input of the subtractor SUB 2. Then the output of the coefficient circuit CF 2 is applied to the coefficient circuits CF 2 which are set in the same value as the coefficient circuit CF 1 a DC voltage E is Becomes When this is applied to the other input of the subtractor CUB 2 , the output of the subtractor SUB 2 becomes Becomes

引算器SUB1の出力を割算器DIVの一方の入力へ,又引
算器SUB2の出力を割算器DIVの他の入力端に印加する
と,割算器DIVの出力は となる。直流電圧Eは一定値であるから,上記出力は
式に相当し,絶縁抵抗R0を測定しうることになる。
When the output of the subtracter SUB 1 is applied to one input of the divider DIV and the output of the subtracter SUB 2 is applied to the other input of the divider DIV, the output of the divider DIV becomes Becomes Since the DC voltage E is a constant value, the output corresponds to the equation, and the insulation resistance R0 can be measured.

第2図は本発明の他の実施例であり,接続線Lpに流れ
る電流を調整する別の方法を示している。即ち,90℃移
相器PSの出力を利得可変回路ATTに印加し,その出力を
増幅器PAMPに加え,増幅器PAMPの出力を固定抵抗Rで終
端とする。接続線Lpによる機能は第1図の場合と同様で
ある。可変利得回路を調整することにより増幅器PAMPの
出力電圧eが変わるため式の関係で接続線に電流i1
i2を流すことができる。
FIG. 2 shows another embodiment of the present invention, which shows another method for adjusting the current flowing through the connection line Lp. That is, the output of the 90 ° C. phase shifter PS is applied to the variable gain circuit ATT, the output is applied to the amplifier PAMP, and the output of the amplifier PAMP is terminated with a fixed resistor R. The function by the connection line Lp is the same as in the case of FIG. Since the output voltage e of the amplifier PAMP changes by adjusting the variable gain circuit, the current i 1 ,
i 2 can flow.

尚本発明の実施例においては,説明を簡単にするた
め,単相2線式電路の場合を示したが,本発明は何らこ
れに限定されるものでなく,一端接地型の単相3線式電
路,3相3線式電路の場合においても有効であることは説
明を要しないであろう。
In the embodiment of the present invention, the case of a single-phase two-wire circuit is shown for simplicity of explanation, but the present invention is not limited to this, and the single-phase three-wire one-end grounded type is used. It will not be necessary to explain that the present invention is also effective in the case of a three-phase three-wire circuit.

上記説明では周波数12における,式のA,B
を得るために,印加電圧より90度移相したBVcosω1t又
はBVcosω2tの電流成分を先ず打消すことにより得た
が,,式の電流J1′,J2′を夫々周波数12
印加低周波電圧ならびに印加低周波電圧より90度移相し
た電圧で夫々同期検波することにより周波数12
おけるA,Bを夫々測定可能であるから,これを用いて絶
縁抵抗R0を測定することも可能である。
In the above explanation, A and B in the equations at frequencies 1 and 2
Was obtained by first canceling out the current component of BV cos ω 1 t or BV cos ω 2 t shifted by 90 degrees from the applied voltage, and the currents J 1 ′ and J 2 ′ in the equation were respectively obtained. A and B at frequencies 1 and 2 can be measured by synchronous detection with the applied low-frequency voltage at frequencies 1 and 2 and a voltage shifted by 90 degrees from the applied low-frequency voltage, respectively. It is also possible to measure R 0 .

(発明の効果) 本発明の方法によれば,接地抵抗が大きくても,正確
に絶縁抵抗の測定が可能である。また印加電圧の周波数
を高くすることが可能なため印加トランスOTの小型化が
可能となり可搬型の測定器を提供することができる。
(Effect of the Invention) According to the method of the present invention, it is possible to accurately measure the insulation resistance even if the ground resistance is large. Further, since the frequency of the applied voltage can be increased, the size of the applied transformer OT can be reduced, and a portable measuring instrument can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す図,第2図は本発明の
他の実施例を示す図,第3図は本発明の説明に用いる
図,第4図は従来の測定方法を示す図,第5図は被測定
電路の等価回路を示す図である。 T……受電トランス,OSC1,2……発振器,OT……トラン
ス,ZCT……変流器,AMP,PAMP……増幅器,FIL1,2……フ
ィルタ,DET1,2……整流器,CF1,2……係数回路,SUB
1,2……引算器,DIV……割算器,ATT……可変利得回路。
1 is a diagram showing one embodiment of the present invention, FIG. 2 is a diagram showing another embodiment of the present invention, FIG. 3 is a diagram used for explaining the present invention, and FIG. FIG. 5 is a diagram showing an equivalent circuit of the electric circuit to be measured. T: Power receiving transformer, OSC 1,2 ... Oscillator, OT ... Transformer, ZCT ... Current transformer, AMP, PAMP ... Amplifier, FIL 1,2 ... Filter, DET 1,2 ... Rectifier, CF 1,2 …… coefficient circuit, SUB
1,2 ... subtracter, DIV ... divider, ATT ... variable gain circuit.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被測定電路又は該電路の接地線に注入トラ
ンスと変流器とを結合し、該注入トランスを介して前記
電路に周波数f1とf2の低周波電圧を印加すると共に前記
変流器出力中の前記低周波電圧成分を検出することによ
って電路の絶縁抵抗を測定する方法において、 前記変流器には接続線を貫通せしめ、かつ該接続線を抵
抗で終端すると共に、該接続線に前記低周波信号電流を
90度移相しかつ前記電路に印加されている低周波信号と
は逆相になる如く電流を印加し、 前記変流器出力中の前記周波数f1の信号成分が最小とな
るときの前記変流器出力中の低周波電圧成分及び前記接
続線に流れる低周波信号電流値と、 前記変流器出力中の前記周波数f2の信号成分が最小とな
るときの前記変流器出力中の低周波電圧成分及び前記接
続線に流れる低周波信号電流値とから当該電路の絶縁抵
抗を測定したことを特徴とする絶縁抵抗測定方法。
An injection transformer and a current transformer are coupled to a circuit to be measured or a ground wire of the circuit, and low-frequency voltages of frequencies f1 and f2 are applied to the circuit via the injection transformer, and the current transformer is connected to the circuit. A method for measuring the insulation resistance of an electric circuit by detecting the low-frequency voltage component in the output of a transformer, wherein the current transformer is passed through a connection line, and the connection line is terminated with a resistor, and the connection line The low-frequency signal current
A current is applied so that the phase is shifted by 90 degrees and the phase is opposite to the low-frequency signal applied to the electric circuit, and the current transformer when the signal component of the frequency f1 in the output of the current transformer is minimized. A low-frequency voltage component in the output of the current transformer and a low-frequency signal current value flowing in the connection line; and a low-frequency voltage in the output of the current transformer when the signal component of the frequency f2 in the output of the current transformer is minimized. A method for measuring insulation resistance, comprising measuring insulation resistance of the electric circuit from a component and a low-frequency signal current value flowing through the connection line.
【請求項2】前記接続線に印加する低周波信号を注入ト
ランスに貫通せしめた信号線によって得ると共に、該信
号線に流れる電流を90度移相器を介して導出したことを
特徴とする特許請求の範囲第1項記載の絶縁抵抗測定方
法。
2. A patent wherein a low-frequency signal applied to the connection line is obtained by a signal line penetrating an injection transformer, and a current flowing through the signal line is derived through a 90-degree phase shifter. The method for measuring insulation resistance according to claim 1.
【請求項3】前記接続線に流れる電流を調整するにあた
り、前記90度移相した電圧の大きさを調整したことを特
徴とする特許請求の範囲第1項又は第2項記載の絶縁抵
抗測定方法。
3. The insulation resistance measurement according to claim 1, wherein the magnitude of the voltage shifted by 90 degrees is adjusted when adjusting the current flowing through the connection line. Method.
【請求項4】前記接続線に流れる電流を調整するにあた
り、該接続線に直列に挿入した抵抗素子の値を調整した
ことを特徴とする特許請求の範囲第1項乃至3項記載の
絶縁抵抗測定方法。
4. The insulation resistance according to claim 1, wherein a value of a resistance element inserted in series with the connection line is adjusted in adjusting a current flowing through the connection line. Measuring method.
JP30298487A 1987-11-30 1987-11-30 Insulation resistance measurement method Expired - Lifetime JP2617325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30298487A JP2617325B2 (en) 1987-11-30 1987-11-30 Insulation resistance measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30298487A JP2617325B2 (en) 1987-11-30 1987-11-30 Insulation resistance measurement method

Publications (2)

Publication Number Publication Date
JPH01143972A JPH01143972A (en) 1989-06-06
JP2617325B2 true JP2617325B2 (en) 1997-06-04

Family

ID=17915532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30298487A Expired - Lifetime JP2617325B2 (en) 1987-11-30 1987-11-30 Insulation resistance measurement method

Country Status (1)

Country Link
JP (1) JP2617325B2 (en)

Also Published As

Publication number Publication date
JPH01143972A (en) 1989-06-06

Similar Documents

Publication Publication Date Title
JP2617325B2 (en) Insulation resistance measurement method
JPS60186765A (en) Compensating method of measuring device for insulation resistance
JP2617324B2 (en) Insulation resistance measurement method
JP2665912B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JPS61155869A (en) Measuring method of phase-compensated insulation resistance
JP2764582B2 (en) Simple insulation resistance measurement method
JP2612724B2 (en) Insulation resistance measurement method
JP2750690B2 (en) Leakage current detection method
JP2896572B2 (en) Simple insulation resistance measurement method
JP2612719B2 (en) Simple insulation resistance measurement method for electrical circuits
JP2696513B2 (en) Electrical capacitance measurement method for ground
JPH0247708B2 (en) ZETSUENTEIKO SOKUTEIHOHO
JPH0640113B2 (en) Simple insulation resistance measuring method
JPH028529B2 (en)
JP2750705B2 (en) Insulation resistance measurement method
SU785770A1 (en) Current measuring device
JP2896574B2 (en) Compensation method for phase characteristics of zero-phase current transformer
JP2614447B2 (en) Insulation resistance measurement method that compensates for the effect of ground resistance
JP2593669B2 (en) Method for locating defective electrical insulation
JPS6319569A (en) Method for detecting leaked current
JP2654549B2 (en) Simple insulation resistance measurement method
JP2556980B2 (en) Electric fault detection method
SU1026100A2 (en) Hall emf meter
JPH0458581B2 (en)
JP2750716B2 (en) Insulation resistance measurement method for low voltage wiring etc.