JP2614947B2 - How to recycle carbon dioxide - Google Patents

How to recycle carbon dioxide

Info

Publication number
JP2614947B2
JP2614947B2 JP3125442A JP12544291A JP2614947B2 JP 2614947 B2 JP2614947 B2 JP 2614947B2 JP 3125442 A JP3125442 A JP 3125442A JP 12544291 A JP12544291 A JP 12544291A JP 2614947 B2 JP2614947 B2 JP 2614947B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
hydrogen
methanol
hydrogen storage
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3125442A
Other languages
Japanese (ja)
Other versions
JPH04327549A (en
Inventor
昇 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP3125442A priority Critical patent/JP2614947B2/en
Publication of JPH04327549A publication Critical patent/JPH04327549A/en
Application granted granted Critical
Publication of JP2614947B2 publication Critical patent/JP2614947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、化石燃料等から発生
する二酸化炭素を資源化する方法に関し、水素吸蔵金属
を触媒として利用し二酸化炭素を水素と反応させてメタ
ノールに転化させるようにしたものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of recovering carbon dioxide generated from fossil fuels and the like, which uses a hydrogen storage metal as a catalyst to react carbon dioxide with hydrogen and convert it to methanol. It is.

【0002】[0002]

【従来の技術】近年、地球温暖化に関連して、化石燃料
等の炭素化合物のエネルギー利用によって発生、蓄積さ
れた大気中の二酸化炭素が大きな問題になっている。こ
のため、化石燃料等からの排出される排ガス中から二酸
化炭素を回収し、さらにこれを資源化する方法が真剣に
検討されている。
2. Description of the Related Art In recent years, in connection with global warming, atmospheric carbon dioxide generated and accumulated by energy utilization of carbon compounds such as fossil fuels has become a serious problem. For this reason, a method of recovering carbon dioxide from exhaust gas discharged from fossil fuels and the like and further recycling the carbon dioxide has been seriously studied.

【0003】二酸化炭素を資源化する方法については、
これまでは、産業上の積極的な課題となっていなかっ
た。しかし、上述のように、近年の地球温暖化問題に端
を発し、新しい技術課題として注目されるようになって
いる。現在の主要な資源化の方向は、植物、特にクロレ
ラ等の高増殖性の藻類を高い二酸化炭素濃度条件で培養
する方法である。この方法で収穫されたクロレラを原料
として利用する場合、化学工業用原料として利用するに
は、更に数段の生物化学的工程を経る必要があるし、簡
略なものでは、単なる酪農用飼料等の低い次元の利用に
限られ、生物化学的な方法での資源化は、高度の利用に
不適当である。
[0003] Regarding the method of recycling carbon dioxide,
Until now, it has not been an aggressive industrial issue. However, as described above, starting from the global warming problem in recent years, it has been attracting attention as a new technical problem. The current main direction of resource utilization is a method of culturing plants, particularly highly proliferating algae such as chlorella under high carbon dioxide concentration conditions. When chlorella harvested by this method is used as a raw material, it must go through several more biochemical steps in order to be used as a raw material for the chemical industry. Restricted to low-dimensional applications, biochemical resource exploitation is unsuitable for advanced applications.

【0004】化学的な方法による二酸化炭素の資源化方
法については、幾つかの触媒を用いた反応が報告されて
いる。例えば、次のようなプロセスがある。 4H2+CO2→CH4+2H2O 〔触媒:Rh、130
〜200℃〕J.Molec.Catal.8.471(1980) CO2+H2→CO+H2O 〔触媒:Fe、350℃〕
J.Catal.67.90(1981) CO+3H2→CH4+H2O 〔触媒:Ni、177〜
437℃〕J.Catal.37.449(1975)
[0004] As for the method of recycling carbon dioxide by a chemical method, reactions using several catalysts have been reported. For example, there is the following process. 4H 2 + CO 2 → CH 4 + 2H 2 O [Catalyst: Rh, 130
-200 ° C] J. Molec. Catal. 8.471 (1980) CO 2 + H 2 → CO + H 2 O [Catalyst: Fe, 350 ° C.]
J. Catal. 67.90 (1981) CO + 3H 2 → CH 4 + H 2 O [Catalyst: Ni, 177 ~
437 ° C) J. Catal. 37.449 (1975)

【0005】これらの触媒化学的な方法は、反応系に比
較的高圧の水素が直接係わることによる安全上の問題や
得られる資源化物が気体のメタンであり、この後の利用
における化学反応過程の多様性が余り期待できない等の
欠点がある。また、二酸化炭素を電気化学的に還元し
て、CO、HCO2H(ギ酸)、CH4及びメタノール等
が生成するとの事例が、ごく最近になって報告されるよ
うになったが、まだ、研究的な段階であり、工業的利用
の可能性も確かなものではない。
[0005] In these catalytic chemical methods, safety problems caused by relatively high-pressure hydrogen being directly involved in the reaction system and the obtained resource is gaseous methane. There are drawbacks, such as the lack of diversity. In addition, although cases in which carbon dioxide is electrochemically reduced to produce CO, HCO 2 H (formic acid), CH 4, methanol, and the like have been reported only recently, This is a research stage, and the potential for industrial use is not certain.

【0006】[0006]

【発明が解決しようとする課題】よって、この発明にお
ける課題は、二酸化炭素を高効率で資源化でき、得られ
る資源化物の利用において多様性があり、資源化の際の
反応が低圧、低温で安全性にも富み、反応形式が多様化
できる二酸化炭素の資源化方法を得ることにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to recycle carbon dioxide with high efficiency, to obtain a variety of recyclable materials, and to perform low-pressure, low-temperature reactions when recycling. An object of the present invention is to provide a method for recycling carbon dioxide, which is rich in safety and can diversify the reaction mode.

【0007】[0007]

【課題を解決するための手段】かかる課題は、水素を吸
蔵した状態の水素吸蔵金属に二酸化炭素を接触させてメ
タノールに転化させる方法によって解決される。
This problem is solved by a method in which carbon dioxide is brought into contact with a hydrogen storage metal in a state where hydrogen is stored to convert the metal into methanol.

【0008】以下、この発明を詳しく説明する。本発明
の基本的構成は、水素を吸蔵した水素吸蔵金属と二酸化
炭素を接触させて、二酸化炭素をメタノール(CH3
H)に転化させて資源化するものである。この転化反応
は、次のように表される。 CO2+6H→CH3OH+H2
Hereinafter, the present invention will be described in detail. The basic structure of the present invention is that a carbon dioxide is brought into contact with a hydrogen storage metal that has stored hydrogen to convert the carbon dioxide into methanol (CH 3 O).
H) to be converted into resources. This conversion reaction is represented as follows. CO 2 + 6H → CH 3 OH + H 2 O

【0009】本発明で言う水素吸蔵金属とは、水素の圧
力が1気圧の条件で金属の自己容積以上の水素を吸蔵し
得る金属で、単体金属あるいは合金を言う。このような
ものとして、単体金属では、Pd(パラジゥム)、Ti
(チタン)及びV(バナジゥム)が使用できる。合金で
は、Mg−Ni、Mg−Cu、Mg−Ce、Mg−La
などのマグネシウム系合金、Ca−Ni、ミツシュメタ
ル−Ca−Ni(ミッシュメタルとはLa、Ce、P
r、Ndなどの希土類金属の混合物を言う)などのカル
シウム系合金、La−Ni、ミッシュメタル−Niなど
の希土類系合金、Ti−Fe、Ti−Co、Ti−M
n、Ti−Crなどのチタン系合金、Zr−Mn、Zr
−Vなどのジルコニウム系合金、V−Tiなどのバナジ
ウム系合金などが用いられる。これらの水素吸蔵金属
は、1種でも、また2種以上の任意の割合の混合物とし
ても使用される。
The term "hydrogen storage metal" as used in the present invention refers to a metal that can store more than its own volume of hydrogen under the condition that the pressure of hydrogen is 1 atm. As such, Pd (palladium), Ti
(Titanium) and V (vanadium) can be used. In alloys, Mg-Ni, Mg-Cu, Mg-Ce, Mg-La
Magnesium-based alloys such as Ca-Ni, Mitsumemetal-Ca-Ni (Mishmetal is La, Ce, P
, a rare earth metal alloy such as La-Ni, misch metal-Ni, Ti-Fe, Ti-Co, Ti-M
n, titanium-based alloys such as Ti-Cr, Zr-Mn, Zr
A zirconium-based alloy such as -V or a vanadium-based alloy such as V-Ti is used. These hydrogen storage metals may be used singly or as a mixture of two or more in any proportion.

【0010】これらの水素吸蔵金属の本発明への適用の
可否は、前述の二酸化炭素の資源化化学反応に示したよ
うに、メタノール転化と平行して水が生成するが、この
水と金属の反応し易さによって決められる。上述の水素
吸蔵金属の中では、カルシウム系のものが水と反応し易
いため、本発明の適用において制限が生じる。
[0010] The applicability of these hydrogen storage metals to the present invention is determined by the fact that water is generated in parallel with the conversion of methanol, as shown in the above-mentioned chemical reaction of carbon dioxide recycling. Determined by ease of reaction. Among the above-mentioned hydrogen storage metals, calcium-based ones easily react with water, so that there is a limitation in application of the present invention.

【0011】本発明では、このような水素吸蔵金属を水
素が吸蔵された状態で使用する。したがって、予め水素
吸蔵金属に水素を吸蔵させねばならない。水素吸蔵金属
に対する水素吸蔵のさせ方は、基本的に任意である。例
えば、水素吸蔵金属に加圧した水素を接触させて吸蔵さ
せる方法、水素吸蔵金属を陰極として水を電気分解し
て、発生した水素を吸蔵させる方法、あるいは水素と二
酸化炭素の混合ガスを接触させて、水素の吸蔵と二酸化
炭素のメタノール転化反応を平行的に進める方法等いず
れの方法を選択してもよい。本発明の反応機構は、水素
吸蔵合金に吸蔵された水素と二酸化炭素が反応してメタ
ノールに転化するものと推定されることから、この要件
さえ充たされるならば、どのような方法、手段でも良
い。
In the present invention, such a hydrogen storage metal is used in a state where hydrogen is stored. Therefore, hydrogen must be stored in the hydrogen storage metal in advance. The method of storing hydrogen in the hydrogen storage metal is basically arbitrary. For example, a method in which pressurized hydrogen is brought into contact with a hydrogen storage metal to occlude it, a method in which water is electrolyzed using the hydrogen storage metal as a cathode to occlude generated hydrogen, or a method in which a mixed gas of hydrogen and carbon dioxide is brought into contact. Any method may be selected, such as a method in which hydrogen storage and carbon dioxide methanol conversion reaction proceed in parallel. Since the reaction mechanism of the present invention is presumed to convert hydrogen and carbon dioxide stored in the hydrogen storage alloy into methanol by reaction, any method and means may be used as long as this requirement is satisfied. .

【0012】水素吸蔵金属に対する水素の吸蔵量につい
ては、特別の限定をもうけない。しかし、吸蔵水素が多
いほど、二酸化炭素のメタノール転化反応が長時間持続
すること、時間当たりのメタノール転化量が大きいこと
等の傾向が認められている。従って、望ましい転化効率
を得るためには、吸蔵水素濃度を高めることが有効であ
る。
There is no particular limitation on the amount of hydrogen stored in the hydrogen storage metal. However, it has been observed that the greater the amount of stored hydrogen, the longer the methanol conversion reaction of carbon dioxide lasts and the greater the amount of methanol conversion per hour. Therefore, in order to obtain a desired conversion efficiency, it is effective to increase the stored hydrogen concentration.

【0013】水素を吸蔵した水素吸蔵金属と二酸化炭素
の接触のさせ方も基本的に任意である。例えば、ガス状
態の二酸化炭素を接触させる方法、水又は有機および無
機溶剤に溶解させた二酸化炭素を接触させる方法、ある
いは圧力を高めて二酸化炭素を液化させたものを接触さ
せる等のいずれの方法でも利用できる。また、二酸化炭
素と水素を吸蔵した金属を接触させ、メタノールに転化
させる場合の圧力、温度についても任意である。圧力を
高くして接触させる方法では、二酸化炭素の濃度を高め
る効果があるが、反応全体をガス状態で進めるために
は、生成するメタノールが気体となる温度を考慮した条
件が必要になる。あるいは、二酸化炭素が液体になる圧
力と温度で反応させることもできる。この場合は、生成
したメタノールと未反応の二酸化炭素の分離が容易にな
る。
The method of bringing the hydrogen storage metal that has stored hydrogen into contact with carbon dioxide is basically arbitrary. For example, a method of contacting carbon dioxide in a gaseous state, a method of contacting carbon dioxide dissolved in water or an organic and inorganic solvent, or a method of contacting with a liquefied carbon dioxide by increasing pressure. Available. Further, the pressure and the temperature when the carbon dioxide is brought into contact with the metal storing the hydrogen to convert the carbon into the methanol are also arbitrary. The method of contacting at a high pressure has the effect of increasing the concentration of carbon dioxide. However, in order to carry out the entire reaction in a gaseous state, a condition considering the temperature at which generated methanol becomes a gas is required. Alternatively, the reaction can be performed at a pressure and temperature at which carbon dioxide becomes a liquid. In this case, separation of the produced methanol and unreacted carbon dioxide becomes easy.

【0014】吸蔵された水素と二酸化炭素の反応は、水
素吸蔵金属の表面で進行すると考えられる。従って、水
素吸蔵金属の表面積を大きくする手段を取ることが、反
応の効率の点で有効である。表面積を大きくする手段と
しては、粉末として用いる方法、触媒反応で通常行われ
る担持体に水素吸蔵金属を微粉末状でローディングする
方法、水素吸蔵金属を薄膜にして用いる方法など何れも
採用できる。何れを採用するかは、二酸化炭素の資源化
プラントの設計の問題である。例えば、移動床型のプラ
ントの場合は粉末形を選択することができ、固定リアク
タ方式の場合は薄膜を採用し、水素吸蔵金属の薄膜の片
側に水素を配置し、他の面側に二酸化炭素を流動させれ
ばよい。
It is considered that the reaction between the stored hydrogen and carbon dioxide proceeds on the surface of the hydrogen storage metal. Therefore, taking measures to increase the surface area of the hydrogen storage metal is effective in terms of reaction efficiency. As a means for increasing the surface area, any of a method using a powder, a method of loading a hydrogen storage metal in a fine powder state on a carrier usually used in a catalytic reaction, and a method of using the hydrogen storage metal in a thin film can be adopted. Which one to use is a matter of design of a carbon dioxide recycling plant. For example, in the case of a moving bed type plant, a powder type can be selected.In the case of a fixed reactor type, a thin film is adopted, hydrogen is disposed on one side of the hydrogen storage metal thin film, and carbon dioxide is disposed on the other side. May be flowed.

【0015】本発明の二酸化炭素資源化方法は、メタノ
ール転化が高い選択性を有することも特長である。現在
研究中の電気化学的な還元による方法では、前述したよ
うに多成分の混合物として生成する。これらに比べて、
本発明の反応後の組成は、反応主成分であるメタノール
及び水、更に未反応の二酸化炭素及び反応に関与できず
に水素吸蔵金属から放出されたわずかの水素である。従
って、資源化されたメタノールの分離、回収は容易であ
り、単純な分離システムで済む利点を有する。
The method for recycling carbon dioxide of the present invention is also characterized in that methanol conversion has high selectivity. The electrochemical reduction method currently under study produces a multi-component mixture as described above. Compared to these,
The composition after the reaction of the present invention is methanol and water, which are the main components of the reaction, unreacted carbon dioxide, and a small amount of hydrogen released from the hydrogen storage metal without participating in the reaction. Therefore, it is easy to separate and recover the recycled methanol, and there is an advantage that a simple separation system is sufficient.

【0016】以下、本発明の実施例を述べる。 (実施例1)水素吸蔵金属として、Pd、Ti及びVの
単体金属、合金系のものとして、Mg2Cu、MmNi5
(Mmはミッシュメタル)、LaNi5及びTiFeの
薄片(10x10x1mmt)を用意した。比較用にCu、Fe及
びNiの同様の薄片を用意した。それぞれの薄片を圧力
10kg/cm2の水素雰囲気で、100℃1時間、室温1時間の
サイクル処理を3回繰り返し、前処理及び水素吸蔵処理
を行った。水素吸蔵処理を施したそれぞれの金属薄片と
水素吸蔵処理を行っていないPdの薄片とを別々に、カ
ラス容器中の二酸化炭素を飽和溶解せしめた水に浸漬
し、上部空間に二酸化炭素を流入しつつ、室温で2時間
保持した。
Hereinafter, embodiments of the present invention will be described. (Example 1) As a hydrogen storage metal, a simple metal of Pd, Ti and V, and as an alloy type, Mg 2 Cu, MmNi 5
(Mm: misch metal), LaNi 5 and TiFe flakes (10 × 10 × 1 mmt) were prepared. Similar flakes of Cu, Fe and Ni were prepared for comparison. Pressure each slice
In a hydrogen atmosphere of 10 kg / cm 2 , a cycle treatment at 100 ° C. for 1 hour and a room temperature for 1 hour was repeated three times to perform pretreatment and hydrogen storage treatment. Each of the metal flakes subjected to the hydrogen storage treatment and the Pd flakes not subjected to the hydrogen storage treatment are separately immersed in water in which the carbon dioxide is saturated and dissolved in a crow container, and the carbon dioxide flows into the upper space. While maintaining the temperature at room temperature for 2 hours.

【0017】それぞれの水について、ガスクロマトグラ
フィによって分析し、メタノールその他の成分の確認試
験を行った。ガスクロマトグラフィ分析には、成分分離
に活性炭カラムを用い検出器として熱伝導型のTCDを用
いた水素、CO(一酸化炭素)及びCH4(メタン)の
検出ならびにPorapak-Qカラムを用い検出器にFIDを用い
たメタノール、CH4及びその他の有機化合物の検出を
それぞれ行った。その結果は、表1のようであった。
Each water was analyzed by gas chromatography, and a test for confirming methanol and other components was performed. For gas chromatography analysis, activated carbon column is used for component separation, detection of hydrogen, CO (carbon monoxide) and CH 4 (methane) using thermal conduction type TCD as detector, and detector using Porapak-Q column. Methanol, CH 4 and other organic compounds were respectively detected using FID. The results were as shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】水素吸蔵処理を行った水素吸蔵金属でのガ
スクロマトグラフィ分析結果は、活性炭カラム/TCD
で水素、N2、O2の空気成分及びCO2を検出したが、
CO、CH4などは検出されなかった。また、Porapak-Q
/FIDでは、メタノールを検出したが、メタノール以外の
有機化合物は検出されなかった。水素吸蔵処理をしない
Pd及び水素吸蔵処理を行ったCu、Fe、Niでは、
メタノールは検出されず、さらに水素も検出されなかっ
た。このように、本発明では、二酸化炭素がメタノール
に転化し、資源化される。
The results of gas chromatography analysis on the hydrogen-absorbing metal subjected to the hydrogen-absorbing treatment are shown in activated carbon column / TCD
Detected hydrogen, N 2 , O 2 air components and CO 2 ,
CO, CH 4 and the like were not detected. Also, Polapak-Q
In / FID, methanol was detected, but no organic compound other than methanol was detected. Pd without hydrogen storage and Cu, Fe and Ni with hydrogen storage are:
No methanol was detected, and no hydrogen was detected. As described above, in the present invention, carbon dioxide is converted to methanol and is recycled.

【0020】(実施例2)電極として陰極にPdを、陽
極にPtを用い、電解液として0.1MolのKHCO3水溶
液を用い、-1.5VvsSCEの条件で二酸化炭素の電気化学的
還元を行った。電気化学反応生成物の分析は、ガス状で
あるもの(ガス状有機化合物、CO及び水素)及び液中
に溶解するものについて、ガスクロマトグラフ分析を行
った。分析は、電気分解開始後2時間ごとに実施し、8
時間経過後、電流を遮断して2時間経過後に分析を行っ
た。本発明に該当するものは、電流遮断した後のもので
ある。分析結果は、表2のようであった。
(Embodiment 2) Pd was used as a cathode as a cathode, Pt was used as an anode, and a 0.1 Mol KHCO3 aqueous solution was used as an electrolytic solution. In the analysis of the electrochemical reaction product, gas chromatographic analysis was performed on those which are gaseous (a gaseous organic compound, CO and hydrogen) and those which are dissolved in a liquid. The analysis was performed every 2 hours after the start of electrolysis,
After a lapse of time, the current was cut off and the analysis was performed after a lapse of 2 hours. What corresponds to the present invention is after current interruption. The analysis results were as shown in Table 2.

【0021】[0021]

【表2】 [Table 2]

【0022】上表に見られるように、-1.5VvsSCEの電気
分解では、メタノールは生成せず、水素のほか、CO、
HCO2H、CH4が生成した。これに対して、通電8時
間を経過して、水素を吸蔵した状態となったPdは、電
流を遮断した条件でメタノールを生成し、COやCH4
等は生成しないのである。この実施例から分かるよう
に、この例における電気分解は、水素吸蔵金属であるP
dに水素を吸蔵させるための過程であると考えることが
できる。
As can be seen from the above table, in the electrolysis of -1.5 V vs SCE, methanol was not produced, and in addition to hydrogen, CO,
HCO 2 H, CH 4 was formed. On the other hand, Pd in a state that occludes hydrogen after 8 hours of energization generates methanol under the condition that the current is cut off, and generates CO and CH 4.
Etc. are not generated. As can be seen from this example, the electrolysis in this example is based on the hydrogen storage metal P
This can be considered as a process for storing hydrogen in d.

【0023】(実施例3)陰極としてTiを用い、陽極
としてPtをもちい、初めに0.2Mol.Na2ClO4水溶液(PH
3)で1mA/cm2の電流密度で10時間の水素吸蔵処理を行
った。その後、0.1Mol.NaClO4及び0.1Mol.リン酸緩衝溶
液に二酸化炭素を飽和溶解させた溶液(PH6)につい
て、電気分解の電圧を−0.6V vs Ag/AgCl
として電気分解を行った。生成成分は、メタノールと水
素で、電流効率で表すとメタノール59%、水素41%
であった。同一電気分解条件で陰極に水素吸蔵処理をし
ないTi電極を用いた場合は、メタノールが発生しない
のみならず、水素発生の電流効率も60%程度であっ
た。電気分解を更に継続して、10時間後に分析を行っ
たところメタノールの生成が確認できた。事前に水素吸
蔵処理を行った前者は、電気分解で水素を吸蔵させつつ
二酸化炭素をメタノールに転化する方法の例である。後
者は、事前に水素吸蔵処理をしない場合であり、電気分
解の初期は水素吸蔵処理に対応した過程となり、一定の
水素吸蔵量になるとメタノールを生成するようになるこ
とを示す例である。
Example 3 Ti was used as a cathode, and Pt was used as an anode. First, a 0.2 Mol. Na 2 ClO 4 aqueous solution (PH
In 3), a hydrogen storage treatment was performed at a current density of 1 mA / cm 2 for 10 hours. Thereafter, for a solution (PH6) in which carbon dioxide was saturated and dissolved in 0.1 Mol. NaClO 4 and 0.1 Mol. Phosphate buffer solution, the electrolysis voltage was set to −0.6 V vs. Ag / AgCl 2.
Was electrolyzed. The produced components are methanol and hydrogen, and when expressed in terms of current efficiency, 59% of methanol and 41% of hydrogen
Met. In the case where a Ti electrode not subjected to a hydrogen absorbing treatment was used for the cathode under the same electrolysis conditions, not only methanol was not generated, but also the current efficiency of hydrogen generation was about 60%. When the electrolysis was further continued and the analysis was performed after 10 hours, formation of methanol was confirmed. The former in which the hydrogen storage treatment is performed in advance is an example of a method of converting carbon dioxide to methanol while storing hydrogen by electrolysis. The latter is a case in which the hydrogen storage process is not performed in advance, and is an example showing that the initial stage of electrolysis is a process corresponding to the hydrogen storage process, and methanol is generated at a certain hydrogen storage amount.

【0024】(実施例4)比表面積50cm2/gのT
iスポンジを0.1Mol.のH2SO4水溶液で洗浄した後、室温
で20kg/cm2の圧力で水素と10時間接触させ、水素を吸
蔵させた。この水素吸蔵Tiスポンジを種々の状態の二
酸化炭素と接触させ、メタノール生成の有無をガスクロ
マトグラフにより分析した。接触条件は、室温、5時間
とした。接触させた二酸化炭素の条件は、ピリジンに飽
和溶解させた二酸化炭素、2kg/cm2圧力の二酸化
炭素ガス及び70kg/cm2で加圧して液化した二酸化炭素の
3種類を試みた。ピリジン二酸化炭素溶液の場合は、溶
液をそのままガスクロマトグラフ分析した。気体の二酸
化炭素を接触させたものは、少量のベンゼンを添加して
メタノールをベンゼンに溶解させ、これを分析した。液
化した二酸化炭素の場合は、圧力を急激に低下させて、
二酸化炭素の気化で生成する固化二酸化炭素の気化残液
について分析した。分析の結果、何れのものからもメタ
ノールを検出した。
Example 4 T having a specific surface area of 50 cm 2 / g
The i sponge was washed with a 0.1 Mol. H 2 SO 4 aqueous solution, and then contacted with hydrogen at room temperature under a pressure of 20 kg / cm 2 for 10 hours to occlude hydrogen. The hydrogen-absorbing Ti sponge was brought into contact with carbon dioxide in various states, and the presence or absence of methanol was analyzed by gas chromatography. The contact conditions were room temperature and 5 hours. As the condition of carbon dioxide contacted, three types of carbon dioxide saturatedly dissolved in pyridine, carbon dioxide gas at a pressure of 2 kg / cm 2 , and carbon dioxide pressurized and liquefied at 70 kg / cm 2 were tried. In the case of a pyridine carbon dioxide solution, the solution was directly analyzed by gas chromatography. To the gaseous carbon dioxide, a small amount of benzene was added to dissolve methanol in benzene, and this was analyzed. In the case of liquefied carbon dioxide, the pressure is rapidly reduced,
The residual liquid of solidified carbon dioxide generated by the vaporization of carbon dioxide was analyzed. As a result of the analysis, methanol was detected from any of them.

【0025】(実施例5)素焼きの多孔陶管にポリカー
ボネート/ジメチルフォルムアミド溶液を塗布し、これ
を冷水中に浸漬して、最大孔径1mμ以下のロエブ膜を
形成した。この膜上にスパッタ法でLaNi5を概略
0.3μm厚さに被覆した。このように加工した管は、
固定型リアクタのモデルに該当し、管内に加圧水素を、
管外に二酸化炭素を配置することにより、連続的な二酸
化炭素のメタノール転化が達成できる。管内の水素圧力
を20kg/cm2とし、温度50℃の条件で1気圧の二酸化
炭素を接触させ、定期的な間隔でメタノールの濃度を調
べた。5時間経過後のメタノールの濃度は、0.58%
であった。時間経過による濃度増加は漸減傾向を示した
が、240時間後においてもメタノール濃度は増加して
いた。管内の水素ガス圧力を15kg/cm2に下げた場合の
初期5時間におけるメタノール生成量は、0.40%で
あった。管内の水素圧力の低下が、吸蔵水素濃度を低下
させた影響と推定される。
Example 5 A polycarbonate / dimethylformamide solution was applied to an unglazed porous ceramic tube and immersed in cold water to form a Loeb film having a maximum pore diameter of 1 mμ or less. This film was coated with LaNi 5 to a thickness of approximately 0.3 μm by sputtering. The tube processed in this way is
It corresponds to the model of fixed reactor, pressurized hydrogen in the tube,
By placing carbon dioxide outside the tube, continuous methanol conversion of carbon dioxide can be achieved. The hydrogen pressure in the tube was set to 20 kg / cm 2, and 1 atmosphere of carbon dioxide was brought into contact with the solution at a temperature of 50 ° C., and the concentration of methanol was checked at regular intervals. After 5 hours, the concentration of methanol is 0.58%
Met. The increase in the concentration with the passage of time showed a gradual decreasing tendency, but the methanol concentration was increased even after 240 hours. When the hydrogen gas pressure in the tube was reduced to 15 kg / cm 2 , the amount of methanol produced in the initial 5 hours was 0.40%. It is presumed that the decrease in the hydrogen pressure in the pipe caused the decrease in the stored hydrogen concentration.

【0026】[0026]

【発明の効果】以上説明したように、この発明の二酸化
炭素の資源化方法によれば、 (1)二酸化炭素を高効率でメタノールに転化できるの
で、地球環境保全の分野及びメタノールを原料とする産
業分野に貢献できる。 (2)二酸化炭素の資源化生成物が、多様な応用が可能
なメタノールであるので新しい化学原料として産業界に
貢献できる。 (3)二酸化炭素のメタノール転化の方式に多様性があ
るので、条件や規模に合せてプラント設計ができる。 (4)基本的に高温度、高圧力を要せず、プロセスの設
計によっては、水素を隔離できるのでプロセスの安全に
寄与できる。 (5)二酸化炭素を高選択的にメタノールに転化できる
ので、プロセスが簡略化できる。 などの効果が得られる。
As described above, according to the method for recycling carbon dioxide of the present invention, (1) since carbon dioxide can be converted into methanol with high efficiency, the field of global environmental conservation and methanol as a raw material Can contribute to the industrial field. (2) Since the resource product of carbon dioxide is methanol that can be used in various applications, it can contribute to industry as a new chemical raw material. (3) Since there are various methods for converting methanol into carbon dioxide, a plant can be designed according to conditions and scale. (4) Basically, high temperature and high pressure are not required, and depending on the process design, hydrogen can be isolated, which can contribute to the safety of the process. (5) Since the carbon dioxide can be selectively converted into methanol, the process can be simplified. And the like.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 水素を吸蔵した状態の水素吸蔵金属に二
酸化炭素を接触させて二酸化炭素をメタノールに転化さ
せることを特徴とする二酸化炭素の資源化方法。
1. A method for recycling carbon dioxide, comprising: bringing carbon dioxide into contact with a hydrogen storage metal in a state of storing hydrogen to convert carbon dioxide into methanol.
JP3125442A 1991-04-26 1991-04-26 How to recycle carbon dioxide Expired - Fee Related JP2614947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3125442A JP2614947B2 (en) 1991-04-26 1991-04-26 How to recycle carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3125442A JP2614947B2 (en) 1991-04-26 1991-04-26 How to recycle carbon dioxide

Publications (2)

Publication Number Publication Date
JPH04327549A JPH04327549A (en) 1992-11-17
JP2614947B2 true JP2614947B2 (en) 1997-05-28

Family

ID=14910193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3125442A Expired - Fee Related JP2614947B2 (en) 1991-04-26 1991-04-26 How to recycle carbon dioxide

Country Status (1)

Country Link
JP (1) JP2614947B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1871731B1 (en) * 2005-04-15 2012-12-26 University Of Southern California Efficient and selective conversion of carbon dioxide to methanol, dimethyl ether and derived products
JP6209352B2 (en) * 2013-04-02 2017-10-04 オルガノ株式会社 Method for reducing oxides in purified alcohol and apparatus for purifying alcohol

Also Published As

Publication number Publication date
JPH04327549A (en) 1992-11-17

Similar Documents

Publication Publication Date Title
Grubel et al. Challenges and opportunities for using formate to store, transport, and use hydrogen
Duarah et al. Progress in the electrochemical reduction of CO2 to formic acid: A review on current trends and future prospects
McPherson et al. Materials for electrochemical ammonia synthesis
Ganesh Conversion of carbon dioxide into methanol–a potential liquid fuel: Fundamental challenges and opportunities (a review)
Wu et al. Catalytic conversion of CO2 to value added fuels: Current status, challenges, and future directions
Daza et al. CO 2 conversion by reverse water gas shift catalysis: comparison of catalysts, mechanisms and their consequences for CO 2 conversion to liquid fuels
Gao et al. Sequential catalysis enables enhanced C–C coupling towards multi-carbon alkenes and alcohols in carbon dioxide reduction: a study on bifunctional Cu/Au electrocatalysts
RU2479558C2 (en) Electrochemical method of producing nitrogen fertilisers
Graves et al. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy
US8961774B2 (en) Electrochemical production of butanol from carbon dioxide and water
Grant et al. Photochemical reduction of carbon dioxide to carbon monoxide in water using a nickel (II) tetra-azamacrocycle complex as catalyst
Xi et al. Carbon-free sustainable energy technology: Electrocatalytic ammonia oxidation reaction
JP2009515036A (en) Carbon fiber electrocatalyst for oxidizing ammonia and ethanol in alkaline media and its application to hydrogen production, fuel cells and purification processes
WO2016178590A1 (en) Electrochemical reduction of carbon dioxide in aqueous ionic liquid containing electrolytes
Adegoke et al. Electrocatalytic conversion of CO2 to hydrocarbon and alcohol products: Realities and prospects of Cu-based materials
Sheng et al. Insight into the promoting role of Rh doped on Pt (111) in methanol electro-oxidation
Sanni et al. Strategic examination of the classical catalysis of formic acid decomposition for intermittent hydrogen production, storage and supply: A review
Machida et al. Formaldehyde electro-oxidation on copper metal and copper-based amorphous alloys in alkaline media.
EP3292231B1 (en) Electrochemical reduction of carbon dioxide in aqueous ionic liquid containing electrolytes
WO2022148837A2 (en) A cascade co2 electroreduction system and related methods for enhanced production of ethylene
Xie et al. Effect of oxygen vacancy influenced by CeO2 morphology on the methanol catalytic reforming for hydrogen production
Padavala et al. Role of hydride formation in electrocatalysis for sustainable chemical transformations
JP2614947B2 (en) How to recycle carbon dioxide
JP5017498B2 (en) How to reduce carbon dioxide
WO2020008267A2 (en) Methods of and systems for electrochemical reduction of substrates

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970121

LAPS Cancellation because of no payment of annual fees