JP2617253B2 - Floating zone molten single crystal production method - Google Patents

Floating zone molten single crystal production method

Info

Publication number
JP2617253B2
JP2617253B2 JP21264491A JP21264491A JP2617253B2 JP 2617253 B2 JP2617253 B2 JP 2617253B2 JP 21264491 A JP21264491 A JP 21264491A JP 21264491 A JP21264491 A JP 21264491A JP 2617253 B2 JP2617253 B2 JP 2617253B2
Authority
JP
Japan
Prior art keywords
rod
single crystal
diameter
floating zone
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21264491A
Other languages
Japanese (ja)
Other versions
JPH0532478A (en
Inventor
一正 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP21264491A priority Critical patent/JP2617253B2/en
Publication of JPH0532478A publication Critical patent/JPH0532478A/en
Application granted granted Critical
Publication of JP2617253B2 publication Critical patent/JP2617253B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、浮遊帯域溶融法によっ
て大直径のシリコン単結晶を製造する方法に関し、特に
中間工程の浮遊帯域条件を制御し、上記シリコン単結晶
製造のための中間体シリコン多結晶棒の上記把持部を強
化する浮遊帯域溶融単結晶製造方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a large-diameter silicon single crystal by a floating zone melting method, and more particularly to a method for controlling the floating zone conditions in an intermediate step to produce an intermediate silicon for producing the silicon single crystal. The present invention relates to an improvement in a method for producing a floating zone molten single crystal for strengthening the above-mentioned grip portion of a polycrystalline rod.

【0002】[0002]

【従来の技術】シリコン単結晶棒を浮遊帯域溶融単結晶
製造方法(以下単にFZ法という)によって製造するた
めには、例えば珪素と塩素との揮発性化合物、即ちクロ
ロシラン類の熱分解法又は加熱還元法によって得られた
シリコン多結晶棒を保護ガス雰囲気中において、高周波
誘導加熱により部分的に溶融し、この溶融帯域を通常下
部から上部へ移動し、単結晶化することが行なわれる。
2. Description of the Related Art In order to produce a silicon single crystal rod by a floating zone melting single crystal production method (hereinafter simply referred to as FZ method), for example, a thermal decomposition method of a volatile compound of silicon and chlorine, that is, chlorosilanes, or heating. In a protective gas atmosphere, the silicon polycrystal rod obtained by the reduction method is partially melted by high-frequency induction heating, and the melting zone is usually moved from the lower part to the upper part to perform single crystallization.

【0003】かかるFZ法は、原理的には上記シリコン
多結晶棒下端溶融の際に結晶方位を特定した所謂種結晶
を溶接固化するならば、上記溶融帯域を全シリコン多結
晶棒に渡って1回通過させれば、単結晶化が可能と考え
られるが、実際には完全な単結晶化は不可能に近い。そ
こで通常少なくとも二回の溶融帯域の通過が行なわれ
る。以下の説明では、この二回通過の行なわれる場合に
ついて、従来法の技術的な問題点を明らかにする。ま
た、一回通過のシリコン多結晶棒をシリコン中間体多結
晶棒と呼ぶことにする。
[0003] In principle, the FZ method, if a so-called seed crystal having a specified crystal orientation is solidified by welding when the lower end of the silicon polycrystal rod is melted, the above-mentioned melting zone extends over the entire silicon polycrystal rod by 1 mm. Although it is considered that single crystallization is possible by passing through once, it is almost impossible to completely crystallize in practice. There is usually at least two passes through the melting zone. In the following description, the technical problems of the conventional method will be clarified in the case where the two passes are performed. The single pass polycrystalline silicon rod is referred to as a silicon intermediate polycrystalline rod.

【0004】更に従来法によれば、FZ法によるシリコ
ン単結晶棒が最近の傾向として大直径化するに及んで、
上記保護ガス中に窒素ガスを混入する工夫がなされてい
る。例えば、保護ガス中に微量の窒素ガスを混入させる
とシリコン単結晶が丈夫になり(特開昭57−1749
7号)又、FZ法の工程中における高周波コイルからの
放電現象を制御する(特開昭58−176195号)た
めに同様に窒素ガスの混入が有効である。
Further, according to the conventional method, as the diameter of the silicon single crystal rod by the FZ method has recently become larger,
A contrivance has been made to mix nitrogen gas into the protective gas. For example, if a small amount of nitrogen gas is mixed into the protective gas, the silicon single crystal becomes strong (Japanese Patent Laid-Open No. 57-1749).
No. 7) Also, in order to control the discharge phenomenon from the high-frequency coil during the process of the FZ method (Japanese Patent Application Laid-Open No. 58-176195), it is similarly effective to mix nitrogen gas.

【0005】FZ法の工程中にアルゴンガス雰囲気中に
特開昭57−17497号の教示する如く、アルゴンガ
スに対し窒素ガスを0.05〜3%(容量比)を混合す
るとシリコン単結晶中に窒素ドープされ、その結果この
ようにして製造されたシリコン単結晶は、半導体電子装
置製造のためのシリコン基板として用いられたときに熱
歪に対し強くスリップの発生が少ない。
As taught in Japanese Patent Application Laid-Open No. 57-17497, in an argon gas atmosphere during the process of the FZ method, when nitrogen gas is mixed with 0.05 to 3% (by volume) of argon gas, silicon single crystal Is doped with nitrogen, and as a result, the silicon single crystal thus manufactured is resistant to thermal distortion and generates little slip when used as a silicon substrate for manufacturing a semiconductor electronic device.

【0006】また、この窒素ドープはシリコン単結晶に
従来それなしでは多発したスワール状結晶欠陥その他の
発生を抑制する効果がある。このようにFZ法によりシ
リコン単結晶製造法では、従来通常2回の溶融帯域の通
過が採用され、更に最近の改善工夫によって窒素ガス微
量混入の条件下で実施する事が要請されている。
Further, this nitrogen doping has an effect of suppressing the occurrence of swirl-like crystal defects and the like which have frequently occurred in a silicon single crystal without it. As described above, in the silicon single crystal production method by the FZ method, conventionally, two passes through the melting zone are usually adopted, and it is required to implement the method under a condition of a small amount of nitrogen gas mixed by recent improvement.

【0007】しかしながら、かかる条件下でのFZ法に
おいて、致命的欠陥ともいうべき技術的問題点が大直径
のシリコン単結晶棒の製造において本発明者らによって
発見された。上記直径が75mmを越えると、その技術
的問題点は製造コストの見地から許容しがたいものにな
る。
However, in the FZ method under such conditions, the present inventors have found a technical problem which may be called a fatal defect in the production of a silicon single crystal rod having a large diameter. When the diameter exceeds 75 mm, the technical problem becomes unacceptable from the viewpoint of manufacturing cost.

【0008】即ちFZ法の中間工程において、前記溶融
帯域の原料被溶融棒のほぼ全長に渡る通過の終点におい
て、当該溶融帯域の移動は停止され、中間体多結晶棒の
みが、上部未溶融原料被溶融棒から下方へ除々に遠ざけ
られ、その溶融帯域の部分で上下に切り離しが行なわ
れ、当該中間体多結晶棒の上部が中央に突起を形成して
完全に固化した後高周波加熱を停止することで終わる。
That is, in the intermediate step of the FZ method, the movement of the melting zone is stopped at the end point of the passage of the raw material rod in the melting zone over substantially the entire length, and only the intermediate polycrystalline rod is moved to the upper unmelted raw material. The rod is gradually moved downward from the rod to be melted, and vertically separated at the melting zone, and the high-frequency heating is stopped after the upper part of the intermediate polycrystalline rod forms a projection at the center and is completely solidified. It ends with things.

【0009】ところが、1回目のFZ操作で得られるシ
リコン中間体多結晶棒の末端部分(以後、尾部と言う)
の機械的強度が弱くなる現象が顕在化し、次工程の2段
目FZ装置に前記の尾部を金属製のチャックで締めて固
定しようとすると、尾部周辺(図3)部分にクラックが
発生したり、或いは極端な場合はここから破壊が起こ
り、シリコン中間体多結晶棒全体が落下してしまうと言
う問題が発生する。
However, the end portion of the polycrystalline silicon intermediate rod obtained by the first FZ operation (hereinafter referred to as tail).
When the tail part is tightened with a metal chuck in the second-stage FZ device in the next process and fixed, a crack occurs around the tail part (FIG. 3). Or, in an extreme case, there occurs a problem that destruction occurs from this point and the whole silicon intermediate polycrystalline rod falls.

【0010】[0010]

【発明が解決しようとする課題】本発明は、アルゴンガ
スを主雰囲気ガスとしてこれに微量の窒素ガスを混合し
た雰囲気中で、少なくとも2回の溶融帯域通過をおこな
うFZ法において、中間工程の結果得られた中間体多結
晶棒の尾部が、最終工程のために上部が機械的に把持さ
れた際、またはその後の工程中にその把持部にクラック
発生或いはそれによって破壊し、上記中間体多結晶棒が
落下破損しないような充分な強度を有する上記中間体多
結晶棒のFZ法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to an FZ method in which an argon gas is used as a main atmosphere gas and a small amount of a nitrogen gas is mixed in the FZ method to perform at least two passes through a melting zone. When the tail portion of the obtained intermediate polycrystalline rod is mechanically gripped at the upper portion for the final process, or during the subsequent process, cracks are generated in the grip portion or broken by the intermediate polycrystalline rod, and It is an object of the present invention to provide an FZ method of the above intermediate polycrystalline rod having sufficient strength so that the rod does not fall and break.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するた
め、本発明方法においては、窒素ガスを含む高純度アル
ゴンガスをチャンバー内保護ガスとするシリコン半導体
FZ法において、中間の浮遊帯域溶融工程の終点におけ
る原料被溶融棒、または前段階の中間体多結晶棒の再固
化部分と未溶融部分との切り離し速度を、再固化した中
間体多結晶棒の直径に応じて、一定値以下に制御して原
料被溶融棒または前段階の中間体多結晶棒との切り離し
を行なうものである。
In order to solve the above-mentioned problems, the present invention provides a method of silicon semiconductor FZ using a high-purity argon gas containing nitrogen gas as a protective gas in a chamber. At the end point, the rate of separation between the re-solidified part and the unmelted part of the raw material melted rod or the pre-processed intermediate polycrystalline rod is controlled to a certain value or less according to the diameter of the re-solidified intermediate polycrystalline rod. To separate from the raw material melted rod or the intermediate stage polycrystalline rod at the previous stage.

【0012】上記本発明の方法は、上記中間体多結晶棒
の直径が比較的小さい場合には特別の効果を奏さない
が、その直径が75mmを越えると顕著になる。更に具
体的な条件として、上記高純度アルゴンに窒素ガスが最
高3000ppmを含むチャンバー内保護ガスを用いる
場合には、上記切り離し速度が中間体多結晶棒の直径に
応じ、次の関係にあれば本発明の技術的課題は効果的に
解決される。即ち、
The method of the present invention has no special effect when the diameter of the intermediate polycrystalline rod is relatively small, but becomes remarkable when the diameter exceeds 75 mm. As a more specific condition, when a protective gas in a chamber containing a maximum of 3000 ppm of nitrogen gas is used as the high-purity argon, the above-mentioned separation speed depends on the diameter of the intermediate polycrystalline rod and the following relationship is satisfied. The technical problem of the invention is effectively solved. That is,

【0013】 中間多結晶棒の直径(mm) 切り離し速度(mm/分) 80〜100 2.5以下 100以上 1.5以下[0013] Diameter of intermediate polycrystalline rod (mm) Separation speed (mm / min) 80 to 100 2.5 or less 100 or more and 1.5 or less

【0014】[0014]

【作用】本発明においては、シリコン中間体多結晶を製
造する場合には、その雰囲気ガスがアルゴンガスに加え
て窒素ガスが混合されている条件で浮遊帯域通過が行な
われるので、当然ながら上記中間体多結晶中に窒素がド
ープされるのは間違いない。
In the present invention, in the case of producing a silicon intermediate polycrystal, the gas passes through the floating zone under the condition that the atmosphere gas is mixed with nitrogen gas in addition to argon gas. There is no doubt that nitrogen is doped into the body polycrystal.

【0015】また、従来技術のところで公知文献をあげ
ながら紹介した様に、窒素ガスはシリコン単結晶中にド
ープされてむしろ同単結晶を強化することから考える
と、中間体多結晶棒が直径が大きくなったとはいえ、そ
の尾部において機械的強度が低下するのは理解し難いこ
とである。仮説であるが、中間体多結晶棒がその名が示
すごとく、完全な単結晶とは程遠く、比較的未発達の小
単結晶粒で構成されていることから、混入窒素と中間体
多結晶棒の上記結晶粒界が作用しあって、本発明の技術
的課題となる中間体多結晶棒の尾部を機械的に劣悪なも
のとすると考える。
Further, as introduced in the prior art with reference to the known literature, nitrogen gas is doped into a silicon single crystal and rather strengthens the single crystal. Despite the increase, it is difficult to understand the decrease in mechanical strength at its tail. The hypothesis is that the intermediate polycrystalline rod, as the name implies, is far from a perfect single crystal and is composed of relatively undeveloped small single crystal grains. It is considered that the above-mentioned crystal grain boundaries act to make the tail part of the intermediate polycrystalline rod, which is a technical subject of the present invention, mechanically inferior.

【0016】本発明に係わる大直径シリコン中間体多結
晶棒の製造方法に於いてチャンバー内で保護ガスとして
のアルゴンガス中の窒素ガス濃度を一定値以下に維持
し、原料多結晶から大直径のシリコン中間体多結晶棒を
育成する。
In the method for producing a large-diameter silicon intermediate polycrystalline rod according to the present invention, the nitrogen gas concentration in the argon gas as a protective gas is maintained at a constant value or less in a chamber, and a large-diameter silicon raw material is removed from the polycrystalline raw material. Growing silicon intermediate polycrystalline rods.

【0017】この育成方法としては公知の方法により上
軸に原料多結晶棒を、下軸に小さい種結晶を保持し高周
波誘導加熱コイルにより原料多結晶の下端に接合し、種
絞りにより無転位化しつつ、前記コイルに対して原料多
結晶を回転しつつ軸線方向に下降させ、コイルにより生
じたメルト部を相対的に原料多結晶棒の上軸方向へ移動
させ育成スピードをコントロールしながら中間体多結晶
棒を製造する。
In this growing method, a polycrystalline raw material rod is held on an upper axis and a small seed crystal is held on a lower axis by a known method, and is joined to a lower end of the raw material polycrystal by a high-frequency induction heating coil. Meanwhile, while rotating the polycrystalline raw material with respect to the coil, it is lowered in the axial direction, and the melt generated by the coil is relatively moved in the upper axial direction of the polycrystalline raw material rod to control the growing speed while controlling the growing speed. Manufacture crystal rod.

【0018】今、コイルに対して上軸,下軸を同スピー
ドで下降させた場合、メルトが原料多結晶棒の上軸近傍
に近づいた時上軸の下降を止め、下軸の下降をそのまま
続行すれば必然的にメルト部分で上下が切り離される。
When the upper and lower shafts are lowered at the same speed with respect to the coil, when the melt approaches the vicinity of the upper shaft of the polycrystalline raw material rod, the lowering of the upper shaft is stopped, and the lowering of the lower shaft is maintained. If you continue, the top and bottom are inevitably cut off at the melt.

【0019】この切り離しスピードは、下軸の下降スピ
ードを任意に調節することでコントロール出来るが、直
径が75mm以下の場合はこの切り離しスピードを特別
に考慮しなくてもよく、上記の溶融帯域通過スピードと
同じスピードで(通常2〜5mm/分)下軸を下降させ
ても上記のような問題は発生しなかった。
The separating speed can be controlled by arbitrarily adjusting the lowering speed of the lower shaft. However, when the diameter is 75 mm or less, the separating speed does not need to be taken into account. Even if the lower shaft was lowered at the same speed (usually 2 to 5 mm / min), the above problem did not occur.

【0020】本発明は、この切り離し速度を直径の大き
さと保護ガス中の窒素濃度に応じて最適のスピードにコ
ントロールする事によって、当初の目的が達せられると
いう発見に基づいている。一般的に言えば、直径が大き
いほど窒素濃度を低くするか切り離しスピードを遅く、
直径が小さければ窒素濃度を高めても切り離しスピード
を早めてもよいと言うことである。
The present invention is based on the discovery that the initial objective can be achieved by controlling the separation speed to an optimum speed according to the size of the diameter and the nitrogen concentration in the protective gas. Generally speaking, the larger the diameter, the lower the nitrogen concentration or the slower the cutting speed,
The smaller the diameter, the higher the nitrogen concentration or the faster the cutting speed.

【0021】[0021]

【実施例】以下に本発明方法の実施に用いられるFZ装
置について図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An FZ apparatus used for carrying out the method of the present invention will be described below with reference to the drawings.

【0022】図1において、2はFZ装置である。該F
Z装置2はチャンバー4内に上下方向に相対向して設け
られた上軸6及び下軸8を有している。該上軸6の下端
にはチャック10を介して所定の直径の原料シリコン多
結晶棒Pが支持され、かつ下軸8の上端にはチャック1
2を介して種結晶Sが支持される。原料多結晶Pと種結
晶Sとの接触部を高周波誘導加熱コイルCで溶解し、充
分溶解が終わった後、種結晶Sを回転させながら、上軸
6及び下軸8を同時に微速で下降させ、溶融帯域Mを原
料シリコン多結晶棒Pの上端まで移動させ、結晶化を行
うものである。
In FIG. 1, reference numeral 2 denotes an FZ device. The F
The Z device 2 has an upper shaft 6 and a lower shaft 8 provided in the chamber 4 so as to face each other in the vertical direction. A lower end of the upper shaft 6 supports a raw material polycrystalline silicon rod P having a predetermined diameter via a chuck 10, and a lower end of the lower shaft 8 has a chuck 1.
2, the seed crystal S is supported. The contact portion between the raw material polycrystal P and the seed crystal S is melted by the high-frequency induction heating coil C, and after the melting is completed, the upper shaft 6 and the lower shaft 8 are simultaneously lowered at a low speed while rotating the seed crystal S. The melting zone M is moved to the upper end of the raw material silicon polycrystal rod P to perform crystallization.

【0023】上記溶融帯域Mを原料シリコン多結晶棒P
の全てに渡って1回通過させれば、単結晶化が可能と考
えられるが、実際には完全な単結晶化は不可能に近い。
そこで通常少なくとも二回の溶融帯域の通過が行なわれ
る。前述したごとく、一回通過のシリコン多結晶棒を本
明細書ではシリコン中間体多結晶棒Qと呼ぶことにして
いる。なお、Aは結晶の絞り部分である。
The above-mentioned melting zone M is used as a raw material polycrystalline silicon rod P.
It is considered that single crystallization can be achieved by passing once through all of the above, but in practice, complete single crystallization is almost impossible.
There is usually at least two passes through the melting zone. As described above, a single pass polycrystalline silicon rod is referred to as a silicon intermediate polycrystalline rod Q in this specification. Note that A is a drawing portion of the crystal.

【0024】上記した上軸6のチャック10は、図2に
示したごとく、両端部を垂下して支持壁14,14とし
たチャック本体16と、該支持壁14,14に穿設され
たネジ孔18,18に進退自在に螺合される一対の固定
金具20,20とを有している。
As shown in FIG. 2, the chuck 10 of the upper shaft 6 has a chuck body 16 having both ends hanging down to form support walls 14, 14 and a screw formed in the support walls 14, 14. It has a pair of fixtures 20 and 20 which are screwed into the holes 18 and 18 so as to be able to advance and retreat.

【0025】該支持壁14,14の間に、例えば図2に
示すごとく、シリコン中間体多結晶棒Qの尾部を位置せ
しめ、固定金具20,20を締めつけることによって該
シリコン中間体多結晶Qは該チャック10に強固に支持
される。
As shown in FIG. 2, for example, as shown in FIG. 2, the tail of the silicon intermediate polycrystalline rod Q is located between the support walls 14, 14, and the silicon intermediate polycrystal Q is formed by tightening the fixing brackets 20, 20. The chuck 10 is firmly supported.

【0026】該チャック10で、例えば、シリコン中間
体多結晶棒Qの尾部を締めつけて支持する場合、そのシ
リコン中間体多結晶棒Qが脆い場合には図3に示したよ
うなクラックKが発生するものである。
For example, when the tail of the silicon intermediate polycrystalline rod Q is clamped and supported by the chuck 10, when the silicon intermediate polycrystalline rod Q is brittle, a crack K as shown in FIG. Is what you do.

【0027】実験例1 トリクロロシランの水素還元法により得られた市販のシ
リコン多結晶棒を用いて、図1に示した装置を用いて、
高周波誘導加熱コイルに2MHzの高周波電流を流し、
溶融帯域通過スピード3mm/分で直径130mmのシ
リコン中間体多結晶を得た。
EXPERIMENTAL EXAMPLE 1 Using a commercially available silicon polycrystal rod obtained by the hydrogen reduction method of trichlorosilane, using the apparatus shown in FIG.
A high-frequency current of 2 MHz flows through the high-frequency induction heating coil,
A silicon intermediate polycrystal having a diameter of 130 mm was obtained at a speed of passing through the melting zone of 3 mm / min.

【0028】この場合のアルゴンガス中の窒素濃度と中
間体多結晶尾部の切り離しスピードを変え、得られた中
間体多結晶を図2に示したごときFZ装置の上軸チャッ
クにセットし、普通のオペレータが通常の力で手を使っ
て固定金具を締めた時、尾部にクラックが発生するか否
かを観察し、その結果を図4に示した。
In this case, the nitrogen concentration in the argon gas and the cutting speed of the intermediate polycrystal tail were changed, and the obtained intermediate polycrystal was set on the upper chuck of the FZ apparatus as shown in FIG. When the operator tightened the fixing bracket with his / her hand with normal force, it was observed whether or not a crack was generated in the tail, and the results are shown in FIG.

【0029】図4のグラフにおいて、○はクラックの発
生が無いもの、△は50%の確率でクラックが入ったも
の、×は70%以上の確率でクラックが入ったものを示
す。
In the graph of FIG. 4, .largecircle. Indicates that no crack occurred, .DELTA. Indicates that a crack was formed at a probability of 50%, and x indicates that a crack was formed at a probability of 70% or more.

【0030】図4の結果から、窒素濃度が3000pp
m以下、切り離し速度が1.5mm/分以下の範囲でク
ラックの発生はないかまたはわずかであり、良好である
ことが判った。
From the results shown in FIG. 4, the nitrogen concentration was 3000 pp.
m or less, and the cracking speed was in the range of 1.5 mm / min or less, with no or little cracks, which proved to be good.

【0031】実験例2 実験例1と同じ方法で、直径100mmのシリコン中間
体多結晶を得て、同様に固定金具で締めた時、尾部にク
ラックが発生するか否かを観察し、その結果を図5に示
した。図5の結果から、窒素濃度が3000ppm以
下、切り離し速度が2.5mm/分以下の範囲でクラッ
クの発生はないかまたはわずかであり、良好であること
が判った。
Experimental Example 2 A silicon intermediate polycrystal having a diameter of 100 mm was obtained in the same manner as in Experimental Example 1, and it was observed whether or not a crack was generated in the tail portion when the silicon intermediate was similarly fastened with a fixing bracket. Is shown in FIG. From the results shown in FIG. 5, it was found that cracks did not occur or were slight, and were favorable when the nitrogen concentration was 3000 ppm or less and the separation speed was 2.5 mm / min or less.

【0032】実験例3 実験例1と同じ方法で、直径80mmのシリコン中間体
多結晶を得て、同様に固定金具で締めた時、尾部にクラ
ックが発生するか否かを観察し、その結果を図6に示し
た。図6の結果から、窒素濃度が3000ppm以下、
切り離し速度が3.0mm/分以下の範囲でクラックの
発生はないかまたはわずかであり、良好であることが判
った。
Experimental Example 3 A silicon intermediate polycrystal having a diameter of 80 mm was obtained in the same manner as in Experimental Example 1, and it was observed whether or not a crack was generated at the tail when the silicon intermediate was similarly fastened with a fixing bracket. Is shown in FIG. From the results of FIG. 6, the nitrogen concentration is 3000 ppm or less,
In the range where the cutting speed was 3.0 mm / min or less, no or little cracks were generated, which proved to be good.

【0033】[0033]

【発明の効果】本発明の実施によって、大直径のFZ法
シリコン単結晶棒が窒素ドープされた状態で高収量で製
造することが出来る。かかる窒素ドープされた大直径の
FZ法シリコン単結晶棒は、特に大容量高圧整流器また
はトランジスターに使用されるので、本発明の関係産業
に与える影響は大きい。
According to the present invention, a large-diameter FZ silicon single crystal rod can be manufactured in a high yield in a nitrogen-doped state. Since such a nitrogen-doped large diameter FZ silicon single crystal rod is used particularly for a large-capacity high-voltage rectifier or a transistor, the influence of the present invention on the related industries is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】FZ装置による中間体多結晶棒の製造の主たる
部分を示し、特に溶融帯部分が原料多結晶の端部近傍に
達した状態を示す説明図である。
FIG. 1 is an explanatory view showing a main part of production of an intermediate polycrystalline rod by an FZ apparatus, particularly showing a state in which a molten zone portion has reached near an end of a raw material polycrystal.

【図2】図1のFZ装置で得られた中間体多結晶を、2
段目のFZ装置のチャックで締め、固定しようとした時
の状態を示す説明図である。
FIG. 2 shows that the intermediate polycrystal obtained by the FZ apparatus of FIG.
It is explanatory drawing which shows the state at the time of trying to fix and fix with the chuck | zipper of the FZ apparatus of the stage.

【図3】図2の締めつけ操作によって中間体多結晶の尾
部にクラックが発生した状態を示す説明図である。
FIG. 3 is an explanatory view showing a state in which a crack has occurred in the tail of the intermediate polycrystal by the tightening operation of FIG. 2;

【図4】実験例1におけるクラック発生状況を示すグラ
フである。
FIG. 4 is a graph showing a crack generation state in Experimental Example 1.

【図5】実験例2におけるクラック発生状況を示すグラ
フである。
FIG. 5 is a graph showing a crack generation state in Experimental Example 2.

【図6】実験例3におけるクラック発生状況を示すグラ
フである。
FIG. 6 is a graph showing a crack generation state in Experimental Example 3.

【符号の説明】[Explanation of symbols]

2 FZ装置 4 チャンバー 6 上軸 8 下軸 10 チャック 12 チャック 20 固定金具 C 高周波誘導加熱コイル P シリコン多結晶棒 Q シリコン中間体多結晶棒 K クラック 2 FZ device 4 Chamber 6 Upper shaft 8 Lower shaft 10 Chuck 12 Chuck 20 Fixture C High-frequency induction heating coil P Silicon polycrystalline rod Q Silicon intermediate polycrystalline rod K Crack

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒素ガスを含む高純度アルゴンガスをチ
ャンバー内保護ガスとするシリコン半導体浮遊帯域溶融
単結晶製造方法において、中間の浮遊帯域溶融工程の終
点における原料被溶融棒又は前段階の中間体多結晶棒の
再固化部分と未溶融部分との切り離し速度を再固化した
中間体多結晶棒の直径に応じて一定値以下に制御して原
料被溶融棒又は前段階の中間体多結晶棒の再固化部分と
未溶融部分との切り離しを行なうことを特徴とする浮遊
帯域溶融単結晶製造方法。
In a method for producing a silicon semiconductor floating zone molten single crystal using a high-purity argon gas containing nitrogen gas as a protective gas in a chamber, a raw material melting rod or a preceding intermediate at an end point of an intermediate floating zone melting step. The rate of separation of the resolidified part and the unmelted part of the polycrystalline rod is controlled to a certain value or less according to the diameter of the resolidified intermediate polycrystalline rod, and the raw material molten rod or the intermediate polycrystalline rod in the previous stage is controlled. A method for producing a floating zone molten single crystal, comprising separating a re-solidified portion and an unmelted portion.
【請求項2】 上記中間体多結晶棒直径が75mm以上
であることを特徴とする請求項1記載の中間浮遊帯域溶
融工程処理方法。
2. The method according to claim 1, wherein said intermediate polycrystalline rod has a diameter of 75 mm or more.
【請求項3】 上記高純度アルゴンガス中最高3000
ppmの窒素ガスを含むチャンバー内保護ガスを用い、
中間浮遊帯域溶融工程の終点における原料被溶融棒又は
前段階の中間体多結晶棒の再固化部分と未溶融部分との
切り離し速度を再固化した中間体多結晶棒の直径に応じ
て、次の関係にするように調節することを特徴とする請
求項1又は2記載の浮遊帯域溶融単結晶製造方法。 中間多結晶棒の直径(mm) 切り離し速度(mm/分) 80〜100 2.5以下 100以上 1.5以下
3. A maximum of 3000 in the high purity argon gas.
Using a protective gas in the chamber containing ppm nitrogen gas,
At the end point of the intermediate floating zone melting process, the separation speed of the re-solidified portion and the unmelted portion of the raw material molten rod or the intermediate polycrystalline rod of the previous stage is determined according to the diameter of the re-solidified intermediate polycrystalline rod according to the following. The method for producing a floating zone molten single crystal according to claim 1, wherein adjustment is made so as to make a relationship. Diameter of intermediate polycrystalline rod (mm) Cutting speed (mm / min) 80-100 2.5 or less 100 or more and 1.5 or less
JP21264491A 1991-07-30 1991-07-30 Floating zone molten single crystal production method Expired - Lifetime JP2617253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21264491A JP2617253B2 (en) 1991-07-30 1991-07-30 Floating zone molten single crystal production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21264491A JP2617253B2 (en) 1991-07-30 1991-07-30 Floating zone molten single crystal production method

Publications (2)

Publication Number Publication Date
JPH0532478A JPH0532478A (en) 1993-02-09
JP2617253B2 true JP2617253B2 (en) 1997-06-04

Family

ID=16626051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21264491A Expired - Lifetime JP2617253B2 (en) 1991-07-30 1991-07-30 Floating zone molten single crystal production method

Country Status (1)

Country Link
JP (1) JP2617253B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677882B2 (en) * 2005-11-10 2011-04-27 信越半導体株式会社 Semiconductor crystal manufacturing method and semiconductor crystal manufacturing apparatus
CN1325700C (en) * 2006-04-21 2007-07-11 天津市环欧半导体材料技术有限公司 Large-diameter zone-melting silicon single crystal growth method
JP5924181B2 (en) * 2012-08-02 2016-05-25 信越半導体株式会社 Manufacturing method of FZ single crystal silicon

Also Published As

Publication number Publication date
JPH0532478A (en) 1993-02-09

Similar Documents

Publication Publication Date Title
EP0477784B1 (en) Production of high-purity silicon ingot
EP2070882B1 (en) High-purity vitreous silica crucible used for pulling large-diameter single-crystal silicon ingot and manufacturing method
JPH1095698A (en) Control of heat history of czochralski growth type silicon
JP4115432B2 (en) Metal purification method
JP2009114054A (en) Method for producing semiconductor single crystal having improved oxygen concentration characteristics
JP2617253B2 (en) Floating zone molten single crystal production method
JP3267225B2 (en) Single crystal pulling method and single crystal pulling apparatus
JP4931106B2 (en) Silica glass crucible
US20030047131A1 (en) Method for pulling single crystal
JP2007145610A (en) Method for manufacturing silicon semiconductor crystal
JPH07277887A (en) Appartus and process for producing single crystal
US7361219B2 (en) Method for producing silicon wafer and silicon wafer
EP1201795B1 (en) Semiconductor single crystal pulling apparatus
JP4396505B2 (en) Method for producing silicon single crystal
JP2009249262A (en) Method of manufacturing silicon single crystal
JP2531415B2 (en) Crystal growth method
US20070111489A1 (en) Methods of producing a semiconductor body and of producing a semiconductor device
JP2007204305A (en) Single crystal pulling apparatus
JP5262257B2 (en) Method for producing nitrogen-doped silicon single crystal
JP3683735B2 (en) Dislocation-free silicon single crystal manufacturing method and dislocation-free silicon single crystal ingot
CN112996954B (en) Method for producing single crystal
JPH09208379A (en) Pulling up of single crystal
JP6954083B2 (en) Method for manufacturing silicon raw material rod for FZ and method for manufacturing FZ silicon single crystal
JP4082213B2 (en) Single crystal growth method, single crystal manufacturing apparatus, and silicon single crystal manufactured by this method
JPH07172977A (en) Production of quartz glass crucible