JP2610866B2 - Semiconductor resistance element - Google Patents

Semiconductor resistance element

Info

Publication number
JP2610866B2
JP2610866B2 JP62072004A JP7200487A JP2610866B2 JP 2610866 B2 JP2610866 B2 JP 2610866B2 JP 62072004 A JP62072004 A JP 62072004A JP 7200487 A JP7200487 A JP 7200487A JP 2610866 B2 JP2610866 B2 JP 2610866B2
Authority
JP
Japan
Prior art keywords
insulating film
metal silicide
polycrystalline silicon
silicon resistor
covering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62072004A
Other languages
Japanese (ja)
Other versions
JPS63237458A (en
Inventor
和之 水嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62072004A priority Critical patent/JP2610866B2/en
Publication of JPS63237458A publication Critical patent/JPS63237458A/en
Application granted granted Critical
Publication of JP2610866B2 publication Critical patent/JP2610866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体抵抗素子に関する。Description: TECHNICAL FIELD The present invention relates to a semiconductor resistor.

〔従来の技術〕[Conventional technology]

従来より、集積回路の抵抗素子として多結晶シリコン
抵抗体が寄生容量の少ないために多く使用されている。
2. Description of the Related Art Conventionally, a polycrystalline silicon resistor has been widely used as a resistance element of an integrated circuit because of its low parasitic capacitance.

第2図は従来の半導体抵抗素子の一例の半導体チップ
の断面図である。
FIG. 2 is a sectional view of a semiconductor chip as an example of a conventional semiconductor resistance element.

半導体ウェーハ1の上にフィールド絶縁膜2が形成さ
れ、この上に不純物が導入され所定の面積抵抗率を持ち
所定の形状にした多結晶シリコン抵抗体3が形成され
る。
A field insulating film 2 is formed on a semiconductor wafer 1, on which impurities are introduced to form a polycrystalline silicon resistor 3 having a predetermined area resistivity and a predetermined shape.

気相成長法などで形成させた絶縁膜4に対して所定の
間隔Lを置いた二つのコンタクト孔7が形成され、コン
トタクト孔5の底面に多結晶シリコン抵抗体3のオーミ
ックコンタクトを得るためPt,Pd,W,Ti及Moとシリコンと
の金属珪化物層6を形成する。
Two contact holes 7 are formed at predetermined intervals L with respect to the insulating film 4 formed by a vapor phase growth method or the like, and an ohmic contact of the polycrystalline silicon resistor 3 is obtained at the bottom of the contact hole 5. A metal silicide layer 6 of Pt, Pd, W, Ti, Mo and silicon is formed.

この時使用時の温度における配線層のAlとの反応を防
ぐためにTi等バリアメタル層7を形成し、その上にAlの
配線層8を形成し、半導体シリコン抵抗素子が完成す
る。
At this time, a barrier metal layer 7 such as Ti is formed in order to prevent a reaction with Al of the wiring layer at the temperature at the time of use, and an Al wiring layer 8 is formed thereon, thereby completing the semiconductor silicon resistance element.

上述の半導体抵抗素子の抵抗値Rは、一般に第(1)
式で決定される。
Generally, the resistance value R of the above-described semiconductor resistance element is (1)
Determined by the formula.

ρs:多結晶シリコン抵抗体の面積抵抗率、 L:抵抗長、W=抵抗幅、Rc:コンタクト抵抗、 で与えられる。 ρs: area resistivity of the polycrystalline silicon resistor, L: resistance length, W = resistance width, Rc: contact resistance.

ここで、抵抗層Lは二つの金属珪化物層の間隔L、す
なわち二つのコンタクト孔5の間隔Lが実効的な値とな
る。
Here, the effective value of the resistance layer L is the distance L between the two metal silicide layers, that is, the distance L between the two contact holes 5.

一般に、絶縁膜4がシリコン酸化膜である場合に、コ
ンタクト孔5の開孔には弗化水素系による等方性のウェ
ットエッチングや、CF4ガスによる異方性の反応性イオ
ンエッチング(以下RIEという)を適用している。
Generally, when the insulating film 4 is a silicon oxide film, the opening of the contact hole 5 is formed by isotropic wet etching using hydrogen fluoride or anisotropic reactive ion etching (hereinafter, RIE) using CF 4 gas. Has been applied.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述した従来の半導体抵抗素子は、コンタクト孔の開
孔加工寸法精度が実効的な抵抗長に大きく影響するの
で、抵抗の精度改善のために抵抗長を大きくとると、高
集積化と高速化をさまたげるという問題があった。
In the conventional semiconductor resistor described above, the dimensional accuracy of the contact hole opening greatly affects the effective resistance length. Therefore, if the resistance length is increased to improve the resistance accuracy, high integration and high speed operation will be achieved. There was a problem of shutting down.

第3図は第2図の配線層及びバリヤメタル層を除いた
半導体チップの平面図である。
FIG. 3 is a plan view of the semiconductor chip excluding the wiring layer and the barrier metal layer of FIG.

前述の等方性エッチングでは、二つのコントクト孔5a
間を間隔Laにとっても、横方向のエッチングが行われる
ために、実効的なコンタクト孔5bは誤差△Lだけ広が
り、開孔後の間隔LbはLa−2△Lとなる。
In the aforementioned isotropic etching, two contact holes 5a are formed.
Even when the interval is La, the effective contact hole 5b is widened by an error ΔL because the lateral etching is performed, and the interval Lb after the opening is La−2LaL.

ここで、コンタクト抵抗Rcを無視すると、(1)式に
よる抵抗値Rの誤差は2△L/Lとなる。
Here, ignoring the contact resistance Rc, the error of the resistance value R according to the equation (1) is 2 △ L / L.

従って、La=6μm,△L=0,3μmとすると10%の寸
法誤差を生じるので、この寸法誤差は3%以下にするに
はLが20μm必要となり、抵抗素子の高集積化や高速特
性の障害となる。
Therefore, if La = 6 μm and ΔL = 0,3 μm, a dimensional error of 10% occurs. To reduce the dimensional error to 3% or less, L is required to be 20 μm. It is an obstacle.

一方、RIEによる異方性エッチングも、ホトレジスト
膜圧を厚く設定する必要があるために、マスクパターン
転写時の転写精度は悪く、同様に△Lの誤差を生じる。
On the other hand, in the anisotropic etching by RIE, since the photoresist film pressure needs to be set to be large, the transfer accuracy at the time of transferring the mask pattern is poor, and similarly, an error of ΔL occurs.

本発明の目的は、抵抗値の精度が良い高集積度で高速
度の半導体抵抗素子を抵抗することにある。
SUMMARY OF THE INVENTION An object of the present invention is to resist a high-density, high-speed semiconductor resistance element having a high resistance value accuracy.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明の半導体抵抗素子は、 (A) 半導体ウェーハの一主面を覆うフィールド絶縁
膜の上に選択的に形成された所定の抵抗率を有する多結
晶シリコン抵抗体、 (B) 前記多結晶シリコン抵抗体の表面に形成された
所定の部分を覆う少なくとも一つの絶縁膜マスク、 (C) 前記多結晶シリコン抵抗体の前記絶縁膜マスク
に覆われていない露出面を覆う金属珪化物層 (D) 前記フィールド絶縁膜、前記絶縁膜マスク及び
前記金属珪化物層の全表面を覆う絶縁膜、 (E) 前記絶縁膜に選択的に形成されて前記金属珪化
物層を露出する少なくとも一つのコンタクト孔、 (F) 前記金属珪化物層の露出部と接続する配線層、 を含んで構成されている。
(A) a polycrystalline silicon resistor having a predetermined resistivity selectively formed on a field insulating film covering one main surface of a semiconductor wafer; (B) the polycrystalline silicon At least one insulating film mask covering a predetermined portion formed on the surface of the resistor; (C) a metal silicide layer covering an exposed surface of the polycrystalline silicon resistor that is not covered with the insulating film mask; An insulating film covering the entire surface of the field insulating film, the insulating film mask and the metal silicide layer; (E) at least one contact hole selectively formed in the insulating film to expose the metal silicide layer; (F) a wiring layer connected to the exposed portion of the metal silicide layer.

〔実施例〕〔Example〕

次に、本発明の実施例について図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の半導体チップの断面図で
ある。
FIG. 1 is a sectional view of a semiconductor chip according to one embodiment of the present invention.

半導体ウェーハ1上に形成されたフィールド絶縁膜2
の上に、一導電形の不純物を導入し、面積抵抗率が2〜
5Ω/□の多結晶シリコン抵抗体3を形成する。
Field insulating film 2 formed on semiconductor wafer 1
On top of this, an impurity of one conductivity type is introduced, and the area resistivity is 2 to 2.
A 5Ω / □ polycrystalline silicon resistor 3 is formed.

実効的な抵抗長Lcとなる領域に、絶縁膜4aとして50〜
100nm程度の厚さにシリコン酸化膜を形成し多結晶シリ
コン抵抗体3の表面の一部を覆う。
In the region where the effective resistance length Lc is, 50-
A silicon oxide film is formed to a thickness of about 100 nm to cover a part of the surface of the polycrystalline silicon resistor 3.

この時絶縁膜4aのパターン形状の形成方法としては、
RIE等の異方性エッチングを適用することによりパター
ン寸法の精度を上げることができる。
At this time, as a method of forming the pattern shape of the insulating film 4a,
By applying anisotropic etching such as RIE, the accuracy of the pattern dimension can be improved.

また絶縁膜4aでは、ピンホールが生じない程度に膜厚
を薄く設定することにより、エッチング精度も良好とな
る。
In addition, by setting the thickness of the insulating film 4a to be small enough to prevent pinholes, the etching accuracy is improved.

一方、絶縁膜4aに覆われない二つの領域は従来と同じ
金属珪化物層6を絶縁膜4aをマスクとして選択的に形成
され、それらの間隔Lcは自己整合されて等しい。珪化物
の熱処理としては例えば白金珪化物形成の場合はPt層の
厚さ20〜40nmに対して窒素雰囲気で500〜550℃の加熱を
10〜20分程度行なう。
On the other hand, two regions which are not covered with the insulating film 4a are selectively formed using the same metal silicide layer 6 as in the prior art using the insulating film 4a as a mask, and their intervals Lc are self-aligned and equal. As the heat treatment of the silicide, for example, in the case of forming platinum silicide, the Pt layer is heated at 500 to 550 ° C. in a nitrogen atmosphere to a thickness of 20 to 40 nm.
Perform for about 10 to 20 minutes.

この多結晶シリコン抵抗体3は、従来の多結晶シリコ
ン抵抗体と同様にして、シリコン酸化膜あるいはPSG膜
などの絶縁膜4で覆われ、二つのコンタクト孔5が金属
珪化物層6上に間隔Laを置いて開孔され、Ti等のバリヤ
メタル層7を介して配線層8と接続される。
This polycrystalline silicon resistor 3 is covered with an insulating film 4 such as a silicon oxide film or a PSG film in the same manner as a conventional polycrystalline silicon resistor, and two contact holes 5 are formed on the metal silicide layer 6 with an interval. It is opened with La placed, and is connected to the wiring layer 8 via a barrier metal layer 7 such as Ti.

ここで(1)式の半導体抵抗素子の抵抗値Rを決定す
る実効的な抵抗長Lは、二つの金属珪化物6の間隔Lcで
あり、設計的に二つのコントクト孔5の間隔Laとは無関
係である。
Here, the effective resistance length L that determines the resistance value R of the semiconductor resistance element of the equation (1) is the distance Lc between the two metal silicides 6, and the distance La between the two contact holes 5 is designed by design. Irrelevant.

従って、抵抗Rの誤差は間隔Lcの寸法誤差にのみ依存
する。
Therefore, the error of the resistor R depends only on the dimensional error of the interval Lc.

金属珪化物層6の間隔Lcは、4aの長さの精度で決まる
が、一般にRIEを用いた薄い絶縁膜4aのエッチング精度
が極めて高く、間隔Lcが6μmに対して△Lcを0.1μm
にする事は容易である。
The interval Lc between the metal silicide layers 6 is determined by the accuracy of the length of 4a. In general, the etching accuracy of the thin insulating film 4a using RIE is extremely high.
It is easy to do.

〔発明の効果〕 以上説明したように本発明は、集積回路に使用される
多結晶シリコン抵抗体の実効的な抵抗長を薄い絶縁膜の
RIEエッチング精度で決定することにより、高集積度の
高速度の半導体抵抗素子が得られるという効果がある。
[Effects of the Invention] As described above, the present invention reduces the effective resistance length of a polycrystalline silicon resistor used for an integrated circuit by a thin insulating film.
By determining the RIE etching accuracy, there is an effect that a highly integrated and high-speed semiconductor resistance element can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例の半導体チップの断面図、第
2図は従来の半導体抵抗素子の一例の半導体チップの断
面図、第3図は第2図の配線用及びバリヤメタル層を除
いた半導体チップの平面図である。 1……半導体ウェーハ、2……フィールド絶縁膜、3…
…多結晶シリコン抵抗体、4,4a……絶縁膜パターン、5
……コンタクト孔、9……コンタクトマスク孔、Ll……
抵抗長。
1 is a cross-sectional view of a semiconductor chip according to one embodiment of the present invention, FIG. 2 is a cross-sectional view of a semiconductor chip as an example of a conventional semiconductor resistor, and FIG. 3 is a view of FIG. 2 excluding wiring and barrier metal layers. FIG. 3 is a plan view of a semiconductor chip that has been set. 1 ... semiconductor wafer, 2 ... field insulating film, 3 ...
… Polycrystalline silicon resistor, 4,4a …… Insulating film pattern, 5
... contact hole, 9 ... contact mask hole, Ll ...
Resistance length.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体ウエハーの一主面を覆うフィールド
絶縁膜の上に選択的に形成された所定の抵抗率を有する
多結晶シリコン抵抗体と、前記多結晶シリコン抵抗体の
両端部分を除く表面に形成された所定の膜厚を有する絶
縁膜マスクと、前記多結晶シリコン抵抗体の前記両端部
分上の前記絶縁膜マスクに覆われていない露出面を選択
的に覆いそれぞれ前記所定の膜厚よりも薄い膜厚を有す
る第1及び第2の金属硅化物層と、前記フィールド絶縁
膜、前記絶縁膜マスク並びに前記第1及び第2の金属硅
化物層の全表面を覆い前記所定の膜厚よりも厚い膜厚を
有する層間絶縁膜と、前記層間絶縁膜に選択的に形成さ
れて前記第1及び第2の金属硅化物層の各々の一部を露
出する第1及び第2のコンタクト孔と、前記第1及び第
2の金属硅化物層の露出部と接続する第1及び第2の配
線層とを有し、前記第1及び第2の金属硅化物層にはさ
まれた前記絶縁膜マスクの長さによって抵抗値が決定さ
れることを特徴とする半導体抵抗素子。
1. A polycrystalline silicon resistor having a predetermined resistivity selectively formed on a field insulating film covering one main surface of a semiconductor wafer, and a surface excluding both end portions of the polycrystalline silicon resistor. An insulating film mask having a predetermined thickness formed on the substrate; and selectively covering exposed surfaces of the polycrystalline silicon resistor on the both end portions which are not covered with the insulating film mask. A first and a second metal silicide layer having a small thickness, and covering the entire surface of the field insulating film, the insulating film mask, and the first and the second metal silicide layers. An interlayer insulating film having a relatively large thickness, first and second contact holes selectively formed in the interlayer insulating film and exposing a part of each of the first and second metal silicide layers; , The first and second metal silicide layers It has first and second wiring layers connected to an exposed portion, and a resistance value is determined by a length of the insulating film mask sandwiched between the first and second metal silicide layers. Characteristic semiconductor resistance element.
JP62072004A 1987-03-25 1987-03-25 Semiconductor resistance element Expired - Fee Related JP2610866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62072004A JP2610866B2 (en) 1987-03-25 1987-03-25 Semiconductor resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62072004A JP2610866B2 (en) 1987-03-25 1987-03-25 Semiconductor resistance element

Publications (2)

Publication Number Publication Date
JPS63237458A JPS63237458A (en) 1988-10-03
JP2610866B2 true JP2610866B2 (en) 1997-05-14

Family

ID=13476840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62072004A Expired - Fee Related JP2610866B2 (en) 1987-03-25 1987-03-25 Semiconductor resistance element

Country Status (1)

Country Link
JP (1) JP2610866B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313266A (en) * 1991-04-10 1992-11-05 Fuji Xerox Co Ltd Thin-film semiconductor device
JP3935687B2 (en) * 2001-06-20 2007-06-27 アルプス電気株式会社 Thin film resistance element and manufacturing method thereof
JP5138274B2 (en) 2007-05-25 2013-02-06 三菱電機株式会社 Semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854663A (en) * 1981-09-28 1983-03-31 Nec Corp Manufacture of semiconductor device
JPS59207652A (en) * 1983-05-11 1984-11-24 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof

Also Published As

Publication number Publication date
JPS63237458A (en) 1988-10-03

Similar Documents

Publication Publication Date Title
JP2773729B2 (en) Method for manufacturing semiconductor device
JPH0424861B2 (en)
JP2008226963A (en) Semiconductor device and manufacturing method therefor
JP3175188B2 (en) Method of forming alignment mark
JPH04229616A (en) Method for boring an opening on semicon- ductor layer structure
JP2610866B2 (en) Semiconductor resistance element
JP3199847B2 (en) Semiconductor device and method of manufacturing the same
JP2916306B2 (en) Semiconductor device
JP3180796B2 (en) Method for manufacturing semiconductor device
JPH05175428A (en) Integrated circuit device
JP3271090B2 (en) Semiconductor device manufacturing method
JP3164040B2 (en) Manufacturing method of polysilicon resistance element
JPS6013313B2 (en) Manufacturing method of semiconductor device
JPS639748B2 (en)
JPH0575026A (en) Manufacture of resistor element
JP3112036B2 (en) Method for manufacturing semiconductor device
JP2707538B2 (en) Method for manufacturing semiconductor device
JPS6038872B2 (en) Manufacturing method of semiconductor device
JPS6214953B2 (en)
JPS5912028B2 (en) Manufacturing method for semiconductor devices
JPS6079743A (en) Semiconductor device
JP2901262B2 (en) Manufacturing method of polysilicon resistance element
JP3038873B2 (en) Method for manufacturing semiconductor device
JP3099450B2 (en) Semiconductor device and manufacturing method thereof
JP2504239B2 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees