JP2615846B2 - Polyolefin pulp - Google Patents

Polyolefin pulp

Info

Publication number
JP2615846B2
JP2615846B2 JP12664188A JP12664188A JP2615846B2 JP 2615846 B2 JP2615846 B2 JP 2615846B2 JP 12664188 A JP12664188 A JP 12664188A JP 12664188 A JP12664188 A JP 12664188A JP 2615846 B2 JP2615846 B2 JP 2615846B2
Authority
JP
Japan
Prior art keywords
phase transition
polyolefin
molecular weight
less
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12664188A
Other languages
Japanese (ja)
Other versions
JPH01298298A (en
Inventor
憲一 犬塚
敏巨 田中
浩 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP12664188A priority Critical patent/JP2615846B2/en
Publication of JPH01298298A publication Critical patent/JPH01298298A/en
Application granted granted Critical
Publication of JP2615846B2 publication Critical patent/JP2615846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Paper (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は製紙用および短繊維強化複合材料として好適
な超高分子量ポリオレフインパルプに関する。
The present invention relates to an ultrahigh molecular weight polyolefin pulp suitable for papermaking and as a short fiber reinforced composite material.

〔従来の技術〕[Conventional technology]

超高分子量ポリオレフインは汎用のポリオレフインに
比べ耐衝撃性、耐摩耗性、耐薬品性、引張強度等に優れ
ているため、繊維、フイルムなど種々の用途に適用され
ており、パルブへも応用されている。
Ultra-high molecular weight polyolefins are superior to general-purpose polyolefins in impact resistance, abrasion resistance, chemical resistance, tensile strength, etc., so they are used in various applications such as fibers and films, and are also used in pulp. I have.

超高分子量ポリオレフインからパルプ状物を得る方法
として、濃度5%以下のポリオレフイン溶液を相分離温
度より5〜50℃高い温度で押出し、0.1〜100000倍/秒
の変形速度で2倍以上の伸長変形を与え、相分離温度以
下に冷却した後破砕する方法(特開昭59−170124号公
報)が提案されているが、かかる方法で伸長変形された
繊維状物のポリオレフイン分子の配向度が低いため、5g
/d(0.42GPa)程度であり、決して強度に優れた繊維と
は言えない。
As a method of obtaining a pulp from ultra-high molecular weight polyolefin, a polyolefin solution having a concentration of 5% or less is extruded at a temperature 5 to 50 ° C. higher than the phase separation temperature, and elongation deformation is twice or more at a deformation speed of 0.1 to 100000 times / second. And crushing after cooling to below the phase separation temperature (Japanese Patent Application Laid-Open No. 59-170124), but the orientation degree of the polyolefin molecules of the fibrous material elongated and deformed by such a method is low. , 5g
/ d (0.42 GPa), which is not a fiber with excellent strength.

また、脂肪族炭化水素との混合割合が1〜80%のポリ
オレフイン組成物を溶融混練後、ダイより押出し、次い
で少なくとも10倍以上に延伸して得られた延伸物を細片
に切断した後、該細片を不活性非溶媒中で機械的に叩解
してフイブリル化する方法(特開昭61−275417号)が提
案されている。かかる方法で伸長変形された叩解する前
の繊維状物の強度は1.2GPa以上であり、ポリオレフイン
分子が高配向化されているため、比較的強度に優れてい
るものとなつているが製法上、繊維中に不揮発性の脂肪
族炭化水素が存在し、必要以上にフイブリル化しやすい
傾向があり、特に短繊維強化複合材料に展開した場合、
フイブリル間の剥離による繊維−樹脂間のみかけの接着
力が低下するという欠点があつた。
Further, after the polyolefin composition having a mixing ratio of 1 to 80% with the aliphatic hydrocarbon is melt-kneaded, the mixture is extruded from a die, and then the stretched product obtained by stretching at least 10 times or more is cut into small pieces. A method of fibrillating the strip by mechanically beating it in an inert non-solvent (Japanese Patent Application Laid-Open No. 275417/1986) has been proposed. The strength of the fibrous material before beating stretched and deformed by such a method is 1.2 GPa or more, and the polyolefin molecules are highly oriented, so that the strength is relatively excellent, but on the manufacturing method, Non-volatile aliphatic hydrocarbons are present in the fibers and tend to fibrillate more than necessary, especially when deployed in short fiber reinforced composites.
There is a drawback that the apparent adhesion between the fiber and the resin due to the separation between the fibrils is reduced.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

本発明は超高分子量ポリオレフインパルプにおける前
記従来の欠点、即ち、低配向および必要以上のフイブリ
ル間での剥離のしやすさを解消し、製紙用および短繊維
強化複合材料用に好適なポリオレフインパルプを提供せ
んとするものである。
The present invention solves the above-mentioned conventional disadvantages in ultrahigh molecular weight polyolefin pulp, that is, low orientation and unnecessarily easy peeling between fibrils, and a polyolefin pulp suitable for papermaking and short fiber reinforced composite material. It will not be provided.

〔課題を解決するための手段〕[Means for solving the problem]

即ち、本発明は重量平均分子量が40万以上の超高分子
量ポリオレフインからなり、平均繊維径が50μm以下、
繊維のアスペクト比が100以上であり、20℃から200℃ま
での温度範囲における示差熱量測定(DSC)による相転
移チヤートにおいて20℃以上120℃未満の範囲には実質
的に相転移は存在せず、120℃乃至160℃の範囲に二つ乃
至三つの相転移が存在し、面積強度において全体の80%
以上を占める主相転移ピークが140℃乃至155℃の範囲内
に存在し、かつ該主相転移より低温領域に出現する相転
移ピークの面積強度(A)と該主相転移より高温領域に
出現する相転移ピークの面積強度(B)の比(A)/
(B)が1以下、好ましくは0.1以下、更に好ましくは
0.01以下であるポリオレフインパルプを提供するもので
ある。
That is, the present invention is composed of an ultrahigh molecular weight polyolefin having a weight average molecular weight of 400,000 or more, and an average fiber diameter of 50 μm or less,
The aspect ratio of the fiber is 100 or more, and in the phase transition chart by differential calorimetry (DSC) in the temperature range of 20 ° C to 200 ° C, there is virtually no phase transition in the range of 20 ° C or more and less than 120 ° C , Two or three phase transitions in the range of 120 ° C to 160 ° C, 80% of the total in area strength
The main phase transition peak occupying the above range is in the range of 140 ° C. to 155 ° C., and the area intensity (A) of the phase transition peak appearing in a region lower than the main phase transition and appearing in a region higher than the main phase transition Ratio (A) / area intensity (B) of phase transition peaks
(B) is 1 or less, preferably 0.1 or less, more preferably
It is intended to provide polyolefin pulp having a value of 0.01 or less.

本発明に用いる超高分子量ポリオレフインは重量平均
分子量が40万以上、好ましくは100万以上のα−オレフ
インの単独重合体または2種以上のα−オレフイン共重
合体で高結晶性のものである。
The ultrahigh molecular weight polyolefin used in the present invention is a homopolymer of α-olefin or a copolymer of two or more α-olefins having a weight average molecular weight of 400,000 or more, preferably 1,000,000 or more, and is highly crystalline.

重量平均分子量が40万未満のものは、延伸工程を経て
調製された被叩解物が弾性率には優れるものの所望の強
度を達成することができないため叩解時繊維長方向に直
交する切断が起こり叩解特性を損うばかりでなく、所望
の短繊維状物を得ることができないおそれがあり好まし
くない。
If the weight average molecular weight is less than 400,000, the material to be beaten prepared through the stretching step is excellent in elastic modulus but cannot achieve the desired strength, so that the fiber is cut perpendicular to the fiber length direction during beating and beaten. In addition to impairing the properties, the desired short fibrous material may not be obtained, which is not preferable.

前記α−オレフインとしては具体的には例えばエチレ
ン、プロピレン、1−ブテン、4−メチル−1−ペンテ
ン、1−ヘキセン、1−デセン等が挙げられる。しかし
前記超高分子量ポリオレフインの中でもエチレンの単独
重合体もしくはエチレンと前記の他の少量の単量体との
共重合体が強度、耐寒性、耐撃性、自己潤滑性等に優れ
ているので好ましい。
Specific examples of the α-olefin include ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, and 1-decene. However, among the ultrahigh molecular weight polyolefins, a homopolymer of ethylene or a copolymer of ethylene and the other small amount of the monomer is preferable because it has excellent strength, cold resistance, shock resistance, self-lubricating property and the like. .

超高分子量ポリオレフインの短繊維状物の直径は50μ
以下、好ましくは20μ以下、さらに好ましくは10μ以下
であり、50μ以下では水性が過大であり、抄紙を目的
とする場合不適当である。
Ultra high molecular weight polyolefin short fibrous material diameter 50μ
Below, it is preferably 20 μm or less, more preferably 10 μm or less, and if it is 50 μm or less, the aqueous solution is excessively large and is unsuitable for papermaking.

また、アスペクト比は100以上であり、好ましくは250
ないし1000である。アスペクト比が100より低いと抄紙
を目的とした時、繊維同志を互いに絡み合すことができ
ないし、1000以上では結束繊維が生ずるおそれがある。
The aspect ratio is 100 or more, preferably 250
Or 1000. If the aspect ratio is lower than 100, the fibers cannot be entangled with each other when papermaking is intended, and if the aspect ratio is higher than 1000, bound fibers may be generated.

本発明における相転移点は示差走査型熱量計(DSC)
により測定した相転移チヤートにおける値である。
The phase transition point in the present invention is determined by a differential scanning calorimeter (DSC).
It is a value in the phase transition chart measured by the above.

本発明における超高分子量ポリオレフインパルプの相
転移点は20℃から200℃の範囲の測定において、20℃な
いし120℃未満の温度範囲には相転移は実質的に存在し
ない。20℃ないし120℃の範囲に相転移温度が存在すれ
ば必要以上にフイブリル化し、好ましくない。
The phase transition point of the ultrahigh molecular weight polyolefin pulp in the present invention is substantially free from phase transition in a temperature range of 20 ° C. to less than 120 ° C. in a measurement in the range of 20 ° C. to 200 ° C. If the phase transition temperature is in the range of 20 ° C to 120 ° C, undesirably fibrillation occurs more than necessary.

また120乃至160℃の範囲に二つ乃至三つの相転移が存
在し、面積強度において全体の80%以上を占める主相転
移が140乃至155℃の範囲内に存在する。
Further, there are two or three phase transitions in the range of 120 to 160 ° C, and the main phase transition which accounts for 80% or more of the total area strength exists in the range of 140 to 155 ° C.

更に、該主相転移の面積強度と該主相転移より高温領
域に出現する相転移の面積強度との和が全体の少なくと
も95%を占めるのが好ましい。この値が95%より低いと
配向が不充分であり、本発明の目的とする効果が得られ
なくなるおそれがある。
Further, it is preferable that the sum of the area strength of the main phase transition and the area strength of the phase transition appearing in a region higher in temperature than the main phase transition occupies at least 95% of the whole. If this value is lower than 95%, the orientation is insufficient, and the effects intended by the present invention may not be obtained.

更に、該主相転移より低温領域に出現する相転移ピー
クの面積強度(A)と該主相転移より高温領域に出現す
る相転移ピークの面積強度(B)の比(A)/(B)は
1以下、好ましくは0.1以下、更に好ましくは0.01以下
である。この(A)/(B)比が1より大になると配向
が不充分であり本発明の目的とする効果が得られなくな
る。
Further, the ratio (A) / (B) of the area intensity (A) of the phase transition peak appearing in the region lower than the main phase transition and the area intensity (B) of the phase transition peak appearing in the region higher than the main phase transition. Is 1 or less, preferably 0.1 or less, and more preferably 0.01 or less. When the (A) / (B) ratio is larger than 1, the orientation is insufficient, and the effects intended by the present invention cannot be obtained.

本発明の超高分子量ポリオレフインパルプの製造方法
としては、例えば、高配向のポリオレフイン長繊維を裁
断し、機械的に常温粉砕法で叩解する方法、あるいは液
体窒素、ドライアイス等の冷媒を使用した低温粉砕法で
叩解することによつて短繊維状物にする方法等があげら
れるが、低温粉砕法を採択するのが好ましい。ここで
は、低温で粉砕することが重要であり、100℃以下、好
ましくは50℃以下、より好ましくは0℃以下で粉砕する
ことが特に好ましい。100℃以上で粉砕するとポリオレ
フイン繊維の高配向性が乱れるという欠点が生じ、本発
明の目的とする効果が得られなくなる。
Examples of the method for producing the ultra-high molecular weight polyolefin pulp of the present invention include, for example, a method of cutting highly oriented polyolefin long fibers and mechanically beating it by a normal temperature pulverization method, or a method using liquid nitrogen, a low temperature using a refrigerant such as dry ice. A method of making a short fibrous material by beating by a pulverization method may be mentioned, but it is preferable to adopt a low-temperature pulverization method. Here, it is important to pulverize at low temperature, and it is particularly preferable to pulverize at 100 ° C. or lower, preferably 50 ° C. or lower, more preferably 0 ° C. or lower. Pulverization at 100 ° C. or higher causes a defect that the high orientation of the polyolefin fiber is disturbed, and the desired effect of the present invention cannot be obtained.

上記高配向ポリオレフイン長繊維を得るためには、本
発明で使用するポリオレフインの平均分子量が著しく高
いため、その溶融粘度も極めて高く、従つて、従来の溶
媒紡糸法で紡糸することはほとんど不可能であるので、
該ポリオレフインの紡糸に当つては該ポリオレフインを
溶媒に溶解し、ポリオレフイン溶液を紡糸し、紡糸後空
気中で冷却して生じるゲル状の繊維を延伸するのが好ま
しい。溶媒としては例えばデカリン、キシレン等の揮発
性溶媒が好ましい。また、延伸倍率は10倍以上、好まし
くは20倍以上とするのがよい。このような紡糸法は例え
ば特開昭55−107506号、特開昭58−5228号等に記載され
公知である。
In order to obtain the above-mentioned highly oriented polyolefin long fiber, the average molecular weight of the polyolefin used in the present invention is remarkably high, so that the melt viscosity thereof is extremely high. Therefore, it is almost impossible to spin by the conventional solvent spinning method. Because there is
In spinning the polyolefin, it is preferable to dissolve the polyolefin in a solvent, spin a polyolefin solution, and cool the gel in the air after spinning to draw a gel-like fiber. As the solvent, for example, volatile solvents such as decalin and xylene are preferable. Further, the stretching ratio is 10 times or more, preferably 20 times or more. Such spinning methods are known and described in, for example, JP-A-55-107506 and JP-A-58-5228.

本発明における超高分子量ポリオレフインには耐熱安
定剤、耐候安定剤、顔料、染料、無機あるいは有機の充
てん剤等、通常ポリオレフインに添加することができる
種々の配合剤を本発明の目的をそこなわない範囲で添加
してもよい。
The ultra-high molecular weight polyolefin in the present invention does not detract from the purpose of the present invention, such as heat stabilizers, weather stabilizers, pigments, dyes, inorganic or organic fillers, and various compounding agents which can be added to polyolefins. You may add in the range.

また、本発明の超高分子ポリオレフインの短繊維状物
は通常の抄紙方法により、単独で、あるいは天然パル
プ、ポリエチレン、ポリプロピレン、ポリスチレン、ポ
リアクリロニトリル、ビニロン等から得られる合成パル
プ等を混合して紙状物に加工することができる。さらに
は、該紙状物を圧力および熱を加えることにより(例え
ば特開昭59−16348号公報記載の方法)引き裂きに優れ
たシート状物にすることもできる。
In addition, the short fibrous material of the ultra-high molecular weight polyolefin of the present invention may be used alone or mixed with a synthetic pulp obtained from natural pulp, polyethylene, polypropylene, polystyrene, polyacrylonitrile, vinylon, or the like by a normal papermaking method. It can be processed into a shape. Furthermore, by applying pressure and heat to the paper-like material (for example, a method described in JP-A-59-16348), it can be made into a sheet-like material excellent in tearing.

〔発明の効果〕〔The invention's effect〕

本発明の超高分子量ポリオレフインの短繊維状物は高
弾性、高引張強度、耐候性、製紙特性に優れているばか
りでなく、ポリオレフイン本来の特徴である耐薬品性、
耐水性、電気特性に優れるとともに超高分子量ポリオレ
フインの特徴である強靭性をも有しており、新しい短繊
維状物であることが明らかである。
The ultra-high molecular weight polyolefin short fibrous material of the present invention has high elasticity, high tensile strength, weather resistance, excellent papermaking properties, as well as chemical resistance, which is a characteristic feature of polyolefin,
It has excellent water resistance and electrical properties and also has the toughness characteristic of ultra-high molecular weight polyolefin, and is clearly a new short fibrous material.

かかる短繊維状物は上記の特性を活かして抄紙するこ
とにより絶縁紙、コンデンサー紙等の各種電気用紙、化
粧合板用化粧紙、ベークライト用化粧紙等の各種含浸
紙、電池隔離糸、膜支持体等の隔離紙、複合材強化繊維
紙などの用途に好適である。また、天然パルプ、ポリエ
チレン、ポリプロピレン等から得られる合成パルプ等と
混抄し、これら紙状物の紙力増強にも好適である。
Such short fibrous materials are made by making paper making use of the above-mentioned properties, thereby producing various electric papers such as insulating paper and condenser paper, various impregnated papers such as decorative paper for decorative plywood and decorative paper for bakelite, battery separating threads, and membrane supports. It is suitable for applications such as isolating paper and composite-reinforced fiber paper. It is also suitable for blending with natural pulp, synthetic pulp or the like obtained from polyethylene, polypropylene or the like to enhance the paper strength of these paper-like materials.

また、かかる短繊維状物はポリオレフイン樹脂のよう
な熱可塑性樹脂およびエポキシ樹脂、不飽和ポリエステ
ル樹脂、ビニルエステル樹脂、フエノール樹脂などのよ
うな熱硬化性樹脂の補強材としても好適であるが、これ
は該短繊維状物が必要以上にフイブリル化しないことが
繊維−樹脂間のみかけの接着力を低下させないためであ
ると考えられる。
Further, such a short fibrous material is also suitable as a reinforcing material for a thermoplastic resin such as a polyolefin resin and a thermosetting resin such as an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, and a phenol resin. It is considered that the reason is that the short fibrous material does not fibrillate more than necessary so as not to lower the apparent adhesive force between the fiber and the resin.

なお、本発明における各種の物性の測定は以下に記載
の方法によつた。
In the present invention, various physical properties were measured by the methods described below.

(繊維の強伸度特性の測定法) JIS L−1013(1981)に準じた。即ち、東洋ボールド
ウイン社製テンシロンを用い試長(ゲージ長)200mm、
引張速度100mm/分の条件でS−S曲線を測定し引張破断
強度、引張弾性率を算出した。引張弾性率はS−S曲線
の原点付近の最大勾配より算出した。
(Measurement method of strength and elongation characteristics of fiber) According to JIS L-1013 (1981). That is, using Toyo Baldwin's Tensilon, test length (gauge length) 200mm,
The SS curve was measured under the condition of a tensile speed of 100 mm / min, and the tensile strength at break and tensile modulus were calculated. The tensile modulus was calculated from the maximum gradient near the origin of the SS curve.

(平均分子量) ASTM D 2857により135℃のデカリン溶液の粘度を測定し
て固有粘度〔η〕を求めた後〔η〕を次式に代入して平
均分子量(Mv)を算出した。
(Average Molecular Weight) The viscosity of the decalin solution at 135 ° C. was measured according to ASTM D 2857 to determine the intrinsic viscosity [η], and then [η] was substituted into the following equation to calculate the average molecular weight (Mv).

Mv=3.64×104×〔η〕1.39 (相転移温度およびピーク面積強度) 理学電機(株)製の示差走査熱量計(DSC−8260)を
用い、20乃至200℃の範囲で試料10mg、昇温速度10℃/
分、±8mcal/秒、チヤートスピード20mm/分でDCSサーモ
グラフを求め相転移温度(ピーク)とその相転移ピーク
面積を求めた。第1図は説明のためにDSCチヤートの一
例を示したのである。ピーク面積を求めるにあたつて
は、低温側のベースラインと実際の吸熱速度曲線との接
点および高温側(融解後)のベースラインと実際の吸熱
速度曲線との接点を求め、両接点を結ぶ直線(第1図中
の一点鎖線)と両接点間の吸熱速度曲線とに囲まれる領
域をピーク面積とした。また相転移温度はInの融点(15
4.6℃)で補正した。
Mv = 3.64 × 10 4 × [η] 1.39 (Phase transition temperature and peak area intensity) Using a differential scanning calorimeter (DSC-8260) manufactured by Rigaku Denki Co., Ltd., a sample of 10 mg in the range of 20 to 200 ° C. was heated. Temperature rate 10 ° C /
A DCS thermograph was obtained at a rate of ± 8 mcal / sec and a chart speed of 20 mm / min, and the phase transition temperature (peak) and the phase transition peak area were determined. FIG. 1 shows an example of a DSC chart for explanation. In determining the peak area, the contact point between the low-temperature side baseline and the actual heat absorption rate curve and the contact point between the high-temperature side (after melting) baseline and the actual heat absorption rate curve are obtained, and both points are connected. The area surrounded by the straight line (the one-dot chain line in FIG. 1) and the heat absorption rate curve between both contacts was defined as the peak area. The phase transition temperature is the melting point of In (15
4.6 ° C).

(成形体の密度) ASTM D−1505の方法に基づいて行つた。(Density of Molded Article) This was performed based on the method of ASTM D-1505.

(成形体の引張強度および引張伸び) ASTM D−638の方法に基づいて行つた。(Tensile Strength and Tensile Elongation of Molded Body) The test was performed based on the method of ASTM D-638.

(成形体の曲げ強度) ASTM D−790の方法に基づいて行つた。(Bending strength of molded article) The bending strength was measured based on the method of ASTM D-790.

〔実施例〕〔Example〕

以下に本発明を実施例および比較例をあげて具体的に
説明するが、本発明はかかる特定の実施例に限られるも
のではないこと勿論である。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but it is needless to say that the present invention is not limited to such specific Examples.

実施例 1 高密度ポリエチレン(重量平均分子量=2×106)1
部とデカリン49部を混合し、混合物を160℃にて溶解し
て紡糸口金から空気中へ押し出し、デカリンを含有した
状態で固体した繊維を巻き取つた。
Example 1 High density polyethylene (weight average molecular weight = 2 × 10 6 ) 1
And 49 parts of decalin were mixed, the mixture was melted at 160 ° C., extruded from a spinneret into the air, and the solid fiber containing decalin was wound up.

巻きとつたフイラメントをまず70℃の熱板に接しなが
ら6.5倍に延伸し、続いて130℃の熱板に接しながら6.0
倍に延伸して330デニール/300フイラメントの延伸繊維
を得た。該延伸繊維の弾性率、引張強度、伸度を表1に
示す。
The wound filament is stretched 6.5 times while first contacting a hot plate at 70 ° C, and then 6.0 times while contacting a hot plate at 130 ° C.
The fiber was drawn twice to obtain a drawn fiber of 330 denier / 300 filament. Table 1 shows the elastic modulus, tensile strength, and elongation of the drawn fiber.

該延伸物を5mmの長さで定尺切断し、叩解用試料とし
た。
The stretched product was cut to a fixed length at a length of 5 mm to obtain a beating sample.

上記方法で調製された試料を液体窒素を用い冷却しつ
つ、パルマンミルで粉砕した。
The sample prepared by the above method was pulverized with a Parman mill while cooling using liquid nitrogen.

拡大鏡に投影することにより、100本の繊維の繊維長
および繊維径を測定したところ繊維長については被叩解
物の試料長がほぼ支持されたにもかかわらず数平均の繊
維径は8μであり、また結束繊維は認められなかつた。
上記方法で得られたポリエチレンパルプのDSCチヤート
を第2図として示し、相転移温度およびピーク面積強度
を表2に示す。
When the fiber length and fiber diameter of 100 fibers were measured by projecting it on a magnifying glass, the number average fiber diameter was 8μ despite the fact that the sample length of the object to be beaten was almost supported. No binding fibers were found.
FIG. 2 shows the DSC chart of the polyethylene pulp obtained by the above method, and Table 2 shows the phase transition temperature and the peak area intensity.

表 2 相転移温度 ピーク面積比 (℃) (%) 144.5 97.8 151.9 2.2 なお、(A)/(B)比は0/2.2=0であつた。 Table 2 Phase transition temperature Peak area ratio (° C) (%) 144.5 97.8 151.9 2.2 The ratio (A) / (B) was 0 / 2.2 = 0.

次に、上記ポリエチレンパルプを高圧法ポリエチレン
(住友化学;スミカセンG803)と混合し、スクリユータ
イプ射出成形機を用い120℃で成形した。表3にこの成
形体の性状を示す。引張強度および曲げ強度からみても
このパルプは補強材として優れた性質を持つていること
が明らかである。
Next, the polyethylene pulp was mixed with high-pressure polyethylene (Sumitomo Chemical; Sumikasen G803) and molded at 120 ° C. using a screw-type injection molding machine. Table 3 shows the properties of the molded product. It is clear from the tensile strength and bending strength that this pulp has excellent properties as a reinforcing material.

比較例 実施例と同様にして調製した5mm長の叩解用試料を液
体窒素を使用せずにパルマンミルで粉砕した。その際、
粉砕機は高温を発生していた。繊維の長さおよび径は実
施例と同様な方法で測定したところ繊維長は被叩解物の
試料長をほぼ維持し、繊維径は9μであつた。結束繊維
は認められなかつた。上記方法で得られたポリエチレン
パルプのDSCチヤートを第3図に示す。また相転移温度
およびピーク面積強度を表4に示す。
Comparative Example A beating sample having a length of 5 mm prepared in the same manner as in the example was pulverized with a Palman mill without using liquid nitrogen. that time,
The mill was generating high temperatures. The length and diameter of the fiber were measured in the same manner as in the examples. As a result, the fiber length was almost the same as the sample length of the object to be beaten, and the fiber diameter was 9 μm. No binding fibers were found. FIG. 3 shows a DSC chart of the polyethylene pulp obtained by the above method. Table 4 shows the phase transition temperature and the peak area intensity.

表 4 相転移温度 ピーク面積比 (℃) (%) 142.2 1.3 144.6 97.7 152.9 1.0 なお、(A)/(B)比は1.3/1.0=1.3であつた。 Table 4 Phase transition temperature Peak area ratio (° C) (%) 142.2 1.3 144.6 97.7 152.9 1.0 The ratio (A) / (B) was 1.3 / 1.0 = 1.3.

次にこのポリオルフインパルプを実施例と同様にポリ
エチレン樹脂の強化剤として使用した。成形体の性状は
前掲の表3に示す。実施例のものと比較して力学的性質
が劣つていた。
Next, this polyolefin pulp was used as a reinforcing agent for polyethylene resin in the same manner as in the examples. The properties of the molded product are shown in Table 3 above. The mechanical properties were inferior to those of the examples.

【図面の簡単な説明】[Brief description of the drawings]

第1図はサーモグラフの一例を示す説明図、第2図は本
発明の一実施例のDSCチヤート、第3図は比較例のDSCチ
ヤートを示す図である。
FIG. 1 is an explanatory view showing an example of a thermograph, FIG. 2 is a DSC chart of one embodiment of the present invention, and FIG. 3 is a view showing a DSC chart of a comparative example.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−239509(JP,A) 特開 昭47−35225(JP,A) 特開 昭61−275417(JP,A) ────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-60-239509 (JP, A) JP-A-47-35225 (JP, A) JP-A-61-275417 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量平均分子量が40万以上の超高分子量ポ
リオレフインからなり、平均繊維径が50μm以下、繊維
のアスペクト比が100以上であり、20℃から200℃までの
温度範囲における示差熱量測定(DSC)による相転移チ
ヤートにおいて20℃以上120℃未満の範囲には実質的に
相転移は存在せず、120℃乃至160℃の範囲に二つ乃至三
つの相転移が存在し、面積強度において全体の80%以上
を占める主相転移ピークが140℃乃至155℃の範囲内に存
在し、かつ該主相転移ピークより低温領域に出現する相
転移ピークの面積強度(A)と該主相転移ピークより高
温領域に出現する相転移ピークの面積強度(B)の比
(A)/(B)が1以下であることを特徴とするポリオ
レフインパルプ。
1. A differential calorimeter comprising an ultrahigh molecular weight polyolefin having a weight average molecular weight of 400,000 or more, an average fiber diameter of 50 μm or less, an aspect ratio of the fiber of 100 or more, and a temperature range from 20 ° C. to 200 ° C. In the phase transition chart by (DSC), there is substantially no phase transition in the range of 20 ° C. or more and less than 120 ° C., and there are two or three phase transitions in the range of 120 ° C. to 160 ° C. The main phase transition peak occupying 80% or more of the whole is in the range of 140 ° C. to 155 ° C., and the area intensity (A) of the phase transition peak appearing in a region lower than the main phase transition peak and the main phase transition A polyolefin pulp, wherein the ratio (A) / (B) of the area intensity (B) of the phase transition peak appearing in a higher temperature region than the peak is 1 or less.
【請求項2】前記の面積強度比(A)/(B)が0.1以
下である特許請求の範囲第1項記載のポリオレフインパ
ルプ。
2. The polyolefin pulp according to claim 1, wherein said area intensity ratio (A) / (B) is 0.1 or less.
【請求項3】前記の面積強度比(A)/(B)が0.01以
下である特許請求の範囲第1項記載のポリオレフインパ
ルプ。
3. The polyolefin pulp according to claim 1, wherein said area intensity ratio (A) / (B) is 0.01 or less.
【請求項4】該主相転移の面積強度と該主相転移ピーク
より高温領域に出現する相転移ピークの面積強度との和
が全体の少なくとも95%を占める特許請求の範囲第1項
記載のポリオレフインパルプ。
4. The method according to claim 1, wherein the sum of the area intensity of the main phase transition and the area intensity of a phase transition peak appearing in a higher temperature region than the main phase transition peak accounts for at least 95% of the whole. Polyolefin pulp.
【請求項5】超高分子量ポリオレフインが重量平均分子
量100万以上のポリエチレンである特許請求の範囲第1
項記載のポリオレフインパルプ。
5. The ultrahigh molecular weight polyolefin is a polyethylene having a weight average molecular weight of 1,000,000 or more.
Polyolefin pulp according to the above item.
JP12664188A 1988-05-24 1988-05-24 Polyolefin pulp Expired - Fee Related JP2615846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12664188A JP2615846B2 (en) 1988-05-24 1988-05-24 Polyolefin pulp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12664188A JP2615846B2 (en) 1988-05-24 1988-05-24 Polyolefin pulp

Publications (2)

Publication Number Publication Date
JPH01298298A JPH01298298A (en) 1989-12-01
JP2615846B2 true JP2615846B2 (en) 1997-06-04

Family

ID=14940229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12664188A Expired - Fee Related JP2615846B2 (en) 1988-05-24 1988-05-24 Polyolefin pulp

Country Status (1)

Country Link
JP (1) JP2615846B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5214388B2 (en) * 2008-09-30 2013-06-19 株式会社ダイセル Fibrous reinforcing agent and method for producing the same

Also Published As

Publication number Publication date
JPH01298298A (en) 1989-12-01

Similar Documents

Publication Publication Date Title
US10850479B2 (en) Process for fabricating polymeric articles
JP2597966B2 (en) Nonporous film-shaped polyethylene molded article and method for producing the same
EP2111490B1 (en) Fiber for wetlaid non-woven fabric
KR101363721B1 (en) Polyolefin-based split-type conjugate fibre, fibrous mass and cell separator using same, and production method for same
KR20110098970A (en) Polymer alloy fiber and fiber structure
PT93361A (en) POLYPROPYLENE / POLYETHYLENE BIBLED AND BICONSTITUED FIBERS
JP2007107143A (en) High strength fusing conjugate fiber
JP2615846B2 (en) Polyolefin pulp
WO1993006168A1 (en) Compatible polypropylene/poly(1-butene) blends and fibers made therefrom
JP5812607B2 (en) Split type composite fiber and fiber assembly using the same
JP4377774B2 (en) Battery separator, manufacturing method thereof, and battery
Li et al. Effect of molding temperature on crystalline and phase morphologies of HDPE composites containing PP nano-fibers
US5098976A (en) Acoustic material
EP1479498A1 (en) Process for fabricating polymeric articles
JP7458228B2 (en) Polyolefin splittable conjugate fiber, method for producing the same, fiber aggregate and battery separator using the same
JP2865435B2 (en) Ultra-high molecular weight polypropylene stretch molded article and its use
Mishra et al. * Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala, India
JPS63159515A (en) Two-component polypropylene/polyethylene fiber
JP2992323B2 (en) Molecularly oriented molded body of high-molecular weight polyethylene
JP3082955B2 (en) Flying object resistant material
JPS61275417A (en) Short-fiber material and production thereof
JP2022159169A (en) Split type composite fiber, manufacturing method thereof, and fiber assembly and separator material using the same
JPH03279413A (en) Molecularly oriented molded body of high-molecular weight polyethylene
Jafari et al. Morphology of High-Density/Linear Low-Density Polyethylene Drawn Tapes
JPH04255351A (en) High strength film material composed of laminate and use thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees