JP2612904B2 - Optical amplifier - Google Patents

Optical amplifier

Info

Publication number
JP2612904B2
JP2612904B2 JP19759588A JP19759588A JP2612904B2 JP 2612904 B2 JP2612904 B2 JP 2612904B2 JP 19759588 A JP19759588 A JP 19759588A JP 19759588 A JP19759588 A JP 19759588A JP 2612904 B2 JP2612904 B2 JP 2612904B2
Authority
JP
Japan
Prior art keywords
polarization
optical amplifier
beam splitter
faraday rotator
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19759588A
Other languages
Japanese (ja)
Other versions
JPH0246432A (en
Inventor
克明 曲
裕三 吉國
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP19759588A priority Critical patent/JP2612904B2/en
Publication of JPH0246432A publication Critical patent/JPH0246432A/en
Application granted granted Critical
Publication of JP2612904B2 publication Critical patent/JP2612904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、コヒーレント光伝送等に用いられ、光信号
を光信号のままで増幅を行なう光増幅装置に関するもの
である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical amplifying device used for coherent optical transmission or the like and amplifying an optical signal as it is.

(従来の技術) 光増幅装置は、光前置増幅装置として用いることによ
り、受光レベルの改善を行なうことができ、またコヒー
レント光伝送における中継器に採用する等、光ファイバ
伝送系の性能を向上することができる。
(Prior art) By using an optical amplifying device as an optical preamplifying device, it is possible to improve the light receiving level, and to improve the performance of an optical fiber transmission system by adopting it as a repeater in coherent optical transmission. can do.

このような光増幅装置としては、従来、ファブリ・ペ
ロー型半導体レーザ素子の両端面に反射防止膜を付加し
て、両端面の反射率を著しく抑制することにより、高注
入電流においても発振することなく高利得を有する、い
わゆる進行波型光増幅器が知られている(齋藤、向井、
野口『1.5μm帯GaInAsP進行波型光増幅器』電子通信学
会技術研究報告 OQE86−114参照)。
Conventionally, such an optical amplifying device has been known that an antireflection film is added to both end faces of a Fabry-Perot type semiconductor laser element to remarkably suppress the reflectivity at both end faces, thereby oscillating even at high injection current. So-called traveling-wave optical amplifiers with high gains are known (Saito, Mukai,
Noguchi, “1.5 μm band GaInAsP traveling-wave optical amplifier,” IEICE Technical Report OQE86-114).

(発明が解決しようとする課題) しかしながら、上記進行波型光増幅器を構成する半導
体レーザ増幅器は、横偏波と縦偏波とでは閉じ込め係数
が異なるため、縦偏波に比べて横偏波の方が信号利得が
高くなり、両偏波間に利得差を生じてしまうという問題
点を有している。
(Problems to be Solved by the Invention) However, the semiconductor laser amplifier constituting the traveling wave optical amplifier has a different confinement coefficient between the horizontally polarized wave and the vertically polarized wave. However, there is a problem that the signal gain becomes higher and a gain difference occurs between the two polarized waves.

また、上記進行型光増幅器は双方向に増幅特性を有す
るため、このような進行波型光増幅器を多段に接続した
場合、端面残留反射率による戻り光の影響で共振器を構
成してしまい、その結果、光増幅器が発振してしまうと
いう問題点を有している。
In addition, since the traveling optical amplifier has amplification characteristics in both directions, when such traveling wave optical amplifiers are connected in multiple stages, a resonator is formed due to the influence of return light due to end face residual reflectance, As a result, there is a problem that the optical amplifier oscillates.

本発明の目的は、上記問題点に鑑み、利得の偏波面依
存性及び双方向増幅機能を有する進行波型光増幅器を採
用しても、偏波面に依存することなく所定の利得を得る
ことができ、かつ、一方向による入射光のみ増幅を行な
える光増幅装置を提供することにある。
In view of the above problems, it is an object of the present invention to obtain a predetermined gain without depending on the polarization plane even if a traveling wave optical amplifier having a polarization plane dependency of gain and a bidirectional amplification function is adopted. It is an object of the present invention to provide an optical amplifying device which can amplify only incident light in one direction.

(課題を解決するための手段) 本発明は上記目的に達成するため、半導体レーザ素子
の両端面に反射防止膜を付加してなる進行波型光増幅器
と、この光増幅器の両端面側にそれぞれ配設され、偏波
面が所定角度回転した偏波のみを透過する第1及び第2
の偏光子と、一の入出力ポートからの入射光の横偏波と
縦偏波のうちいずれか一方を透過し、他方を所定方向に
反射する偏光ビームスプリッタと、この偏光ビームスプ
リッタの前記入射光透過側と前記第1の偏光子との間に
配設され、偏波面を45゜回転する第1のファラデー回転
素子と、前記偏光ビームスプリッタの前記入射光反射側
と前記第2の偏光子との間に配設され、偏波面を前記第
1のファラデー回転素子と逆方向に45゜回転する第2の
ファラデー回転素子とを備えた。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a traveling-wave type optical amplifier in which antireflection films are added to both end faces of a semiconductor laser element, A first and a second, which are disposed and transmit only the polarized light whose polarization plane is rotated by a predetermined angle.
Polarizer, a polarization beam splitter that transmits one of the horizontal polarization and the vertical polarization of the incident light from one input / output port, and reflects the other in a predetermined direction, and the input of the polarization beam splitter. A first Faraday rotator disposed between the emission light transmission side and the first polarizer and rotating the plane of polarization by 45 °; the incident light reflection side of the polarization beam splitter; and the second polarizer And a second Faraday rotator that rotates the plane of polarization by 45 ° in the opposite direction to the first Faraday rotator.

(作 用) 本発明によれば、任意の偏波状態の光が一の入出力ポ
ートを介して偏光ビームスプリッタに入射すると、入射
光の横偏波及び縦偏波のうち、いずれか一方の偏波、例
えば横偏波は偏光ビームスプリッタを透過し、縦偏波は
入射方向とは異なる所定方向に反射される。偏光ビーム
スプリッタを透過した横偏波は、第1のファラデー回転
素子に入射し、その偏波面を45゜回転され、さらに第1
の偏光子を透過した後、進行波型光増幅器にその一端面
から入射する。光増幅器に入射した偏波は増幅作用を受
け、光増幅器の他端面から出射し、第2の偏光子を透過
した後、第2のファラデー回転素子に入射する。増幅さ
れた偏波は、この第2のファラデー回転素子により、第
1のファラデー回転素子による回転方向とは逆方向に、
45゜回転され、即ち、横偏波に戻されて偏光ビームスプ
リッタに帰還し、さらに偏光ビームスプリッタを透過し
て、当該光増幅装置から出力する。
(Operation) According to the present invention, when light in an arbitrary polarization state enters the polarization beam splitter via one input / output port, one of the horizontal polarization and the vertical polarization of the incident light is obtained. Polarized light, for example, horizontally polarized light, is transmitted through the polarizing beam splitter, and vertically polarized light is reflected in a predetermined direction different from the incident direction. The transverse polarization transmitted through the polarization beam splitter is incident on the first Faraday rotation element, and its polarization plane is rotated by 45 °.
After passing through the polarizer, the light enters the traveling-wave optical amplifier from one end face thereof. The polarized light that has entered the optical amplifier is subjected to an amplifying action, exits from the other end surface of the optical amplifier, passes through the second polarizer, and enters the second Faraday rotator. The amplified polarization is converted by the second Faraday rotation element in a direction opposite to the rotation direction of the first Faraday rotation element.
The light is rotated by 45 °, that is, returned to the horizontally polarized wave, returned to the polarization beam splitter, further transmitted through the polarization beam splitter, and output from the optical amplifier.

一方、偏光ビームスプリッタで反射された縦偏波は、
第2のファラデー回転素子に入射し、その偏波面が第1
のファラデー回転素子による回転方向とは逆方向に45゜
回転され、第2の偏光子を透過した後、光増幅器にその
他端面から入射する。光増幅器に入射した偏波は増幅作
用を受け、光増幅器の一端面から出射し、第1の偏光子
を透過した後、第1のファラデー回転素子に入射する。
増幅された偏波は、この第1のファラデー回転素子によ
り45゜回転され、即ち縦偏波に戻され、偏光ビームスプ
リッタに帰還し、さらに偏光ビームスプリッタで反射さ
れて、当該光増幅装置から出力する。
On the other hand, the vertically polarized wave reflected by the polarizing beam splitter is
The light is incident on the second Faraday rotator, and its polarization plane is the first.
The light is rotated by 45 ° in a direction opposite to the direction of rotation by the Faraday rotation element, passes through the second polarizer, and then enters the optical amplifier from the other end face. The polarized light incident on the optical amplifier is subjected to an amplifying action, exits from one end face of the optical amplifier, passes through the first polarizer, and then enters the first Faraday rotator.
The amplified polarization is rotated by 45 ° by the first Faraday rotation element, that is, returned to longitudinal polarization, returned to the polarization beam splitter, further reflected by the polarization beam splitter, and output from the optical amplifier. I do.

また、この状態で前述した横偏波及び縦偏波の出力方
向から任意の偏波面を有する光が偏光ビームスプリッタ
に入射すると、横偏波は偏光ビームスプリッタを透過し
て、第2のファラデー回転素子に入射し、第1のファラ
デー回転素子による回転方向とは逆方向に偏波面が45゜
回転された後、第2の偏光子に入射するが、この第2の
偏光子を透過することができない。同様に、縦偏波は、
偏光ビームスプリッタで反射され、第1のファラデー回
転素子で偏波面が45゜回転された後、第1の偏光子に入
射するが、この第1の偏光子を透過することができな
い。従って、当該光増幅装置の出射側から入射した光
の、横偏波及び縦偏波共、光増幅器で増幅作用を受ける
ことはなく、当該光増幅装置から出力されることはな
い。
Further, in this state, when light having an arbitrary polarization plane is incident on the polarization beam splitter from the output directions of the horizontal polarization and the vertical polarization described above, the horizontal polarization transmits through the polarization beam splitter, and the second Faraday rotation is performed. After the light is incident on the element and the polarization plane is rotated by 45 ° in a direction opposite to the direction of rotation by the first Faraday rotation element, the light is incident on the second polarizer. Can not. Similarly, longitudinal polarization is
After being reflected by the polarizing beam splitter and having its polarization plane rotated by 45 ° by the first Faraday rotator, it enters the first polarizer, but cannot pass through the first polarizer. Therefore, both the horizontal polarization and the vertical polarization of the light incident from the output side of the optical amplifier are not subjected to the amplification action by the optical amplifier, and are not output from the optical amplifier.

(実施例) 第1図は、本発明による光増幅装置の一実施例を示す
簡略構成図である。第1図において、X及びYは互いに
直交する入出力ポート、1は偏光ビームスプリッタで、
入射光の横偏波は透過し、縦偏波は入射方向とは直交す
る方向に反射する。2は第1のファラデー回転素子で、
入射した偏波の偏波面を(+)45゜回転し、ポートXと
は対向する偏光ビームスプリッタ1への光路途中に配設
されている。3は第2のファラデー回転素子で、入射し
た偏波の偏波面を(−)45゜回転し、ポートYとは対向
する偏光ビームスプリッタ1への光路途中に設けた全反
射ミラー4による反射光路途中に配設されている。5は
入射光の増幅を行なう進行波型光増幅器で、半導体レー
ザ素子の両端面に反射防止膜を付加して構成され、両端
面からの入出射が可能となっている。6は光増幅器5の
一端面に対向するように配設した偏光子、7は光増幅器
5の他端面に対向するように配設した偏光子で、これら
偏光子6,7は横偏波から(+)45゜(縦偏波から(−)4
5゜)回転した偏波面のみを透過する。また、光増幅器
5及び偏光子6,7は、全反射ミラー8,9による反射光路途
中(両者一致)に配設してある。
(Embodiment) FIG. 1 is a simplified configuration diagram showing an embodiment of an optical amplifier according to the present invention. In FIG. 1, X and Y are input / output ports orthogonal to each other, 1 is a polarizing beam splitter,
The horizontally polarized wave of the incident light is transmitted, and the vertically polarized wave is reflected in a direction orthogonal to the incident direction. 2 is a first Faraday rotation element,
The polarization plane of the incident polarization is rotated by (+) 45 °, and is disposed on the optical path to the polarization beam splitter 1 facing the port X. Reference numeral 3 denotes a second Faraday rotator, which rotates the plane of polarization of the incident polarized light by (-) 45.degree., And reflects an optical path reflected by a total reflection mirror 4 provided in the optical path to the polarization beam splitter 1 facing the port Y. It is arranged on the way. Numeral 5 denotes a traveling-wave optical amplifier for amplifying incident light, which is formed by adding antireflection films to both end faces of a semiconductor laser element, and is capable of entering and exiting from both end faces. Reference numeral 6 denotes a polarizer disposed so as to face one end surface of the optical amplifier 5, and 7 denotes a polarizer disposed so as to face the other end surface of the optical amplifier 5. (+) 45 ° (from vertical polarization to (−) 4
5 ゜) Transmit only the rotated plane of polarization. Further, the optical amplifier 5 and the polarizers 6 and 7 are arranged in the middle of the optical paths reflected by the total reflection mirrors 8 and 9 (both coincident).

次に、上記構成による動作を説明する。まず、任意の
偏光状態の光がポートXを介して偏光ビームスプリッタ
1に入射し、入射光の横偏波は偏光ビームスプリッタ1
を透過し、縦偏波は反射される。
Next, the operation of the above configuration will be described. First, light in an arbitrary polarization state enters the polarization beam splitter 1 through the port X, and the lateral polarization of the incident light is converted into the polarization beam splitter 1.
And vertically polarized waves are reflected.

偏光ビームスプリッタ1を透過した横偏波は、第1図
中実線矢印Aで示すように、第1のファラデー回転素子
2に入射しその偏波面を(+)45゜回転され、さらに全
反射ミラー8で全反射されて第1の偏光子6を透過した
後、光増幅器5にその一端面から入射する。光増幅器5
に入射した偏波は増幅作用を受けて、光増幅器5の他端
面から出射し、第2の偏光子7を透過した後、第2のフ
ァラデー回転素子3に入射する。増幅された偏波は、こ
の第2のファラデー回転素子3により、その偏波面を
(−)45゜回転されて、横偏波に戻る。この増幅後の横
偏波は全反射ミラー4で全反射されて偏光ビームスプリ
ッタ1に帰還し、さらに偏光ビームスプリッタ1を透過
してポートYへ出力される。
The transverse polarization transmitted through the polarization beam splitter 1 is incident on the first Faraday rotator 2 and its polarization plane is rotated by (+) 45 ° as shown by a solid arrow A in FIG. After being totally reflected at 8 and passing through the first polarizer 6, the light enters the optical amplifier 5 from one end surface thereof. Optical amplifier 5
Is incident on the second Faraday rotator 3 after amplifying, exits from the other end face of the optical amplifier 5, passes through the second polarizer 7, and then enters the second Faraday rotator 3. The amplified polarization is rotated by the second Faraday rotator 3 on the plane of polarization by (−) 45 °, and returns to the horizontal polarization. The amplified transversely polarized wave is totally reflected by the total reflection mirror 4, returns to the polarization beam splitter 1, passes through the polarization beam splitter 1, and is output to the port Y.

一方、偏光ビームスプリッタ1で反射された縦偏波
は、第1図中実線矢印Bで示すように、全反射ミラー4
で全反射されて第2のファラデー回転素子3に入射し、
その偏波面を(−)45゜回転され、全反射ミラー9で全
反射されて第2の偏光子7に入射する。この第2の偏光
子7に入射した偏波は、縦偏波の偏波面を(−)45゜回
転させたものであるが、この偏波方向は横偏波の偏波面
を(+)45゜回転した偏波方向と同一である。従って第
2の偏光子7を透過することができ、光増幅器5にその
他端面から入射する。光増幅器5に入射した偏波は増幅
作用を受けて光増幅器5の一端面から出射し、第1の偏
光子6を透過した後、全反射ミラー8で全反射されて、
第1のファラデー回転素子2に入射する。増幅された偏
波は、この第1のファラデー回転素子2により、その偏
波面を(+)45゜回転されて縦偏波に戻る。この増幅後
の縦偏波は偏光ビームスプリッタ1に帰還し、さらに偏
光ビームスプリッタ1で反射されて、ポートYへ出力さ
れる。
On the other hand, the vertically polarized wave reflected by the polarization beam splitter 1 is reflected by the total reflection mirror 4 as shown by the solid arrow B in FIG.
Is totally reflected at the second Faraday rotator 3 and
The plane of polarization is rotated by (−) 45 °, is totally reflected by the total reflection mirror 9, and is incident on the second polarizer 7. The polarization incident on the second polarizer 7 is obtained by rotating the plane of polarization of the vertically polarized wave by (−) 45 °, and the direction of polarization is changed by changing the plane of polarization of the horizontally polarized wave to (+) 45 °.゜ Same as the rotated polarization direction. Therefore, the light can pass through the second polarizer 7 and enter the optical amplifier 5 from the other end face. The polarized light that has entered the optical amplifier 5 is subjected to amplification and exits from one end surface of the optical amplifier 5, passes through the first polarizer 6, is totally reflected by the total reflection mirror 8, and
The light is incident on the first Faraday rotation element 2. The amplified polarization is rotated by (+) 45 ° on the plane of polarization by the first Faraday rotator 2 to return to longitudinal polarization. The amplified vertically polarized wave returns to the polarization beam splitter 1, is further reflected by the polarization beam splitter 1, and is output to the port Y.

また、以上の状態でポートYから任意の偏波面を有し
た光が入射した場合、この入射光の横偏波は、偏光ビー
ムスプリッタ1を透過し、全反射ミラー4で全反射され
て第2のファラデー回転素子3に入射し、その偏波面を
(−)45゜回転され、さらに全反射ミラー9で全反射さ
れて第2の偏光子7に入射するが、透過することができ
ない。
Further, when light having an arbitrary polarization plane enters from the port Y in the above state, the transverse polarization of the incident light passes through the polarization beam splitter 1, is totally reflected by the total reflection mirror 4, and is second reflected. The Faraday rotator 3 is rotated by (−) 45 °, and further totally reflected by the total reflection mirror 9 to enter the second polarizer 7, but cannot be transmitted.

同様に、ポートYからの入射光の縦偏波は、偏光ビー
ムスプリッタ1で反射されて、第1のファラデー回転素
子2に入射し、その偏波面を(+)45゜回転された後、
全反射ミラー8で全反射されて第1の偏光子6に入射す
るが、透過することができない。従って、ポートYから
入射した光は、光増幅器5で増幅作用を受けることはな
く、当該光増幅装置から出力されることはない。
Similarly, the vertically polarized light of the incident light from the port Y is reflected by the polarization beam splitter 1, enters the first Faraday rotator 2, and rotates its plane of polarization by (+) 45 °.
The light is totally reflected by the total reflection mirror 8 and enters the first polarizer 6, but cannot be transmitted. Therefore, the light incident from the port Y is not subjected to the amplification action by the optical amplifier 5 and is not output from the optical amplifier.

以上のように、本実施例によれば、偏光ビームスプリ
ッタ1で入射光の横偏波及び縦偏波を分離し、この分離
後の横偏波及び縦偏波を第1及び第2のファラデー回転
素子2,3でそれぞれ一定の偏波状態に変換し、さらにこ
の状態の偏波のみ透過可能な第1及び第2の偏光子6,7
を介して、光増幅器5で増幅を行なうので、偏波面依存
性のない光増幅特性を有し、かつ一方向からの入射光の
みを増幅し出力できる優れた光増幅装置を実現できる。
As described above, according to the present embodiment, the polarization beam splitter 1 separates the horizontal polarization and the vertical polarization of the incident light, and separates the horizontal polarization and the vertical polarization after the separation into the first and second Faraday. The first and second polarizers 6 and 7 are respectively converted into a certain polarization state by the rotation elements 2 and 3 and are capable of transmitting only the polarization in this state.
, The amplification is performed by the optical amplifier 5, so that it is possible to realize an excellent optical amplifying device which has an optical amplification characteristic independent of the polarization plane and can amplify and output only the incident light from one direction.

なお、本実施例では全反射ミラー4,8,9を用いて、光
路の方向変換を行なうようにしたが、これに限定される
ものではなく、各素子間の偏波の伝搬手段として、例え
ば偏波保持光ファイバ等を用いても良いことはいうまで
もない。
In the present embodiment, the direction of the optical path is changed using the total reflection mirrors 4, 8, and 9.However, the present invention is not limited to this. It goes without saying that a polarization maintaining optical fiber or the like may be used.

(発明の効果) 以上説明したように、本発明によれば、半導体レーザ
素子の両端面に反射防止膜を付加してなる進行型光増幅
器と、この光増幅器の両端面側にそれぞれ配設され、偏
波面が所定角度回転した偏波のみを透過する第1及び第
2の偏光子と、一の入出力ポートからの入射光の横偏波
と縦偏波のうちいずれか一方を透過し、他方を所定方向
に反射する偏光ビームスプリッタと、この偏光ビームス
プリッタの前記入射光透過側と前記第1の偏光子との間
に配設され、偏波面を45゜回転する第1のファラデー回
転素子と、前記偏光ビームスプリッタの前記入射光反射
側と前記第2の偏光子との間に配設され、偏波面を前記
第1のファラデー回転素子と逆方向に45゜回転する第2
のファラデー回転素子とを備えたので、横偏波及び縦偏
波を別の光路に分離後、一定の偏波状態に変換して増幅
を行なうことができ、偏波面依存性のない光増幅特性を
有すると共に、一方向からの入射光のみを増幅し出力で
きる優れた光増幅装置を提供できる利点がある。
(Effects of the Invention) As described above, according to the present invention, a traveling optical amplifier in which antireflection films are added to both end surfaces of a semiconductor laser device, and the optical amplifier is disposed on both end surfaces of the optical amplifier, respectively. A first and a second polarizer that transmits only a polarized light whose polarization plane is rotated by a predetermined angle, and transmits one of a horizontal polarization and a vertical polarization of incident light from one input / output port, A polarizing beam splitter that reflects the other in a predetermined direction, and a first Faraday rotator that is disposed between the incident light transmitting side of the polarizing beam splitter and the first polarizer and rotates the plane of polarization by 45 °. And a second polarizer disposed between the incident light reflection side of the polarization beam splitter and the second polarizer, and configured to rotate a plane of polarization by 45 ° in a direction opposite to that of the first Faraday rotation element.
The Faraday rotator element separates the horizontal and vertical polarizations into separate optical paths and then converts them into a certain polarization state for amplification. And an advantage of being able to provide an excellent optical amplifier capable of amplifying and outputting only incident light from one direction.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による光増幅装置の一実施例を示す簡略
構成図である。 図中、1……偏光ビームスプリッタ、2……第1のファ
ラデー回転素子、3……第2のファラデー回転素子、4,
8,9……全反射ミラー、5……進行波型光増幅器、6…
…第1の偏光子、7……第2の偏光子。
FIG. 1 is a simplified configuration diagram showing an embodiment of the optical amplifying device according to the present invention. In the figure, 1 ... a polarizing beam splitter, 2 ... a first Faraday rotator, 3 ... a second Faraday rotator, 4,
8,9… total reflection mirror, 5… traveling wave optical amplifier, 6…
... A first polarizer, 7... A second polarizer.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体レーザ素子の両端面に反射防止膜を
付加してなる進行波型光増幅器と、 この光増幅器の両端面側にそれぞれ配設され、偏波面が
所定角度回転した偏波のみを透過する第1及び第2の偏
光子と、 一の入出力ポートからの入射光の横偏波と縦偏波のうち
いずれか一方を透過し、他方を所定方向に反射する偏光
ビームスプリッタと、 この偏光ビームスプリッタの前記入射光透過側と前記第
1の偏光子との間に配設され、偏波面を45゜回転する第
1のファラデー回転素子と、 前記偏光ビームスプリッタの前記入射光反射側と前記第
2の偏光子との間に配設され、偏波面を前記第1のファ
ラデー回転素子と逆方向に45゜回転する第2のファラデ
ー回転素子とを備えた ことを特徴とする光増幅装置。
1. A traveling-wave optical amplifier in which antireflection films are added to both end surfaces of a semiconductor laser device, and only a polarized light whose polarization plane is rotated by a predetermined angle is disposed on each end surface of the optical amplifier. A first and a second polarizer that transmits light, and a polarizing beam splitter that transmits one of a horizontal polarization and a vertical polarization of incident light from one input / output port and reflects the other in a predetermined direction. A first Faraday rotator disposed between the incident light transmitting side of the polarization beam splitter and the first polarizer and rotating a polarization plane by 45 °; and the incident light reflection of the polarization beam splitter. A second Faraday rotator disposed between the first Faraday rotator and a second Faraday rotator, the second Faraday rotator being configured to rotate a plane of polarization by 45 ° in a direction opposite to that of the first Faraday rotator. Amplifying device.
JP19759588A 1988-08-08 1988-08-08 Optical amplifier Expired - Fee Related JP2612904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19759588A JP2612904B2 (en) 1988-08-08 1988-08-08 Optical amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19759588A JP2612904B2 (en) 1988-08-08 1988-08-08 Optical amplifier

Publications (2)

Publication Number Publication Date
JPH0246432A JPH0246432A (en) 1990-02-15
JP2612904B2 true JP2612904B2 (en) 1997-05-21

Family

ID=16377100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19759588A Expired - Fee Related JP2612904B2 (en) 1988-08-08 1988-08-08 Optical amplifier

Country Status (1)

Country Link
JP (1) JP2612904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160050922A (en) * 2014-10-31 2016-05-11 에스케이텔레콤 주식회사 Phase Modulation Apparatus based on Sagnac interferometer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03241323A (en) * 1990-02-20 1991-10-28 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser amplifier
US5303314A (en) * 1993-03-15 1994-04-12 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for polarization-maintaining fiber optical amplification with orthogonal polarization output
JP5791094B2 (en) * 2010-11-19 2015-10-07 日本電信電話株式会社 Optical amplifier
CN109031853A (en) * 2018-09-04 2018-12-18 中国电子科技集团公司第三十四研究所 A kind of phase sensitive optical parametric amplifier and its operation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Electronics Letters,Vol.24 No.17 P.1075〜P.1076

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160050922A (en) * 2014-10-31 2016-05-11 에스케이텔레콤 주식회사 Phase Modulation Apparatus based on Sagnac interferometer

Also Published As

Publication number Publication date
JPH0246432A (en) 1990-02-15

Similar Documents

Publication Publication Date Title
US5303314A (en) Method and apparatus for polarization-maintaining fiber optical amplification with orthogonal polarization output
US5355249A (en) Optical passive components
US6480331B1 (en) Reflection-type polarization-independent optical isolator, optical isolator/amplifier/monitor, and optical system
JPH0743489B2 (en) Polarization independent optical amplifier
US6081367A (en) Optical filter module and optical amplifier using the same
JPH07114299B2 (en) Amplification device not sensitive to polarization
JPH0327027A (en) Optical amplifier
JP2612904B2 (en) Optical amplifier
US5636053A (en) Fiberoptic amplifier system with noise figure reduction
US20040184148A1 (en) Integrated micro-optic architecture for combining and depolarizing plural polarized laser beams
JPH10232417A (en) Loop phase conjugate mirror for unpolarized beam
US5890816A (en) Polarization maintaining optical amplifier
JP2612913B2 (en) Optical amplifier
US20020191290A1 (en) Integrated micro-optic architecture for combining and depolarizing plural polarized laser beams
JP2959287B2 (en) Optical coupler
JP2612912B2 (en) Optical amplifier
JP2706480B2 (en) Optical amplifier
JP2953202B2 (en) Optical coupler
JPH095806A (en) Optical amplifier
JP2953189B2 (en) Optical coupler
JPH0764021A (en) Optical coupler and optical fiber amplifier
JP2948221B1 (en) Tunable light source device
US6859298B2 (en) Optical module of optical isolator structure
JP5791094B2 (en) Optical amplifier
JPH02278232A (en) Optical amplifier

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees