JP2616088B2 - Production method of ε-caprolactam - Google Patents

Production method of ε-caprolactam

Info

Publication number
JP2616088B2
JP2616088B2 JP2015462A JP1546290A JP2616088B2 JP 2616088 B2 JP2616088 B2 JP 2616088B2 JP 2015462 A JP2015462 A JP 2015462A JP 1546290 A JP1546290 A JP 1546290A JP 2616088 B2 JP2616088 B2 JP 2616088B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
cyclohexanone oxime
crystals
reference example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2015462A
Other languages
Japanese (ja)
Other versions
JPH02275850A (en
Inventor
勝 北村
宏 市橋
剛夫 鈴鴨
Original Assignee
住友化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学工業株式会社 filed Critical 住友化学工業株式会社
Publication of JPH02275850A publication Critical patent/JPH02275850A/en
Application granted granted Critical
Publication of JP2616088B2 publication Critical patent/JP2616088B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は固体酸触媒を用いて気相反応条件下にシクロ
ヘキサノンオキシムからε−カプロラクタムを製造する
方法に関する。
The present invention relates to a method for producing ε-caprolactam from cyclohexanone oxime under gas phase reaction conditions using a solid acid catalyst.

<従来の技術及び発明が解決しようとする課題> ε−カプロラクタムはナイロン等の原料として用いら
れている重要な基幹化学原料であり、その製造方法とし
ては従来より、触媒として発煙硫酸あるいは濃硫酸を用
い、液相下にシクロヘキサノンオキシムを転位させる方
法が採用されている。
<Problems to be Solved by the Prior Art and the Invention> ε-Caprolactam is an important basic chemical raw material used as a raw material for nylon and the like, and its production method has conventionally been fuming sulfuric acid or concentrated sulfuric acid as a catalyst. And a method in which cyclohexanone oxime is rearranged in a liquid phase.

しかしながら、この方法では多量の発煙硫酸を必要と
するだけでなく、硫酸アンモニウムを大量に副生すると
いう課題を有する。
However, this method not only requires a large amount of fuming sulfuric acid but also has a problem that a large amount of ammonium sulfate is by-produced.

一方、このような課題を解決する方法として固体酸触
媒を用い、気相下に転位させる方法も種々提案されてい
る。例えばホウ酸系触媒(特開昭53−37686号、特公昭4
6−12125号公報)、シリカ・アルミナ系触媒(英国特許
第831,927号)、固体リン酸触媒(英国特許第881,926
号)、複合金属酸化物触媒(日本化学会誌、1977
(1)77)、ゼオライト系触媒(Journal of Catalysis
,247(1966)、特開昭57−139062号公報)等を用い
る方法がある。しかしながら、いずれの方法も目的物で
あるε−カプロラクタムの反応選択率、触媒寿命、触媒
当たりの生産性等あるいは製品ε−カプロラクタムの品
質などの点で課題を有している。
On the other hand, as a method of solving such a problem, various methods of using a solid acid catalyst and performing rearrangement in a gas phase have been proposed. For example, a boric acid-based catalyst (JP-A-53-37686,
No. 6-12125), a silica-alumina catalyst (British Patent No. 831,927), a solid phosphoric acid catalyst (British Patent No. 881,926)
No.), composite metal oxide catalysts (Journal of the Chemical Society of Japan, 1977 ,
(1) 77), zeolite catalyst (Journal of Catalysis)
6, 247 (1966), a method using a JP 57-139062 publication) or the like. However, all of these methods have problems in terms of the reaction selectivity of the target ε-caprolactam, the life of the catalyst, the productivity per catalyst, the quality of the product ε-caprolactam, and the like.

例えば特開昭57−139062号公報には触媒として40〜60
のSi/Al原子比を有するZSM−5等の結晶性ゼオライトを
用いる具体例が示され、シクロヘキサノンオキシムの反
応率は定量的と記載されているものの、ε−カプロラク
タムの選択率については記載がない。また触媒寿命につ
いては15〜20時間と短い結果が示されている。
For example, JP-A-57-139062 discloses that 40-60
A specific example using a crystalline zeolite such as ZSM-5 having an Si / Al atomic ratio of is shown, and the reaction rate of cyclohexanone oxime is described as quantitative, but the selectivity of ε-caprolactam is not described. . The results also show that the catalyst life is as short as 15 to 20 hours.

本発明者らも該公報に記載されているようなSi/Al原
子比のZSM−5系ゼオライトを触媒として実際に検討し
たが、触媒の寿命のみならずε−カプロラクタムへの選
択率も不十分な値であった。
The present inventors have also actually studied using a ZSM-5 zeolite having a Si / Al atomic ratio as described in the publication as a catalyst, but not only the life of the catalyst but also the selectivity to ε-caprolactam is insufficient. Value.

一方、特開昭62−123167号公報、特開昭63−54358号
公報にはSi/Al原子比が500以上で細孔外酸量が特定の値
以下である結晶性アルミノシリケート、あるいはSi/金
属原子比が500以上である結晶性メタロシリケートを触
媒に用いた例が示されている。このものの選択率は従来
のシリカ系の触媒の技術に比べて相当改善されており、
さらに特開昭62−281856号公報には結晶性ゼオライトの
表面を有機金属化合物で表面処理することによって、選
択率が改良されることが示されている。
On the other hand, JP-A-62-123167 and JP-A-63-54358 disclose crystalline aluminosilicate in which the Si / Al atomic ratio is 500 or more and the amount of acid outside the pores is a specific value or less, or Si / Al. An example using a crystalline metallosilicate having a metal atom ratio of 500 or more as a catalyst is shown. The selectivity of this is considerably improved compared to the conventional silica-based catalyst technology,
JP-A-62-281856 discloses that the selectivity can be improved by treating the surface of crystalline zeolite with an organometallic compound.

<課題を解決するための手段> 本発明者らはこのような現状に鑑み、固体酸触媒を用
い、従来方法よりさらに優れた気相ベックマン転位反応
の検討を勧めた結果、反応系にシクロヘキサノンオキシ
ムとともに低級アルコールを共存させることによってシ
クロヘキサノンオキシムの反応率が例えば実質的に100
%付近の条件においても、極めて高い選択率でε−カプ
ロラクタムが得られる。しかも触媒の寿命も著しく向上
することを見出し、本発明を完成するに至った。
<Means for Solving the Problems> In view of such circumstances, the present inventors have recommended the use of a solid acid catalyst to study a gas phase Beckmann rearrangement reaction which is more excellent than the conventional method. As a result, cyclohexanone oxime was added to the reaction system. Together with a lower alcohol, the reaction rate of cyclohexanone oxime is substantially 100%, for example.
%, Ε-caprolactam can be obtained with extremely high selectivity. In addition, they found that the life of the catalyst was significantly improved, and completed the present invention.

すなわち本発明は、固体酸触媒を用いてシクロヘキサ
ノンオキシムからε−カプロラクタムを製造する方法に
おいて、反応系に低級アルコールを共存させることを特
徴とするε−カプロラクタムの製法を提供するものであ
る。
That is, the present invention provides a method for producing ε-caprolactam from cyclohexanone oxime using a solid acid catalyst, wherein a lower alcohol is present in the reaction system.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明においては、触媒として固体酸が用いられる。
固体酸のなかでも酸化ケイ素含有触媒、特に結晶性メタ
ロシリケートが好ましい。特にSi/Me原子比(ここにMe
はAl,Ga,Fe,B,Zn,Cr,Be,Co,La,Ge,Ti,Zr,Hf,V,Ni,Sb,B
i,Cu,Nb等から選ばれる1種又は2種以上の金属元素を
示す)が5以上である結晶性メタロシリケートがより好
ましい。またMe成分を実質的に含まない二酸化ケイ素か
らなる結晶性シリケートもより好ましい。
In the present invention, a solid acid is used as a catalyst.
Among solid acids, a catalyst containing silicon oxide, particularly a crystalline metallosilicate, is preferred. In particular, the Si / Me atomic ratio (where Me
Is Al, Ga, Fe, B, Zn, Cr, Be, Co, La, Ge, Ti, Zr, Hf, V, Ni, Sb, B
A crystalline metallosilicate having 5 or more (indicating one or more metal elements selected from i, Cu, Nb, etc.) is more preferable. Further, a crystalline silicate made of silicon dioxide containing substantially no Me component is more preferable.

Si/Me原子比は通常の分析手段、例えば原子吸光法、
螢光X線法等により求めることができる。
The Si / Me atomic ratio can be determined by conventional analytical means, for example, atomic absorption spectroscopy,
It can be determined by a fluorescent X-ray method or the like.

またこれらの触媒は公知の方法により製造される。こ
れらの結晶性メタロシリケートおよび結晶性シリケート
には種々の結晶型が知られているが、いわゆるペンタシ
ル型構造に属するものが特に好ましい。
These catalysts are produced by a known method. Various crystalline types are known for these crystalline metallosilicates and crystalline silicates, and those belonging to a so-called pentasil type structure are particularly preferred.

本発明においては、反応系にはシクロヘキサノンオキ
シムとともに低級アルコールを共存させるが、ここで用
いられるアルコールとしては炭素数6以下の低級アルコ
ールが好ましい。例えばメタノール、エタノール、n−
プロパノール、イソプロパノール、n−ブタノール、se
c−ブタノール、イソブタノール、n−アミルアルコー
ル、n−ヘキサノール、2,2,2−トリフルオロエタノー
ル等の1種または2種以上用いることができる。特にメ
タノール、エタノール、n−プロパノール、イソプロパ
ノール、n−ブタノールを1種または2種以上用いれば
ε−カプロラクタムの選択率および触媒寿命の改良に著
しい効果を示し、より好ましい。中でもメタノールまた
はエタノールは著しい効果を示し、工業的観点から最も
好ましいものである。
In the present invention, a lower alcohol is allowed to coexist with cyclohexanone oxime in the reaction system, and the alcohol used here is preferably a lower alcohol having 6 or less carbon atoms. For example, methanol, ethanol, n-
Propanol, isopropanol, n-butanol, se
One or more of c-butanol, isobutanol, n-amyl alcohol, n-hexanol, 2,2,2-trifluoroethanol and the like can be used. In particular, it is more preferable to use one or more of methanol, ethanol, n-propanol, isopropanol and n-butanol, since they have a remarkable effect on improving the selectivity of ε-caprolactam and the catalyst life. Among them, methanol or ethanol shows a remarkable effect, and is most preferable from an industrial viewpoint.

また、本発明は反応系に低級アルコールとともに分子
状酸素含有ガスを共存させることもできる。分子状酸素
含有ガスとしては空気を使用するのが経済的で好まし
い。分子状酸素の濃度は爆発組成範囲外とするのが好ま
しい。
Further, in the present invention, a molecular oxygen-containing gas can coexist with the lower alcohol in the reaction system. It is economical and preferable to use air as the molecular oxygen-containing gas. Preferably, the concentration of molecular oxygen is outside the explosive composition range.

さらに本発明は通常大気圧下または大気圧以下の減圧
下で実施される。
Further, the present invention is usually carried out under atmospheric pressure or under reduced pressure below atmospheric pressure.

次に本発明を実施する際の反応方法について述べる。 Next, a reaction method for carrying out the present invention will be described.

反応は通常の固定床方式または流動床方式の気相接触
反応で行なう。原料のシクロヘキサノンオキシムは気体
状態で触媒層と接触反応するが、低級アルコールは気体
状態でシクロヘキサノンオキシムと予め混合しておくか
又はシクロヘキサノンオキシムとは別々に反応器に供給
してもよい。固定床反応の場合はシクロヘキサノンオキ
シムと低級アルコールが十分混合された状態で触媒層を
通過するのが好ましい。また、流動床反応の場合には必
ずしもシクロヘキサノンオキシムと低級アルコールが予
め混合されている必要はなく、それぞれ別々に供給する
ことができ、さらに低級アルコールを分割して添加する
こともできる。また、流動床反応の場合には低級アルコ
ールをシクロヘキサノンオキシムより上流側に添加して
もよい。
The reaction is carried out by an ordinary fixed-bed or fluidized-bed gas-phase catalytic reaction. The raw material cyclohexanone oxime reacts in contact with the catalyst layer in a gaseous state, but the lower alcohol may be preliminarily mixed with cyclohexanone oxime in a gaseous state or supplied to the reactor separately from cyclohexanone oxime. In the case of a fixed bed reaction, it is preferable that cyclohexanone oxime and lower alcohol are passed through the catalyst layer in a sufficiently mixed state. In the case of a fluidized bed reaction, cyclohexanone oxime and lower alcohol do not necessarily need to be mixed in advance, but can be supplied separately, and the lower alcohol can be added in portions. In the case of a fluidized bed reaction, a lower alcohol may be added upstream of cyclohexanone oxime.

さらに、分子状酸素含有ガスは低級アルコール、シク
ロヘキサノンオキシムと混合してまたは低級アルコール
と混合して供給することもでき、また分子状酸素含有ガ
スをシクロヘキサノンオキシムより上流側に添加しても
よい。
Further, the molecular oxygen-containing gas may be supplied by being mixed with a lower alcohol or cyclohexanone oxime or by being mixed with a lower alcohol, or the molecular oxygen-containing gas may be added upstream of cyclohexanone oxime.

反応系に共存させる低級アルコールの量は、シクロヘ
キサノンオキシムに対して重量比で、通常0.1〜20倍が
適当であり、好ましくは10倍以下がよく、もっとも好ま
しくは0.3〜8倍の範囲がよい。
The amount of the lower alcohol coexisting in the reaction system is usually 0.1 to 20 times, preferably 10 times or less, and most preferably 0.3 to 8 times, by weight, relative to cyclohexanone oxime.

低級アルコールにさらに分子状酸素含有ガスを共存さ
せる場合、分子状酸素の量はシクロヘキサノンオキシム
に対してモル比で通常0.1〜10倍が適当である。より好
ましくは0.3〜5倍である。
When a molecular oxygen-containing gas is further allowed to coexist with a lower alcohol, the amount of molecular oxygen is usually 0.1 to 10 times the molar ratio of cyclohexanone oxime. More preferably, it is 0.3 to 5 times.

本発明は反応系に希釈ガスとしてベンゼン、シクロヘ
キサン、トルエン等のような反応に不活性な化合物の蒸
気あるいは窒素、二酸化炭素等の不活性ガスを共存させ
ることもできる。
In the present invention, a vapor of a compound inert to the reaction such as benzene, cyclohexane, toluene, or the like, or an inert gas such as nitrogen or carbon dioxide may be coexisted in the reaction system as a diluting gas.

本発明の反応温度は通常250℃〜500℃の範囲がよい。
250℃未満の温度では反応速度が十分でなく、またε−
カプロラクタムの選択率も低下する傾向がある。一方、
500℃を越えるとシクロヘキサノンオキシムの熱分解が
無視できなくなるためにε−カプロラクタムの選択率が
低下する傾向がある。特に好ましい温度範囲は300℃〜4
50℃であり、最も好ましい温度範囲は300℃〜400℃であ
る。
The reaction temperature of the present invention is usually preferably in the range of 250 ° C to 500 ° C.
At a temperature lower than 250 ° C, the reaction rate is not sufficient, and ε-
Caprolactam selectivity also tends to decrease. on the other hand,
If the temperature exceeds 500 ° C., thermal decomposition of cyclohexanone oxime cannot be ignored, and the selectivity for ε-caprolactam tends to decrease. A particularly preferred temperature range is 300 ° C to 4 ° C.
50 ° C, the most preferred temperature range is 300 ° C to 400 ° C.

原料シクロヘキサノンオキシムの空間速度は、WHSV=
0.1〜40hr-1(すなわち触媒1kg当りのシクロヘキサノン
オキシム供給速度0.1〜40kg/hr)である。好ましくは0.
2〜20hr-1であり、より好ましくは0.5〜10hr-1の範囲か
ら選ばれる。
The space velocity of the raw material cyclohexanone oxime is WHSV =
0.1 to 40 hr -1 (that is, the feed rate of cyclohexanone oxime per kg of catalyst is 0.1 to 40 kg / hr). Preferably 0.
2 to 20 hr -1 , more preferably selected from the range of 0.5 to 10 hr -1 .

反応混合物からのε−カプロラクタムの分離は、通常
の方法で実施できる。例えば反応生成ガスを冷却して凝
縮させ、次いで抽出、蒸留あるいは晶析等により精製さ
れたε−カプロラクタムを得ることができる。
Separation of ε-caprolactam from the reaction mixture can be carried out by a conventional method. For example, the reaction product gas is cooled and condensed, and then ε-caprolactam purified by extraction, distillation or crystallization can be obtained.

転位反応系に加えた低級アルコールは、反応生成物か
ら分離回収して再利用できる。
The lower alcohol added to the rearrangement reaction system can be separated and recovered from the reaction product and reused.

また長期間の使用によって活性の低下した触媒は、空
気気流中で焼成することにより容易に元の性能に賦活で
き、繰り返し使用できる。
Further, the catalyst whose activity has been reduced by long-term use can be easily activated to its original performance by calcining in an air stream, and can be used repeatedly.

<発明の効果> 以上、詳述したとおり本発明によればシクロヘキサノ
ンオキシムの反応率が実質的に100%付近の条件におい
ても、ε−カプロラクタムは極めて高い選択率で製造さ
れる。また本発明の方法では、触媒の寿命が従来の方法
に比べて著しく改良される。さらに反応系に加えたアル
コールは回収できるため再度利用することが可能であ
る。
<Effects of the Invention> As described above in detail, according to the present invention, ε-caprolactam is produced with an extremely high selectivity even under the condition that the reaction rate of cyclohexanone oxime is substantially around 100%. Also, in the method of the present invention, the life of the catalyst is significantly improved as compared with the conventional method. Furthermore, since the alcohol added to the reaction system can be recovered, it can be reused.

<実施例> 以下、実施例により本発明を具体的に説明するが、本
発明はこれらに限定されるものではない。
<Examples> Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto.

参考例1(触媒Aの調製) 1.5のステンレス製オートクレーブにテトラエチル
オルソシリケート(Si(OC2H5、Al含有量10ppm以
下)100g、10%水酸化テトラ−n−プロピルアンモニウ
ム水溶液224.0g、エタノール214gを仕込み、30分間激し
く攪拌した。混合溶液のpHは13であった。オートクレー
ブの蓋を締めた後、油浴に浸し内温を105℃に保ち400r.
p.m.以上の回転数で攪拌を行ないながら、120時間の水
熱合成を行なった。この間オートクレーブ内の圧力は2
〜3kg/cm2に達した。水熱合成終了時のpHは11.8であっ
た。白色の固体生成物を濾別し、ついで濾液のpHが7付
近になるまで蒸留水で連続的に洗浄した。白色固体を乾
燥後500〜530℃で4時間、空気流通下に焼成し、27gの
粉末状白色結晶を得た。該結晶を粉末X線回折で分析し
た結果、ペンタシル型ゼオライトと同定された。また、
原子吸光分光法による元素分析の結果、Si/Al原子比は1
47000であった。
Reference Example 1 (Preparation of Catalyst A) 1.5 stainless steel autoclave tetraethylorthosilicate (Si (OC 2 H 5) 4, Al content 10ppm or less) 100 g, 10% tetra -n- propyl aqueous ammonium 224.0G, 214 g of ethanol was charged and stirred vigorously for 30 minutes. The pH of the mixed solution was 13. After closing the autoclave lid, immerse it in an oil bath and keep the internal temperature at 105 ° C to 400r.
Hydrothermal synthesis was performed for 120 hours while stirring at a rotation speed of pm or more. During this time, the pressure inside the autoclave was 2
It reached ~3kg / cm 2. The pH at the end of the hydrothermal synthesis was 11.8. The white solid product was filtered off and then continuously washed with distilled water until the pH of the filtrate was around 7. After drying, the white solid was calcined at 500 to 530 ° C. for 4 hours under flowing air to obtain 27 g of powdery white crystals. The crystals were analyzed by powder X-ray diffraction, and as a result, were identified as pentasil-type zeolites. Also,
As a result of elemental analysis by atomic absorption spectroscopy, the atomic ratio of Si / Al was 1
47,000.

この結晶10gに5%塩化アンモニウム水溶液100gを加
え、50〜60℃で1時間イオン交換処理を行ない、続いて
濾別した。このイオン交換処理操作を4回行なった後、
結晶をCl-イオンが検出されなくなるまで蒸留水で洗浄
した。続いて該結晶を120℃で16時間乾燥した。得られ
たアンモニウム塩型の結晶を加圧成形後、24〜48メッシ
ュに篩分けした。さらに該結晶を500℃で1時間窒素ガ
ス流通下に焼成し、触媒を得た。この触媒を触媒Aと称
する。
100 g of a 5% aqueous solution of ammonium chloride was added to 10 g of the crystals, subjected to an ion exchange treatment at 50 to 60 ° C for 1 hour, and then filtered. After performing this ion exchange treatment operation four times,
The crystals were washed with distilled water until no Cl - ions could be detected. Subsequently, the crystals were dried at 120 ° C. for 16 hours. The obtained ammonium salt type crystal was subjected to pressure molding and then sieved to 24-48 mesh. Further, the crystals were calcined at 500 ° C. for 1 hour under flowing nitrogen gas to obtain a catalyst. This catalyst is called catalyst A.

参考例2(触媒Bの調製) 1.5のステンレス製オートクレーブにテトラエチル
オルソシリケート(Si(OC2H5)100g、10%水酸化
テトラ−n−プロピルアンモニウム水溶液224g、エタノ
ール60gを仕込み充分に攪拌した。この混合液に、あら
かじめ調製した硫酸アルミニウム水溶液48g(Al2(S
O4・18H2O 20mg/水48g)を加え、30分間激しく攪
拌した。なお混合溶液のpHは13であった。オートクレー
ブの蓋を締めた後、油浴に浸し内温を105℃に保ち400r.
p.m.以上の回転数で攪拌を行いながら、120時間の水熱
合成を行なった。この間オートクレーブ内の圧力は2〜
3kg/cm2に達した。水熱合成終了時のpHは11.8であっ
た。白色の固体生成物を参考例1と同様に焼成して粉末
状白色結晶を得た。該結晶を粉末X線回折で分析した結
果、ペンタシル型ゼオライトと同定された。また、原子
吸光分光法による元素分析の結果、Si/Al原子比は7000
であった。
Reference Example 2 (Preparation of Catalyst B) 100 g of tetraethyl orthosilicate (Si (OC 2 H 5 ) 4 ), 224 g of a 10% aqueous solution of tetra-n-propylammonium hydroxide, and 60 g of ethanol were charged into a 1.5 stainless steel autoclave, and sufficiently stirred. did. 48 g of a previously prepared aqueous solution of aluminum sulfate (Al 2 (S
O 4) 3 · 18H 2 O 20mg / water 48 g) was added and stirred vigorously for 30 minutes. The pH of the mixed solution was 13. After closing the autoclave lid, immerse it in an oil bath and keep the internal temperature at 105 ° C to 400r.
Hydrothermal synthesis was performed for 120 hours while stirring at a rotation speed of pm or more. During this time, the pressure inside the autoclave is 2 to
3 kg / cm 2 was reached. The pH at the end of the hydrothermal synthesis was 11.8. The white solid product was fired in the same manner as in Reference Example 1 to obtain powdery white crystals. The crystals were analyzed by powder X-ray diffraction, and as a result, were identified as pentasil-type zeolites. As a result of elemental analysis by atomic absorption spectroscopy, the Si / Al atomic ratio was 7000
Met.

以下、この結晶を参考例1と同様にイオン交換し、焼
成して触媒を得た。この触媒を触媒Bと称する。
Thereafter, the crystals were ion-exchanged and calcined in the same manner as in Reference Example 1 to obtain a catalyst. This catalyst is referred to as catalyst B.

参考例3(触媒Cの調製) 以下の組成からなる原料液をまず調製した。Reference Example 3 (Preparation of Catalyst C) First, a raw material liquid having the following composition was prepared.

A液;蒸溜水162g、硫酸16.7g、Al2(SO4318H2O 2.9
2g、(n−Pr)4NBr 20.8g B液;蒸溜水119.7g、3号ケイ酸ソーダ186.3g C液;蒸溜水281.7g、塩化ナトリウム70.7g 上記C液に、A液、B液を激しく攪拌しながら同時に
滴下混合した。混合終了時のpHは9.6であった。混合物
を1.5のステンレス製オートクレーブに仕込み、160℃
で20時間、400r.p.m.以上の回転数で攪拌しながら、水
熱合成を行なった。冷却後濾過し、約7の蒸溜水でCl
-イオンが検出されなくなるまで十分洗浄と濾過を繰り
返した。さらに得られた白色の固形物を120℃で16時間
乾燥した。次いでこの結晶を500〜550℃で4時間空気流
通下に焼成し、白色の粉末状結晶を得た。該結晶を粉末
X線回折で分析した結果、ペンタシル型ゼオライトと同
定された。また、この結晶を原子吸光分析した結果、Si
/Al原子比は50であった。
Liquid A: distilled water 162 g, sulfuric acid 16.7 g, Al 2 (SO 4 ) 3 18H 2 O 2.9
2 g, (n-Pr) 4 NBr 20.8 g Solution B: distilled water 119.7 g, No. 3 sodium silicate 186.3 g Solution C: distilled water 281.7 g, sodium chloride 70.7 g To solution C, add solution A and solution B vigorously While stirring, the mixture was dropped and mixed at the same time. The pH at the end of the mixing was 9.6. Charge the mixture in a 1.5 stainless steel autoclave, 160 ° C
For 20 hours while stirring at a rotation speed of 400 rpm or more. After cooling, the mixture was filtered and distilled with about 7 distilled water.
- ions was repeated filtration and thoroughly washed until no detectable. Further, the obtained white solid was dried at 120 ° C. for 16 hours. Next, the crystals were calcined at 500 to 550 ° C. for 4 hours under an air flow to obtain white powdery crystals. The crystals were analyzed by powder X-ray diffraction, and as a result, were identified as pentasil-type zeolites. Atomic absorption analysis of this crystal showed that
The / Al atomic ratio was 50.

以下、この結晶を参考例1と同様にイオン交換し、焼
成して触媒を得た。この触媒を触媒Cと称する。
Thereafter, the crystals were ion-exchanged and calcined in the same manner as in Reference Example 1 to obtain a catalyst. This catalyst is called catalyst C.

参考例4(触媒Dの調製) 以下の組成からなる原料液をまず調製した。Reference Example 4 (Preparation of Catalyst D) First, a raw material liquid having the following composition was prepared.

A液;蒸溜水443g、硫酸45g、(n−Pr)4NBr 55.8g B液;蒸溜水320g、3号ケイ酸ソーダ453g C液;蒸溜水754g、塩化ナトリウム189g 上記C液に、A液、B液を激しく攪拌しながら同時に
滴下混合した。混合終了時のpHは9.5であった。混合物
を3のステンレス製オートクレーブに仕込み、160℃
で20時間350r.p.m.以上の回転数で攪拌しながら、水熱
合成を行なった。冷却後濾過し、約15の蒸溜水でCl-
イオンが検出されなくなるまで十分洗浄と濾過を繰り返
した。
Liquid A: 443 g of distilled water, 45 g of sulfuric acid, 55.8 g of (n-Pr) 4 NBr Liquid B: 320 g of distilled water, 453 g of No. 3 sodium silicate Liquid C: 754 g of distilled water, 189 g of sodium chloride Solution B was dripped and mixed simultaneously with vigorous stirring. The pH at the end of mixing was 9.5. The mixture was charged into a stainless steel autoclave 3 and heated to 160 ° C.
The hydrothermal synthesis was performed while stirring at a rotation speed of 350 rpm or more for 20 hours. Filtered after cooling, Cl at about 15 distilled water -
Washing and filtration were repeated sufficiently until no ions were detected.

得られた固形物を参考例1と同様に焼成して白色の粉
末状結晶を得た。該結晶を粉末X線回折で分析した結
果、ペンタシル型ゼオライトと同定された。また、該結
晶を原子吸光分析した結果、Si/Al原子比は100であっ
た。
The obtained solid was fired in the same manner as in Reference Example 1 to obtain white powdery crystals. The crystals were analyzed by powder X-ray diffraction, and as a result, were identified as pentasil-type zeolites. The atomic absorption analysis of the crystal showed that the atomic ratio of Si / Al was 100.

以下、この結晶を参考例1と同様にイオン交換し、焼
成して触媒を得た。この触媒を触媒Dと称する。
Thereafter, the crystals were ion-exchanged and calcined in the same manner as in Reference Example 1 to obtain a catalyst. This catalyst is called catalyst D.

参考例5(触媒Eの調製) 以下の組成からなる原料液をまず調製した。Reference Example 5 (Preparation of Catalyst E) A raw material liquid having the following composition was first prepared.

A液;蒸溜水150g、(n−Pr)4NBr81g、コロイダルシ
リカ(SI−30)118.8g B液;蒸溜水150g、水酸化ナトリウム76.5g 上記A液にB液を滴下混合した。混合物を1のステ
ンレス製オートクレーブに仕込み、160℃で24時間攪拌
しながら、水熱合成を行なった。冷却後濾過し、濾波の
pHが7付近になるまで蒸溜水で連続的に洗浄した。
Solution A: 150 g of distilled water, 81 g of (n-Pr) 4 NBr, 118.8 g of colloidal silica (SI-30) B solution: 150 g of distilled water, 76.5 g of sodium hydroxide Solution B was added dropwise to the above solution A. The mixture was charged into a stainless steel autoclave and subjected to hydrothermal synthesis with stirring at 160 ° C. for 24 hours. After cooling, filter and filter
It was washed continuously with distilled water until the pH was around 7.

得られた白色の固形物を参考例1と同様に焼成して粉
末状の結晶を得た。該結晶を粉末X線回折で分析した結
果、ペンタシル型ゼオライトと同定された。また、この
結晶を原子吸光分析した結果、Si/Al原子比は1400であ
った。
The obtained white solid was fired in the same manner as in Reference Example 1 to obtain powdery crystals. The crystals were analyzed by powder X-ray diffraction, and as a result, were identified as pentasil-type zeolites. The atomic absorption analysis of this crystal showed that the Si / Al atomic ratio was 1400.

以下、この結晶を参考例1と同様にイオン交換し、焼
成して触媒を得た。この触媒を触媒Eと称する。
Thereafter, the crystals were ion-exchanged and calcined in the same manner as in Reference Example 1 to obtain a catalyst. This catalyst is called catalyst E.

参考例6(触媒Fの調製) 1.5のステンレス製オートクレーブに、10%の水酸
化テトラ−n−プロピルアンモニウム水溶液217.5g、エ
タノール214g、オキシ硝酸ジルコニウム64.2mgを含む水
溶液2ml、高純度のテトラエチルオルソシリケート(Si
(OC2H5)100gをこの順に仕込み、1時間充分に攪
拌した。ついで内温を105℃に保ち、400r.p.m.以上の回
転数で攪拌しながら、48時間水熱合成を行なった。得ら
れた白色固形物を濾過し、濾液のpHが7付近になるまで
蒸溜水で連続的に洗浄した。得られた結晶を120℃で16
時間乾燥した。この乾燥した結晶をさらに500〜550℃で
4時間空気流通下に焼成し、27gの白色の粉末状結晶を
得た。該結晶を粉末X線回折で分析した結果、ペンタシ
ル型ゼオライトと類似構造を有するジルコノシリケート
と同定された。また該結晶を原子吸光分析した結果、Si
/Zr原子比は2400であった。
Reference Example 6 (Preparation of Catalyst F) In a 1.5 stainless steel autoclave, 217.5 g of a 10% aqueous solution of tetra-n-propylammonium hydroxide, 214 g of ethanol, 2 ml of an aqueous solution containing 64.2 mg of zirconium oxynitrate, high-purity tetraethylorthosilicate (Si
(OC 2 H 5 ) 4 ) 100 g were charged in this order and stirred sufficiently for 1 hour. Then, the internal temperature was maintained at 105 ° C., and hydrothermal synthesis was performed for 48 hours while stirring at a rotation speed of 400 rpm or more. The resulting white solid was filtered and washed continuously with distilled water until the pH of the filtrate was around 7. The obtained crystals are heated at 120 ° C for 16
Dried for hours. The dried crystals were further calcined at 500 to 550 ° C. for 4 hours in a flowing air to obtain 27 g of white powdery crystals. As a result of analyzing the crystals by powder X-ray diffraction, it was identified as a zirconosilicate having a structure similar to that of the pentasil-type zeolite. Also, as a result of atomic absorption analysis of the crystal, Si
The / Zr atomic ratio was 2,400.

以下、この結晶を参考例1と同様にイオン交換し、焼
成して触媒を得た。この触媒を触媒Fと称する。
Thereafter, the crystals were ion-exchanged and calcined in the same manner as in Reference Example 1 to obtain a catalyst. This catalyst is referred to as catalyst F.

参考例7(触媒Gの製造) オキシ硝酸ジルコニウムに代えてチタンテトライソプ
ロポキシド1.414gを用いる他は、参考例6に準じて水熱
合成、濾過、焼成して白色の粉末を得た。該粉末を粉末
X線回折で分析した結果、ペンタシル型ゼオライトと類
似の構造を有する結晶性シリケートと同定された。ま
た、該結晶を原子吸光分析した結果、Si/Ti原子比は90
であった。引き続き、参考例1と同様にイオン交換し、
焼成して触媒を得た。この触媒を触媒Gと称する。
Reference Example 7 (Production of Catalyst G) A white powder was obtained by hydrothermal synthesis, filtration and calcination according to Reference Example 6, except that 1.414 g of titanium tetraisopropoxide was used instead of zirconium oxynitrate. As a result of analyzing the powder by powder X-ray diffraction, the powder was identified as a crystalline silicate having a structure similar to that of a pentasil-type zeolite. The atomic absorption analysis of the crystal showed that the Si / Ti atomic ratio was 90%.
Met. Subsequently, ion exchange was performed in the same manner as in Reference Example 1,
Calcination gave a catalyst. This catalyst is referred to as catalyst G.

参考例8(触媒Hの調製) オキシ硝酸ジルコニウムに代えて三塩化バナジウム3
0.2mgを用いる他は、参考例6に準じて水熱合成、濾
過、焼成して白色の粉末を得た。該粉末を粉末X線回折
で分析した結果、ペンタシル型ゼオライトと類似の構造
を有する結晶性シリケートと同定された。また、該結晶
を原子吸光分析した結果、Si/V原子比は2300であった。
引き続き、参考例1と同様にイオン交換、焼成して触媒
を得た。この触媒を触媒Hと称する。
Reference Example 8 (Preparation of catalyst H) Vanadium trichloride 3 instead of zirconium oxynitrate
A white powder was obtained by hydrothermal synthesis, filtration and calcination according to Reference Example 6 except that 0.2 mg was used. As a result of analyzing the powder by powder X-ray diffraction, the powder was identified as a crystalline silicate having a structure similar to that of a pentasil-type zeolite. The atomic absorption analysis of the crystal showed that the atomic ratio of Si / V was 2,300.
Subsequently, ion exchange and calcination were performed in the same manner as in Reference Example 1 to obtain a catalyst. This catalyst is referred to as catalyst H.

参考例9(触媒Iの調製) 1.5のステンレス製オートクレーブに、アエロジル
(高純度非晶質シリカ)40.5g、臭化テトラ−n−プロ
ピルアンモニウム45.73g、水酸化ナトリウム10.8g、蒸
留水375.81gを仕込み、オートクレーブの蓋を締めた
後、20℃で120時間激しく攪拌した。混合溶液のpHは12.
8であった。その後、内温を105℃に保ち400r.p.m.以上
の回転数で攪拌を行ないながら96時間水熱合成を行なっ
た。白色の固体生成物を濾別し、次いで濾液のpHが7付
近になるまで蒸留水で連続的に洗浄した。白色の固体生
成物を参考例1と同様に焼成して粉末状白色結晶を得
た。該結晶を粉末X線回折で分析した結果、ペンタシル
型ゼオライトと同定された。また、該結晶を原子吸光分
析した結果、Si/Al原子比は360であった。
Reference Example 9 (Preparation of Catalyst I) In a 1.5 stainless steel autoclave, 40.5 g of Aerosil (high-purity amorphous silica), 45.73 g of tetra-n-propylammonium bromide, 10.8 g of sodium hydroxide, and 375.81 g of distilled water were placed. After charging and closing the lid of the autoclave, the mixture was vigorously stirred at 20 ° C. for 120 hours. The pH of the mixed solution is 12.
It was eight. Thereafter, hydrothermal synthesis was performed for 96 hours while maintaining the internal temperature at 105 ° C. and stirring at a rotation speed of 400 rpm or more. The white solid product was filtered off and then washed successively with distilled water until the pH of the filtrate was around 7. The white solid product was fired in the same manner as in Reference Example 1 to obtain powdery white crystals. The crystals were analyzed by powder X-ray diffraction, and as a result, were identified as pentasil-type zeolites. Further, as a result of atomic absorption analysis of the crystal, the atomic ratio of Si / Al was 360.

以下、この結晶を参考例1と同様にイオン交換し、焼
成して触媒を得た。この触媒を触媒Iと称する。
Thereafter, the crystals were ion-exchanged and calcined in the same manner as in Reference Example 1 to obtain a catalyst. This catalyst is referred to as catalyst I.

参考例10(触媒Jの調製) 1.5のステンレス製オートクレーブにテトラエチル
オルソシリケート(Si(OC2H5)104.17g、10%水酸
化テトラ−n−プロピルアンモニウム水溶液232.85g、
エタノール62.33g、蒸留水50.44gを仕込み30分間激しく
攪拌した。なお混合溶液のpHは12.5であった。オートク
レーブの蓋を締めた後、油浴に浸し内温を105℃に保ち4
00r.p.m.以上の回転数で攪拌を行ないながら、96時間の
水熱合成を行なった。この間オートクレーブ内の圧力は
2〜3kg/cm2に達した。水熱合成終了時のpHは11.7であ
った。白色の固体生成物を参考例1と同様に焼成して粉
末状白色結晶を得た。該結晶を粉末X線回折で分析した
結果、ペンタシル型ゼオライトと同定された。また、該
結晶を原子吸光分析した結果、Si/Al原子比は9000であ
った。
Reference Example 10 (Preparation of catalyst J) 1.5 stainless steel autoclave tetraethylorthosilicate (Si (OC 2 H 5) 4) 104.17g, 10% tetra -n- propyl aqueous ammonium 232.85G,
62.33 g of ethanol and 50.44 g of distilled water were charged and stirred vigorously for 30 minutes. The pH of the mixed solution was 12.5. After closing the autoclave lid, immerse it in an oil bath and maintain the internal temperature at 105 ° C.
The hydrothermal synthesis was performed for 96 hours while stirring at a rotation speed of 00 rpm or more. During this time, the pressure in the autoclave reached 2-3 kg / cm 2 . The pH at the end of the hydrothermal synthesis was 11.7. The white solid product was fired in the same manner as in Reference Example 1 to obtain powdery white crystals. The crystals were analyzed by powder X-ray diffraction, and as a result, were identified as pentasil-type zeolites. Further, as a result of atomic absorption analysis of the crystal, the atomic ratio of Si / Al was 9,000.

以下、この結晶を参考例1と同様にイオン交換し、焼
成して触媒を得た。この触媒を触媒Jと称する。
Thereafter, the crystals were ion-exchanged and calcined in the same manner as in Reference Example 1 to obtain a catalyst. This catalyst is referred to as catalyst J.

参考例11(触媒Kの調製) オキシ硝酸ジルコニウムに代えてゲルマニウムテトラ
イソプロポキシド98.9mgを用いる他は、参考例6に準じ
て水熱合成、濾過、焼成して白色の粉末を得た。該粉末
を粉末X線回折で分析した結果、ペンタシル型ゼオライ
トと類似の構造を有する結晶性シリケートと同定され
た。また、該結晶を原子吸光分析した結果、Si/Ge原子
比は1800であった。引き続き、参考例1と同様にイオン
交換し、焼成して触媒を得た。この触媒を触媒Kと称す
る。
Reference Example 11 (Preparation of Catalyst K) A white powder was obtained by hydrothermal synthesis, filtration and calcination according to Reference Example 6, except that 98.9 mg of germanium tetraisopropoxide was used instead of zirconium oxynitrate. As a result of analyzing the powder by powder X-ray diffraction, the powder was identified as a crystalline silicate having a structure similar to that of a pentasil-type zeolite. The atomic absorption analysis of the crystal showed that the Si / Ge atomic ratio was 1800. Subsequently, ion exchange was carried out in the same manner as in Reference Example 1 and calcination was performed to obtain a catalyst. This catalyst is called catalyst K.

実施例1 内径1cmの石英ガラス製反応管中に、触媒Aを0.3g
(0.5ml)充填し、窒素気流下に350℃で1時間予熱処理
した。次いでシクロヘキサノンオキシム/メタノール/
ベンゼン重量比=1/2.3/11.5の混合溶液を11.5g/hrの供
給速度で反応管に供給し反応させた。この時の空間速度
WHSVは2.6hr-1であり、触媒層の温度(反応温度)は350
℃であった。反応生成物は1時間ごとに水冷下に捕集
し、ガスクロマトグラフで分析した。
Example 1 0.3 g of the catalyst A was placed in a quartz glass reaction tube having an inner diameter of 1 cm.
(0.5 ml) and preheated at 350 ° C. for 1 hour under a nitrogen stream. Then cyclohexanone oxime / methanol /
A mixed solution having a benzene weight ratio of 1 / 2.3 / 11.5 was supplied to the reaction tube at a supply rate of 11.5 g / hr to cause a reaction. Space velocity at this time
The WHSV is 2.6 hr -1 and the temperature of the catalyst layer (reaction temperature) is 350
° C. The reaction product was collected every hour under water cooling and analyzed by gas chromatography.

なおメタノールはいずれの分析においても98%以上の
回収率で回収された。
Note that methanol was recovered at a recovery rate of 98% or more in each analysis.

分析結果を表1に示す。 Table 1 shows the analysis results.

ここに、空間速度WHSVは次式で計算した値であり、シ
クロヘキサノンオキシム反応率及びε−カプロラクタム
の選択率はそれぞれ次式で算出した。
Here, the space velocity WHSV is a value calculated by the following equation, and the cyclohexanone oxime reaction rate and the selectivity of ε-caprolactam were respectively calculated by the following equation.

WHSV(hr-1) =シクロヘキサノンオキシム供給速度(kg/hr)/触媒重量(kg) シクロヘキサノンオキシムの反応率(%) ={(X−Y)/X}×100 ε−カプロラクタムの選択率(%) ={Z/(X−Y)}×100 なお、X、Y、Zはそれぞれ次のとおりである。WHSV (hr -1 ) = cyclohexanone oxime supply rate (kg / hr) / catalyst weight (kg) Cyclohexanone oxime conversion (%) = {(XY) / X} × 100 ε-caprolactam selectivity (%) ) = {Z / (XY)} × 100 where X, Y and Z are as follows.

X=供給した原料シクロヘキサノンオキシムのモル数 Y=未反応シクロヘキサノンオキシムのモル数 Z=生成物中のε−カプロラクタムのモル数 実施例2〜9 参考例で述べた触媒を実施例1と同様に予熱処理し、
それぞれ0.3g(0.5ml)を用いて、シクロヘキサノンオ
キシム/メタノール/ベンゼン重量比、該混合溶液の供
給速度および反応温度は実施例1と同様にして反応を行
なった。反応結果を表2に示す。
X = number of moles of cyclohexanone oxime supplied Y = number of moles of unreacted cyclohexanone oxime Z = number of moles of ε-caprolactam in the product Examples 2 to 9 The catalyst described in Reference Example was prepared in the same manner as in Example 1. Heat treated,
Using 0.3 g (0.5 ml) of each, the reaction was carried out in the same manner as in Example 1 with respect to the cyclohexanone oxime / methanol / benzene weight ratio, the supply rate of the mixed solution and the reaction temperature. Table 2 shows the reaction results.

比較例1〜9 反応系にメタノールを共存させずにシクロヘキサノン
オキシム/ベンゼン重量比=1/11.5の混合溶液を11.5g/
hrの供給速度で反応管に供給し、反応温度350℃で反応
させた。その他は実施例1と同じ方法で行なった。
Comparative Examples 1 to 9 Without mixing methanol in the reaction system, a mixed solution of cyclohexanone oxime / benzene at a weight ratio of 1 / 11.5 was 11.5 g /
The mixture was supplied to the reaction tube at a supply rate of hr and reacted at a reaction temperature of 350 ° C. Otherwise, the procedure was the same as in Example 1.

反応結果を表3に示す。 Table 3 shows the reaction results.

実施例10 触媒調製及びシクロヘキサノンオキシム転位反応の再
現性を確認するため、参考例1の触媒Aと同じ方法で触
媒を再度調製した(この触媒を以下触媒A*と称する。
Si/Al原子比は147000であった。)。触媒A*を0.3g
(0.5ml)用い、実施例1と同じ条件で反応させた。
Example 10 In order to confirm the reproducibility of the catalyst preparation and the cyclohexanone oxime rearrangement reaction, a catalyst was prepared again in the same manner as the catalyst A of Reference Example 1 (this catalyst is hereinafter referred to as catalyst A *).
The Si / Al atomic ratio was 147,000. ). 0.3 g of catalyst A *
(0.5 ml) and reacted under the same conditions as in Example 1.

反応結果を表4に示す。 Table 4 shows the reaction results.

比較例10 実施例10と同量の触媒A*を用い、反応系にメタノー
ルを共存させずに比較例1と同じ条件で反応させた。
Comparative Example 10 Using the same amount of catalyst A * as in Example 10, the reaction was carried out under the same conditions as in Comparative Example 1 without using methanol in the reaction system.

反応結果を表5に示す。 Table 5 shows the reaction results.

実施例11 反応系にベンゼンを共存させない以外は実施例1と同
様にして反応させた。なお、触媒として実施例10と同量
の触媒A*を用い、またシクロヘキサノンオキシム/メ
タノール重量比=1/2の混合溶液を3.0g/hrの供給速度で
反応管に供給し反応させた。この時のWHSVは3.3hr-1
あり、反応温度は350℃であった。
Example 11 A reaction was conducted in the same manner as in Example 1 except that benzene was not allowed to coexist in the reaction system. The same amount of catalyst A * as in Example 10 was used as the catalyst, and a mixed solution having a cyclohexanone oxime / methanol weight ratio of 1/2 was supplied to the reaction tube at a supply rate of 3.0 g / hr to cause a reaction. At this time, the WHSV was 3.3 hr −1 and the reaction temperature was 350 ° C.

反応結果を表6に示す。 Table 6 shows the reaction results.

実施例12 実施例11と同様にベンゼンを使用せず、また実施例10
と同量の触媒A*を用い、シクロヘキサノンオキシム/
メタノール重量比=1/13の混合溶液を11.7g/hrの供給速
度で反応管に供給し反応させた。この時のWHSVは2.8hr
-1であり、反応温度は350℃であった。
Example 12 As in Example 11, no benzene was used.
Using the same amount of catalyst A * as in cyclohexanone oxime /
A mixed solution having a methanol weight ratio of 1/13 was supplied to the reaction tube at a supply rate of 11.7 g / hr to cause a reaction. WHSV at this time is 2.8hr
-1 and the reaction temperature was 350 ° C.

反応結果を表7に示す。 Table 7 shows the reaction results.

実施例13〜17 実施例10と同量の触媒A*を用い、メタノールの代り
に表8に示すアルコールを用いた以外は、実施例1と供
給速度、反応温度を同様にして反応させた。
Examples 13 to 17 The reaction was carried out in the same manner as in Example 1 except that the same amount of the catalyst A * as in Example 10 was used and the alcohols shown in Table 8 were used instead of methanol.

反応結果を表8に示す。 Table 8 shows the reaction results.

実施例18〜19 実施例10と同量の触媒A*を用いて、シクロヘキサノ
ンオキシム/メタノール/ベンゼンの供給比(重量)を
それぞれ変化させて、実施例1と供給速度、反応温度を
同様にして反応させた。
Examples 18 to 19 Using the same amount of catalyst A * as in Example 10, changing the feed ratio (weight) of cyclohexanone oxime / methanol / benzene, respectively, and changing the feed rate and reaction temperature in the same manner as in Example 1. Reacted.

反応結果を表9に示す。 Table 9 shows the reaction results.

実施例20 内径1cmの石英ガラス製反応管中に、触媒A*を0.5g
(0.8ml)充填し、実施例1と同様にして予熱処理し
た。次いでシクロヘキサノンオキシム/メタノール/ベ
ンゼン重量比=1/1.1/10.4の混合溶液を5.8g/hrの供給
速度で反応管に供給し反応させた。この時のWHSVは0.9h
r-1であり、反応温度は350℃であった。
Example 20 In a quartz glass reaction tube having an inner diameter of 1 cm, 0.5 g of the catalyst A * was added.
(0.8 ml), and pre-heat treated in the same manner as in Example 1. Next, a mixed solution of cyclohexanone oxime / methanol / benzene weight ratio = 1 / 1.1 / 10.4 was supplied to the reaction tube at a supply rate of 5.8 g / hr to cause a reaction. WHSV at this time is 0.9h
r −1 and the reaction temperature was 350 ° C.

反応結果を表10に示す。 Table 10 shows the reaction results.

実施例21 内径1cmの石英ガラス製反応管中に、触媒Iを0.348g
(0.58ml)充填し、窒素気流下に350℃で1時間予熱処
理した。
Example 21 In a quartz glass reaction tube having an inner diameter of 1 cm, 0.348 g of Catalyst I was added.
(0.58 ml) and preheated at 350 ° C. for 1 hour under a nitrogen stream.

次いで、窒素気流下(4.2/hr)、シクロヘキサノン
オキシム/メタノール重量比=1/1.86の混合溶液を8.0g
/hrの供給速度で反応管に供給し反応させた。この時のW
HSVは8.0hr-1であり、反応温度は350℃であった。反応
生成物は1時間ごとにドライアイス−メタノール溶液の
冷却下に捕集し、ガスクロマトグラフで分析した。
Then, under a nitrogen stream (4.2 / hr), 8.0 g of a mixed solution of cyclohexanone oxime / methanol at a weight ratio of 1 / 1.86 was used.
The mixture was supplied to the reaction tube at a supply rate of / hr and reacted. W at this time
HSV was 8.0 hr −1 and reaction temperature was 350 ° C. The reaction product was collected every hour while cooling the dry ice-methanol solution and analyzed by gas chromatography.

反応結果を表11に示す。 Table 11 shows the reaction results.

比較例11 反応系にメタノールの代りにトルエンを共存させシク
ロヘキサノンオキシム/トルエン重量比=1/1.86の混合
溶液を8.0g/hrの供給速度で反応管に供給し、反応温度3
50℃で反応させた。この時のWHSVは8.0hr-1であった。
その他は実施例21と同じ方法で行なった。
Comparative Example 11 A mixed solution of cyclohexanone oxime / toluene at a weight ratio of 1 / 1.86 was supplied to a reaction tube at a supply rate of 8.0 g / hr by adding toluene instead of methanol to the reaction system, and a reaction temperature of 3
The reaction was performed at 50 ° C. The WHSV at this time was 8.0 hr -1 .
Otherwise, the procedure was the same as in Example 21.

反応結果を表12に示す。 Table 12 shows the reaction results.

実施例22 内径1cmの石英ガラス製反応管中に触媒Iを0.9g(1.5
ml)充填し減圧下(30Torr)に350℃で1時間予熱処理
した。次いで圧力を80Torrに調整し、シクロヘキサノン
オキシム/メタノール重量比=1/5の混合溶液を4.8g/hr
の供給速度で反応管に供給し反応させた。この時のWHSV
は0.9hr-1であり、反応温度は350℃であった。反応生成
物は1時間ごとに氷冷下に捕集しガスクロマトグラフで
分析した。
Example 22 0.9 g (1.5 g of catalyst I) was placed in a quartz glass reaction tube having an inner diameter of 1 cm.
ml) and pre-heated at 350 ° C. for 1 hour under reduced pressure (30 Torr). Then, the pressure was adjusted to 80 Torr, and a mixed solution of cyclohexanone oxime / methanol at a weight ratio of 1/5 was 4.8 g / hr.
And supplied to the reaction tube at a supply speed of 1. WHSV at this time
Was 0.9 hr −1 and the reaction temperature was 350 ° C. The reaction product was collected every hour under ice cooling and analyzed by gas chromatography.

反応結果を表13に示す。 Table 13 shows the reaction results.

比較例12 反応系にメタノールの代りにトルエンを共存させ、シ
クロヘキサノンオキシム/トルエン重量比=1/5の混合
溶液を4.8g/hrの供給速度で反応管に供給し、反応温度3
50℃で反応させた。その他は実施例22と同じ方法で行な
った。
Comparative Example 12 Toluene was used instead of methanol in the reaction system, and a mixed solution of cyclohexanone oxime / toluene at a weight ratio of 1/5 was supplied to the reaction tube at a supply rate of 4.8 g / hr.
The reaction was performed at 50 ° C. Others were carried out in the same manner as in Example 22.

反応結果を表14に示す。 Table 14 shows the reaction results.

実施例23 触媒Iを触媒Jに変更する以外は実施例22と同様にし
て反応を行なった。
Example 23 A reaction was carried out in the same manner as in Example 22 except that catalyst I was changed to catalyst J.

反応結果を表15に示す。 Table 15 shows the reaction results.

比較例13 触媒Iを触媒Jに変更する以外は比較例12と同様にし
て反応を行なった。
Comparative Example 13 A reaction was carried out in the same manner as in Comparative Example 12 except that catalyst I was changed to catalyst J.

反応結果を表16に示す。 Table 16 shows the reaction results.

実施例24 内径1cmの石英ガラス製反応管中に、触媒A*を0.3g
(0.5ml)充填し、実施例1と同様にして予熱処理し
た。次いで空気流通下(1/hr)、シクロヘキサノン
オキシム/メタノール/ベンゼン重量比=1/5.6/9.9の
混合溶液を11.4g/hrの供給速度で反応管に供給し反応さ
せた。この時のWHSVは3.0hr-1であり、反応温度は350℃
であった。
Example 24 0.3 g of the catalyst A * was placed in a quartz glass reaction tube having an inner diameter of 1 cm.
(0.5 ml), and pre-heat treated in the same manner as in Example 1. Then, a mixed solution of cyclohexanone oxime / methanol / benzene at a weight ratio of 1 / 5.6 / 9.9 was supplied to the reaction tube at a supply rate of 11.4 g / hr and reacted under air circulation (1 / hr). The WHSV at this time is 3.0 hr -1 and the reaction temperature is 350 ° C.
Met.

反応結果を表17に示す。 Table 17 shows the reaction results.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固体酸触媒を用いて気相反応条件下にシク
ロヘキサノンオキシムからε−カプロラクタムを製造す
る方法において、反応系に低級アルコールを共存させる
ことを特徴とするε−カプロラクタムの製法。
1. A method for producing ε-caprolactam from cyclohexanone oxime under gas phase reaction conditions using a solid acid catalyst, wherein a lower alcohol is present in the reaction system.
JP2015462A 1989-01-26 1990-01-24 Production method of ε-caprolactam Expired - Lifetime JP2616088B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP1-19242 1989-01-26
JP1924289 1989-01-26

Publications (2)

Publication Number Publication Date
JPH02275850A JPH02275850A (en) 1990-11-09
JP2616088B2 true JP2616088B2 (en) 1997-06-04

Family

ID=11993935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015462A Expired - Lifetime JP2616088B2 (en) 1989-01-26 1990-01-24 Production method of ε-caprolactam

Country Status (1)

Country Link
JP (1) JP2616088B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148200A1 (en) * 2015-03-17 2016-09-22 住友化学株式会社 METHOD FOR PRODUCING ε-CAPROLACTAM

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW213896B (en) 1991-11-27 1993-10-01 Sumitomo Chemical Co
KR100224333B1 (en) 1991-11-27 1999-10-15 고오사이 아끼오 Process for producing epsilon-caprolactam
TW526172B (en) * 1999-06-30 2003-04-01 Sumitomo Chemical Co A process for producing pentacyl-type crystalline zeolites and a process for producing ε-caprolactam using the same
JP4661071B2 (en) * 2004-03-30 2011-03-30 住友化学株式会社 Method for producing ε-caprolactam
JP4461926B2 (en) 2004-06-30 2010-05-12 住友化学株式会社 Method for producing zeolite and method for producing ε-caprolactam
JP4929645B2 (en) * 2004-08-19 2012-05-09 宇部興産株式会社 Method for producing lactam compound
TW200808447A (en) 2006-07-04 2008-02-16 Sumitomo Chemical Co Processing for regenerating catalyst for producing e-caprolactam and process for producing e-caprolactam
JP2010047499A (en) 2008-08-20 2010-03-04 Univ Of Tokyo METHOD FOR PRODUCING epsilon-CAPROLACTAM AND METHOD FOR PRODUCING PENTASIL TYPE ZEOLITE
WO2013058121A1 (en) * 2011-10-17 2013-04-25 住友化学株式会社 PRODUCTION METHOD FOR ε-CAPROLACTAM
JP5875843B2 (en) 2011-11-30 2016-03-02 住友化学株式会社 Method for producing zeolite compact and method for producing ε-caprolactam
JP2022142840A (en) * 2021-03-17 2022-10-03 住友化学株式会社 Method of producing zeolite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148200A1 (en) * 2015-03-17 2016-09-22 住友化学株式会社 METHOD FOR PRODUCING ε-CAPROLACTAM

Also Published As

Publication number Publication date
JPH02275850A (en) 1990-11-09

Similar Documents

Publication Publication Date Title
JP2616088B2 (en) Production method of ε-caprolactam
KR100193349B1 (en) Method for preparing epsilon-caprolactam and activation method of solid catalyst for preparing epsilon-caprolactam
US4968793A (en) Process for producing ε-caprolactam
US7060645B2 (en) Method for manufacturing zeolite and method for manufacturing ε-caprolactam
JPH0440342B2 (en)
US4717770A (en) Process for producing epsilon-caprolactam
KR100224333B1 (en) Process for producing epsilon-caprolactam
US5354859A (en) ε-caprolactam
JP3254752B2 (en) Production method of ε-caprolactam
JP3254753B2 (en) Method for producing ε-caprolactam
JP2676895B2 (en) Process for producing ε-caprolactam
JP3301092B2 (en) Method for producing ε-caprolactam
JP3221024B2 (en) Method for producing ε-caprolactam and method for activating solid catalyst for producing ε-caprolactam
JP3969078B2 (en) Method for producing pentasil-type zeolite and method for producing ε-caprolactam
JP3254751B2 (en) Method for producing ε-caprolactam
EP2617680B1 (en) Method for manufacturing zeolite and method for manufacturing epsilon-caprolactam
JP3677958B2 (en) Catalyst for producing ε-caprolactam and method for producing ε-caprolactam using the same
JP3221021B2 (en) Method for producing ε-caprolactam
KR100287085B1 (en) Method for preparing E-caprolactam
JP4465731B2 (en) Method for producing ε-caprolactam
JP3849408B2 (en) Method for producing pentasil-type crystalline zeolite and method for producing ε-caprolactam
JPH06256304A (en) Production of epsilon-caprolactam
JP4681705B2 (en) Process for producing ε-caprolactam and catalyst used therefor
JPH08253434A (en) Production of high-purity 1,3-cyclohexadiene
JP2000256309A (en) Production of epsilon-caprolactam

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

EXPY Cancellation because of completion of term