JP2609661B2 - Waste liquid concentrator - Google Patents

Waste liquid concentrator

Info

Publication number
JP2609661B2
JP2609661B2 JP63030775A JP3077588A JP2609661B2 JP 2609661 B2 JP2609661 B2 JP 2609661B2 JP 63030775 A JP63030775 A JP 63030775A JP 3077588 A JP3077588 A JP 3077588A JP 2609661 B2 JP2609661 B2 JP 2609661B2
Authority
JP
Japan
Prior art keywords
waste liquid
steam
heater
heating
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63030775A
Other languages
Japanese (ja)
Other versions
JPH01207184A (en
Inventor
伸一 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63030775A priority Critical patent/JP2609661B2/en
Publication of JPH01207184A publication Critical patent/JPH01207184A/en
Application granted granted Critical
Publication of JP2609661B2 publication Critical patent/JP2609661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、原子力及び一般産業分野において発生する
廃液を濃縮する廃液濃縮装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a waste liquid concentrating device for concentrating a waste liquid generated in the nuclear and general industrial fields.

(従来の技術) 蒸発濃縮処理方式は、廃液の化学的あるいは物理的特
性に係わりなく清浄な蒸留水を得ることができ、また、
廃液を高濃度に濃縮することができるので、廃液の体積
を非常に減少させる方法として、原子力や一般産業分野
で多用されている。
(Prior art) The evaporative concentration method can obtain clean distilled water irrespective of the chemical or physical characteristics of the waste liquid.
Since the waste liquid can be concentrated to a high concentration, it is widely used in nuclear power and general industrial fields as a method for greatly reducing the volume of the waste liquid.

ここで第3図及び第4図を参照して廃液濃縮装置の従
来例を説明する。
Here, a conventional example of the waste liquid concentrating apparatus will be described with reference to FIGS. 3 and 4. FIG.

廃液収集タンク1に導入された廃液は、廃液移送ポン
プ3により廃液給液流量計4,廃液移送配管2を介して蒸
発濃縮部90に移送される。蒸発濃縮部90は、廃液加熱器
6と廃液蒸発缶9と廃液循環ポンプ11及びこれらの機器
を接続する廃液循環配管10から構成されている。
The waste liquid introduced into the waste liquid collection tank 1 is transferred by the waste liquid transfer pump 3 to the evaporating and concentrating unit 90 via the waste liquid supply flow meter 4 and the waste liquid transfer pipe 2. The evaporative concentration section 90 is composed of a waste liquid heater 6, a waste liquid evaporator 9, a waste liquid circulation pump 11, and a waste liquid circulation pipe 10 connecting these devices.

廃液加熱器6には熱交換用のチューブである多数の廃
液加熱器伝熱管8が内蔵され、この廃液加熱管伝熱管8
の外側に後述するボイラー24からの加熱蒸気を供給し、
伝熱管8の内側の廃液を加熱する。加熱蒸気により加熱
された廃液は、廃液自身の自然対流力と廃液循環ポンプ
11の強制駆動力により、加熱された状態で、廃液加熱器
6、廃液蒸発缶9、廃液循環ポンプ11、廃液加熱器6の
順で構成される循環ループ内を循環する。
The waste liquid heater 6 has a large number of waste liquid heater heat transfer tubes 8 which are tubes for heat exchange.
Supply heating steam from the boiler 24 described below to the outside of the
The waste liquid inside the heat transfer tube 8 is heated. The waste liquid heated by the heating steam is the natural convection force of the waste liquid itself and the waste liquid circulation pump.
By the forced driving force of 11, the waste liquid heater 6, the waste liquid evaporator 9, the waste liquid circulation pump 11, and the waste liquid heater 6 are circulated in the heated state in this order.

尚、この循環を前述の自然対流によってのみ行うこと
で廃液循環ポンプ11を削除した方式もあるが、ここでは
説明を省略する。
There is also a method in which the waste liquid circulation pump 11 is omitted by performing this circulation only by the natural convection described above, but the description is omitted here.

この循環ループに廃液収集タンク1から廃液が供給さ
れると、加熱され、廃液蒸発缶9内で激しく蒸発する。
なお、この廃液蒸発缶9内の温度制御は廃液温度計5の
検出値にて行なわれている。蒸発した廃液蒸気は廃液蒸
気配管12を介して廃液ミストセパレータ15に導びかれ、
廃液蒸気中に若干含まれるミストと呼ばれる廃液の水滴
をミストセパレータエレメント16により除去される。こ
の除去された廃液蒸気は、廃液蒸気配管17を介して復水
器18に導びかれる。復水器18は冷却水によって常に低温
状態に保たれており、ここに導びかれた廃液蒸気は凝縮
し廃液蒸留水となる。この凝縮した廃液蒸留水は配管19
を介して廃液蒸留水タンク20に導びかれる。
When the waste liquid is supplied from the waste liquid collection tank 1 to this circulation loop, it is heated and vigorously evaporates in the waste liquid evaporator 9.
The temperature inside the waste liquid evaporator 9 is controlled based on the detected value of the waste liquid thermometer 5. The evaporated waste liquid vapor is led to a waste liquid mist separator 15 through a waste liquid vapor pipe 12,
The mist separator element 16 removes water droplets of waste liquid called mist slightly contained in waste liquid vapor. The removed waste liquid vapor is guided to the condenser 18 via the waste liquid vapor pipe 17. The condenser 18 is always kept at a low temperature by the cooling water, and the waste liquid vapor introduced there is condensed to be waste liquid distilled water. This condensed waste liquid distilled water is pipe 19
Through the waste water distilled water tank 20.

一方廃液は廃液蒸発缶9で激しく蒸発することによ
り、廃液濃縮部内の廃液濃度は徐々に上昇し、濃縮廃液
と呼ばれる不純物を高濃度で含む廃液となる。不純物濃
度は、廃液密度として間接的に知ることができるため、
廃液密度計46を設けると同時に、この濃縮廃液を直接採
取し、分析して濃度を知るための廃液サンプリング弁13
と廃液サンプリング配管38を設けている。この不純物濃
度が所定の値に到達したならば、濃縮廃液排出弁21を開
け、濃縮廃液の一部又は全部を、濃縮廃液移送配管22を
介して、濃縮廃液タンク23に排出する。
On the other hand, the waste liquid evaporates violently in the waste liquid evaporator 9, so that the concentration of the waste liquid in the waste liquid concentrating unit gradually increases, and becomes a waste liquid containing a high concentration of impurities called concentrated waste liquid. Since the impurity concentration can be indirectly known as the waste liquid density,
At the same time as providing the waste liquid density meter 46, the concentrated waste liquid is directly collected and analyzed, and the waste liquid sampling valve 13 for knowing the concentration is provided.
A waste liquid sampling pipe 38 is provided. When the impurity concentration reaches a predetermined value, the concentrated waste liquid discharge valve 21 is opened, and a part or all of the concentrated waste liquid is discharged to the concentrated waste liquid tank 23 via the concentrated waste liquid transfer pipe 22.

以上の運転により、廃液収集タンク1内の廃液は、廃
液蒸留水タンク20内の蒸留水と、濃縮廃液タンク23内の
濃縮廃液に分離される。この蒸留水は、極めて清浄であ
り、一般に各種設備で再使用され、又は無害の排水とし
て環境に放出される。さらに濃縮廃液は、体積は小さい
が高濃度の不純物を含み、長期間タンクに保管、又はセ
メントと混ぜ練り合わせてドラム缶内に貯蔵し、安全上
の策を溝じている。
By the above operation, the waste liquid in the waste liquid collection tank 1 is separated into the distilled water in the waste liquid distilled water tank 20 and the concentrated waste liquid in the concentrated waste liquid tank 23. This distilled water is extremely clean, and is generally reused in various facilities or discharged to the environment as harmless waste water. Further, the concentrated waste liquid has a small volume but contains a high concentration of impurities, and is stored in a tank for a long period of time, or mixed with cement and stored in a drum, to prevent a safety measure.

廃液加熱器6の熱源はボイラー24によって作られる蒸
気である。ボイラー24は、一般に、廃液濃縮装置の廃液
加熱器6だけでなく、建屋内空調等各種の負荷にも蒸気
を供給する様、設置される。ボイラー24で発生する加熱
蒸気は、加熱用蒸気配管25を通して廃液加熱器6、その
各他種蒸気使用負荷26に供給される。ここで使用された
加熱蒸気は凝縮してドレンとなり、蒸気ドレン配管31と
蒸気ドレントラップ32及び蒸気ドレン戻し配管14を介し
て蒸気ドレンタンク34に導びかれる。このドレンはさら
に蒸気ドレン移送配管35を介して、ボイラ給水ポンプ36
により昇圧されボイラ給水配管37を経てボイラー24に再
び導入される。
The heat source of the waste liquid heater 6 is steam produced by the boiler 24. The boiler 24 is generally installed so as to supply steam not only to the waste liquid heater 6 of the waste liquid concentrator but also to various loads such as an air conditioner in a building. The heating steam generated in the boiler 24 is supplied to the waste liquid heater 6 and each other steam use load 26 through the heating steam pipe 25. The heated steam used here condenses to a drain, and is led to a steam drain tank 34 through a steam drain pipe 31, a steam drain trap 32, and a steam drain return pipe 14. This drain is further supplied to a boiler feed pump 36 via a steam drain transfer pipe 35.
The pressure is increased by and is reintroduced into the boiler 24 through the boiler water supply pipe 37.

第4図は、廃液加熱器6の構造を示したものである。 FIG. 4 shows the structure of the waste liquid heater 6.

廃液加熱器6の上下の管板43に多数の伝熱管8が取付
けられ、その外側を廃液加熱器胴7が囲んでいる。廃液
は廃液加熱器6の下側から入り、伝熱管8の内部を通
り、ここで加熱蒸気と熱交換を行なって廃液加熱器6の
上部から抜け廃液蒸発缶9に移動する。
A large number of heat transfer tubes 8 are attached to the upper and lower tube plates 43 of the waste liquid heater 6, and the outside thereof is surrounded by a waste liquid heater body 7. The waste liquid enters from below the waste liquid heater 6, passes through the inside of the heat transfer tube 8, exchanges heat with the heating steam here, passes through the upper part of the waste liquid heater 6, and moves to the waste liquid evaporator 9.

廃液加熱器胴7と伝熱器8の間の空間には前述のボイ
ラー24からの加熱蒸気が供給され、伝熱管8の内表面で
廃液と熱交換が行なわれる。さらに熱交換に使用された
蒸気は、そのドレンと共に蒸気ドレン配管3から排出さ
れボイラー24に戻る。
The heating steam from the boiler 24 is supplied to the space between the waste liquid heater cylinder 7 and the heat transfer device 8, and heat is exchanged with the waste liquid on the inner surface of the heat transfer tube 8. Further, the steam used for heat exchange is discharged from the steam drain pipe 3 together with the drain and returns to the boiler 24.

ところで廃液濃縮装置は、常に一定流量で廃液処理運
転を行なうものではなく、廃液の発生状況や設備の運転
計画に従がって、処理流量や処理時間を調整していくも
のである。廃液濃縮装置の処理流量は、廃液蒸発缶9か
らの廃液蒸発量に等しく、この量は蒸発に使用される加
熱用蒸気の圧力と流量に依存するので、加熱用蒸気圧力
と流量は適切に制御される必要がある。又、濃縮装置の
起動時には、装置全体の温度上昇による各機器の熱歪を
最小にして、機器の損傷を防ぐため、加熱蒸気流量を絞
り、装置全体の温度が徐々に上昇する様制御している。
Incidentally, the waste liquid concentrating apparatus does not always perform the waste liquid processing operation at a constant flow rate, but adjusts the processing flow rate and the processing time in accordance with the generation state of the waste liquid and the operation plan of the equipment. The processing flow rate of the waste liquid concentrator is equal to the amount of waste liquid evaporated from the waste liquid evaporator 9, and since this amount depends on the pressure and flow rate of the heating steam used for evaporation, the heating steam pressure and flow rate are appropriately controlled. Needs to be done. Also, at the time of starting the concentrator, to minimize the thermal strain of each device due to the temperature rise of the whole device and to prevent the damage of the device, the flow rate of heating steam is reduced and the temperature of the whole device is controlled to gradually rise. I have.

さらに濃縮廃液は、不純物の溶解度と温度の関係に従
い、機器の内面に結晶として析出する物性を持っている
ので、処理するべき廃液の発生の有無に係わらず、常に
一定の温度で維持するよう加熱用蒸気を供給する必要が
ある。
Furthermore, the concentrated waste liquid has the property of crystallizing out on the inner surface of the equipment according to the relationship between the solubility of impurities and the temperature, so it is always heated at a constant temperature regardless of whether waste liquid to be treated is generated or not. It is necessary to supply steam for use.

このため第3図に示すように加熱用蒸気配管25には、
蒸気圧力調整弁27と、蒸気流量計28と、小レンジ蒸気流
量調整弁29及び大レンジ蒸気流量調整弁30を設け、廃液
蒸発量入力器44及び蒸気流量計28の信号45に基づいて、
コントローラ39によってこれらの調整弁の開度を調整し
て、加熱エネルギーである蒸気流量と圧力を制御してい
る。
Therefore, as shown in FIG. 3, in the heating steam pipe 25,
A steam pressure regulating valve 27, a steam flow meter 28, a small range steam flow regulating valve 29 and a large range steam flow regulating valve 30 are provided, based on a waste liquid evaporation amount input device 44 and a signal 45 of the steam flow meter 28,
The controller 39 adjusts the degree of opening of these regulating valves to control the steam flow rate and pressure as heating energy.

一方、廃液加熱器伝熱管8の損傷により、廃液が万一
蒸気ドレン側に漏出しても、蒸気ドレンタンク34やボイ
ラー24を汚染させないことが必要である。ボイラー24の
水質は、日本工業規格(JIS)B8223に規定されているよ
うに極めて厳しいものであり、微量の不純物が混入して
もボイラー24の運転に支障を及ぼす可能性がある。この
ため、万一、廃液加熱器伝熱管8に損傷が生じても廃液
が蒸気ドレン側に漏出しないように、伝熱管8の外側の
蒸気圧力を、伝熱管8の内側の廃液圧力よりも高く維持
させている。さらに廃液加熱器6からの蒸気ドレンの水
質を常時監視するよう、蒸気ドレン配管31に蒸気ドレン
導電率計33を設け、導電率が所定の値以上になった場合
には、ボイラ側蒸気ドレン切替弁40を閉じ、廃液収集タ
ンク側蒸気ドレン切替弁41を開けて、廃液収集タンク側
蒸気ドレン配管42を通して汚染した蒸気ドレンを廃液収
集タンク1に回収している。
On the other hand, even if the waste liquid leaks to the steam drain side due to damage of the heat transfer tube 8 of the waste liquid heater, it is necessary to prevent the steam drain tank 34 and the boiler 24 from being contaminated. The water quality of the boiler 24 is extremely severe as defined in Japanese Industrial Standards (JIS) B8223, and even if a small amount of impurities is mixed, the operation of the boiler 24 may be hindered. Therefore, even if the heat transfer pipe 8 of the waste liquid heater is damaged, the steam pressure outside the heat transfer pipe 8 is set higher than the waste liquid pressure inside the heat transfer pipe 8 so that the waste liquid does not leak to the steam drain side. Have been maintained. Further, a steam drain conductivity meter 33 is provided in the steam drain pipe 31 so that the water quality of the steam drain from the waste liquid heater 6 is constantly monitored. When the conductivity exceeds a predetermined value, the boiler side steam drain is switched. The valve 40 is closed, the waste liquid collection tank side steam drain switching valve 41 is opened, and the contaminated steam drain is collected in the waste liquid collection tank 1 through the waste liquid collection tank side steam drain pipe 42.

(発明が解決しようとする課題) ところが廃液加熱器6の加熱用蒸気圧力と流量の調整
は容易ではない。この蒸気圧力と流量は、廃液発生量や
設備の運転計画だけでなく、ボイラー24の蒸気を使用す
る各種蒸気使用負荷26の影響を受け、蒸気圧力調整弁27
の入口条件も変動するからである。例えば各種蒸気使用
負荷26として、建屋内暖房用にボイラ蒸気が使用された
場合、夏場のように暖房用蒸気が不必要となると、ボイ
ラー24は最低出力運転となる。この様な場合には、蒸気
圧力調整弁27の入口条件は非常に不安定となり、濃縮装
置の出力を急変動させるとボイラー24の運転が変動し、
トリップしてボイラー蒸気を使用する他の機器の運転に
迄影響を及ぼすという最悪の事態もある。
(Problems to be Solved by the Invention) However, it is not easy to adjust the heating steam pressure and the flow rate of the waste liquid heater 6. The steam pressure and flow rate are affected by not only the waste liquid generation amount and the operation plan of the equipment but also various steam use loads 26 using steam of the boiler 24, and the steam pressure adjusting valve 27
This is because the entrance conditions of the fluctuate. For example, when boiler steam is used for heating the building as various steam use loads 26, and when the steam for heating is unnecessary like in the summer, the boiler 24 becomes the minimum output operation. In such a case, the inlet condition of the steam pressure adjusting valve 27 becomes very unstable, and when the output of the concentrator is suddenly changed, the operation of the boiler 24 is changed,
At worst, tripping can affect the operation of other equipment that uses boiler steam.

また逆にボイラー24が高出力運転を行ないかつ廃液濃
縮装置が低出力運転の場合には、蒸気圧力調整弁27の入
口圧力は高圧となるので、蒸気圧力調整弁27及び小レン
ジ蒸気流量調整弁29や大レンジ蒸気流量調整弁30は微小
開の状態となり、これも極めて不安定な運転となる。特
に調整機構が機械式である弁ではこの現象が顕著とな
る。この対策として廃液発生量に無関係にボイラー24や
廃液濃縮装置を高出力で運転させることも提案されてい
るが、ボイラー燃料の浪費等経済的に極めて不利となっ
ている。
On the contrary, when the boiler 24 is operating at high output and the waste liquid concentrating device is operating at low output, the inlet pressure of the steam pressure adjusting valve 27 becomes high, so the steam pressure adjusting valve 27 and the small range steam flow adjusting valve are operated. 29 and the large range steam flow rate adjusting valve 30 are in a slightly opened state, which is also an extremely unstable operation. This phenomenon is particularly noticeable in valves where the adjusting mechanism is mechanical. As a countermeasure against this, it has been proposed to operate the boiler 24 and the waste liquid concentrator at a high output regardless of the amount of waste liquid generated, but it is economically extremely disadvantageous such as waste of boiler fuel.

さらに廃液加熱器伝熱管8の損傷監視も容易ではな
い。廃液加熱器6で使用された蒸気は蒸気ドレンとなっ
て蒸気ドレン配管31を通るが、その流速は一般に1〜2m
/秒と高速である。このため伝熱管8からの廃液の漏出
を監視する蒸気ドレン導電率計33が、導電率の上昇すな
わち廃液の漏出を検出し、ボイラー側蒸気ドレン切替弁
40の閉動作と廃液収集タンク側蒸気ドレン切替弁41の開
動作を行なっても、廃液が混入した蒸気ドレンの一部
は、蒸気ドレンタンク34に流入する可能性がある。この
ような事態に対処するため蒸気ドレン配管31を大口径と
し、流速を小さくさせることも可能ではあるが、配管材
料が増大し、経済的ではない。
Furthermore, it is not easy to monitor the heat transfer tube 8 of the waste liquid heater. The steam used in the waste liquid heater 6 becomes a steam drain and passes through the steam drain pipe 31, but its flow velocity is generally 1 to 2 m.
Fast / sec. For this reason, the steam drain conductivity meter 33 for monitoring the leakage of the waste liquid from the heat transfer tube 8 detects an increase in the conductivity, that is, the leakage of the waste liquid, and the boiler-side steam drain switching valve.
Even if the closing operation of 40 and the opening operation of the waste liquid collection tank side steam drain switching valve 41 are performed, a part of the steam drain mixed with the waste liquid may flow into the steam drain tank 34. In order to cope with such a situation, it is possible to make the steam drain pipe 31 large in diameter and reduce the flow velocity, but the pipe material is increased, which is not economical.

又、濃縮装置の点検時に於いても、伝熱管8は加熱器
胴7の内部に収納されているので直接目視検査すること
ができず、伝熱管8の損傷の事前防止上充分ではない。
Further, even when inspecting the concentrating device, the heat transfer tube 8 is housed inside the heater barrel 7 and therefore cannot be directly visually inspected, which is not sufficient for preventing damage to the heat transfer tube 8 in advance.

この様な事態に対応するため電圧発熱線を廃液加熱器
の加熱管の周囲に大量に取付け電気加熱する案もあるが
加熱管内の廃液を間接的に加熱するので、伝熱効率と電
力調整時の熱変化応答が悪く、発熱線の断線が発生し易
い等、問題の基本的解決にはなっていない。
To deal with such a situation, there is a plan to install a large amount of voltage heating wires around the heating pipe of the waste liquid heater to electrically heat it, but since the waste liquid in the heating pipe is indirectly heated, heat transfer efficiency and power adjustment It has not been a basic solution to the problem that the heat change response is poor and the heating wire is easily broken.

本発明の目的は、濃縮装置の運転処理流量や、ボイラ
ーと各種蒸気使用負荷の運転状況の影響に依存せず、常
に容易で安定な運転が可能となり、かつ加熱器伝熱管か
らの廃液漏出によるボイラーの水質悪化防止が図れ、か
つ機器の点検性も向上することにより、運転費と設備費
の低減に大きく寄与できる廃液濃縮装置を提供すること
にある。
An object of the present invention is to enable easy and stable operation at all times without depending on the operation processing flow rate of the concentrator and the influence of the operation state of the boiler and various steam use loads, and to prevent waste liquid leakage from the heater heat transfer tube. It is an object of the present invention to provide a waste liquid concentrator that can contribute to a reduction in operating costs and equipment costs by preventing deterioration of water quality of a boiler and improving the checkability of equipment.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 上記目的を達成するために、本発明においては、廃液
を貯溜する廃液収集タンクと、この廃液収集タンク内の
廃液を導入して加熱する廃液加熱器と、加熱された廃液
を導びき濃縮する廃液蒸発缶と、この廃液蒸発缶と前記
廃液加熱器との間で廃液を循環させる廃液循環配管と、
前記廃液蒸発缶で発生した蒸気を凝縮させる復水器と、
この復水器で凝縮した蒸留水を導入する廃液蒸留水タン
クと、廃液蒸発缶内で濃縮した廃液を導入する濃縮廃液
タンクから成る廃液濃縮装置において、前記廃液加熱器
内に設け、電気抵抗によって発熱させる熱交換用チュー
ブと、前記廃液の温度を計測する温度計と、前記廃液の
密度を計測する密度計と、この温度計および密度計から
の少なくとも1個の計測信号に基づいて前記熱交換用チ
ューブに導く加熱用電力量を調整する加熱用電力調整器
とから成ることを特徴とする廃液濃縮装置を提供する。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, a waste liquid collecting tank for storing a waste liquid, a waste liquid heater for introducing and heating the waste liquid in the waste liquid collecting tank, and heating A waste liquid evaporator that guides and concentrates the waste liquid thus obtained, and a waste liquid circulation pipe that circulates the waste liquid between the waste liquid evaporator and the waste liquid heater,
A condenser for condensing steam generated in the waste liquid evaporator,
A waste liquid distilled water tank for introducing distilled water condensed in the condenser, and a waste liquid concentrating device including a concentrated waste liquid tank for introducing waste liquid concentrated in a waste liquid evaporator, provided in the waste liquid heater, and provided with electric resistance. A heat exchange tube for generating heat, a thermometer for measuring the temperature of the waste liquid, a density meter for measuring the density of the waste liquid, and the heat exchange based on at least one measurement signal from the thermometer and the density meter. A waste liquid concentrating device comprising: a heating power controller for adjusting the amount of heating power to be introduced into a heating tube.

(作用) このように構成された廃液濃縮装置においては、電源
から供給される電力は制御装置により所定の容量に調整
され、廃液加熱器の熱源として使用される。コントロー
ラ及び加熱用電力調整器は、加熱される廃液の温度と不
純物の濃度及び廃液蒸発量に基づいて、使用する電力供
給量を適切に制御する。
(Operation) In the waste liquid concentrating device configured as described above, the electric power supplied from the power source is adjusted to a predetermined capacity by the control device and used as a heat source of the waste liquid heater. The controller and the heating power regulator appropriately control the power supply amount to be used based on the temperature of the heated waste liquid, the concentration of impurities, and the waste liquid evaporation amount.

通電により廃液加熱器の加熱管に電気が流れ、加熱管
自身が発熱するので、これに接触する加熱管内の廃液が
直接加熱され、廃液蒸発缶で廃液の沸騰と蒸発がおこ
り、廃液は徐々に濃縮される。
Electricity flows through the heating tube of the waste liquid heater due to energization, and the heating tube itself generates heat.The waste liquid in the heating tube that comes into contact with it is directly heated, and the waste liquid evaporates and the waste liquid boils and evaporates. Concentrated.

廃液濃縮装置を停止状態から起動する場合には、最短
時間でかつ温度が変化する廃液加熱器等の機器の熱歪を
小さくする様な温度変化速度に電力を調整する。廃液処
理をする場合には、必要な廃液蒸発量に見合った最小限
度の電力を供給する。
When the waste liquid concentrating device is started from the stopped state, the electric power is adjusted to the temperature change rate so as to reduce the thermal strain of the device such as the waste liquid heater whose temperature changes in the shortest time. When the waste liquid is treated, the minimum amount of electric power corresponding to the required evaporation amount of the waste liquid is supplied.

廃液を蒸発缶内等に貯えたままで停止する場合には、
廃液中の不純物濃度から溶解度上の析出防止最低点を求
め、これに見合った最小限の電力を供給する。
When stopping with waste liquid stored in an evaporator or the like,
From the impurity concentration in the waste liquid, the lowest point for preventing precipitation on the solubility is determined, and the minimum power corresponding to this is supplied.

又、加熱用蒸気の流入する加熱器胴が必要なくなるの
で伝熱管を直接容易に目視可能となり、伝熱管の検査の
信頼性が向上し、伝熱管の損傷を未然に防止することが
可能となる。
Further, since the heater body into which the steam for heating flows is not required, the heat transfer tube can be easily visually observed directly, the reliability of the inspection of the heat transfer tube is improved, and the heat transfer tube can be prevented from being damaged. .

さらに、加熱用蒸気と廃液加熱器の直接接触がなくな
ることから伝熱管損傷によるボイラー水の汚染も全くな
くなるので加熱器蒸気ドレン出口側の弁、導電率、配管
が一切不要となり、設備費が低減される他、ボイラーの
信頼性も向上する。
Furthermore, since there is no direct contact between the heating steam and the waste liquid heater, there is no boiler water contamination due to heat transfer tube damage, so there is no need for a valve, conductivity, or piping on the outlet side of the heater steam drain, reducing equipment costs. In addition, the reliability of the boiler is improved.

(実 施 例) 以下、本発明の一実施例を第1図及び第2図を参照し
て説明する。
(Examples) An example of the present invention will be described below with reference to FIGS. 1 and 2.

廃液加熱器56と廃液蒸発缶58と廃液循環ポンプ60を、
廃液循環配管59によって接続して廃液循環ループを設
け、このループに廃液収集タンク51の廃液を廃液移送配
管52と廃液移送ポンプ53により供給する。供給流量は廃
液給液流量計54により計測される。
The waste liquid heater 56, the waste liquid evaporator 58, and the waste liquid circulation pump 60,
A waste liquid circulation loop is connected to form a waste liquid circulation loop, and the waste liquid in the waste liquid collection tank 51 is supplied to this loop by a waste liquid transfer pipe 52 and a waste liquid transfer pump 53. The supply flow rate is measured by the waste liquid supply flow meter 54.

廃液蒸発缶58には廃液循環ループ内の廃液の温度と密
度を測定する温度計78と廃液密度計79が取り付けられて
いる。
The waste liquid evaporator 58 is equipped with a thermometer 78 and a waste liquid density meter 79 for measuring the temperature and density of the waste liquid in the waste liquid circulation loop.

廃液蒸発缶58で蒸発した蒸気は廃液蒸気配管61を通
り、廃液ミストセパレータ63に致り、廃液蒸気とともに
運ばれて来た微量の廃液の水滴が、ミストセパレータエ
レメント64により除去される。さらに廃液蒸気配管65を
通り、冷却水によって冷却されている復水器66において
凝縮し、蒸留水となって廃液蒸留水配管67を通り、廃液
蒸留水タンク68に送られる。
The vapor evaporated in the waste liquid vaporizer 58 passes through the waste liquid vapor pipe 61 and is trapped in the waste liquid mist separator 63. A small amount of water droplets of the waste liquid carried together with the waste liquid vapor is removed by the mist separator element 64. Further, it is condensed in the condenser 66 cooled by the cooling water through the waste liquid steam pipe 65, becomes distilled water, passes through the waste liquid distilled water pipe 67, and is sent to the waste liquid distilled water tank 68.

一方前述の廃液循環ループ内の廃液は、廃液蒸発缶58
での蒸発により、徐々に不純物濃度が上昇する。不純物
濃度が上昇すると廃液密度も上昇するので廃液密度計79
で測定すると同時に、廃液循環ループに設けた廃液サン
プリング弁62をあけ、廃液サンプリング配管72を通して
濃縮された廃液を採取し、不純物の濃度を分析する。こ
れらの操作により廃液密度と不純物濃度が充分高まって
いることが確認されれば濃縮処理の完了として、廃液循
環ループに設けた濃縮廃液排出弁69をあけ、濃縮廃液移
送配管70を介して濃縮廃液タンク71に濃縮廃液を排出す
る。
On the other hand, the waste liquid in the waste liquid circulation loop described above
The impurity concentration gradually rises due to the evaporation at. As the concentration of impurities increases, the density of the waste liquid also increases.
Simultaneously with the measurement in step 1, the waste liquid sampling valve 62 provided in the waste liquid circulation loop is opened, the concentrated waste liquid is collected through the waste liquid sampling pipe 72, and the concentration of impurities is analyzed. If it is confirmed that the waste liquid density and the impurity concentration are sufficiently increased by these operations, it is determined that the concentration process is completed, the concentrated waste liquid discharge valve 69 provided in the waste liquid circulation loop is opened, and the concentrated waste liquid is transferred through the concentrated waste liquid transfer pipe 70. The concentrated waste liquid is discharged to the tank 71.

これらのものにおいて、廃液蒸発の加熱は、常に廃液
加熱器56にて行なわれる。電源から供給される電力は、
電力供給線73、加熱用電力調整器74、電力供給線75、廃
液加熱器56、電力供給線76のルートで供給される。廃液
蒸発缶58に取り付けた廃液温度計78及び廃液密度計79の
電気信号83と、廃液サンプリング配管72によって分析し
確認した廃液中の不純物濃度を入力する廃液濃度入力器
81及び廃液濃縮装置の運転計画に基づく廃液処理量を入
力する廃液蒸発量入力器82からの電気信号83は、信号処
理装置であるコントローラ80で処理され、運転に必要な
最適電力量の信号として加熱用電力調整器74に送られ、
加熱用電力が制御される。
In these devices, the heating of the waste liquid evaporation is always performed by the waste liquid heater 56. The power supplied from the power supply is
It is supplied through the route of the power supply line 73, the heating power regulator 74, the power supply line 75, the waste liquid heater 56, and the power supply line 76. A waste liquid concentration input device for inputting an electric signal 83 of a waste liquid thermometer 78 and a waste liquid density meter 79 attached to the waste liquid evaporator 58 and an impurity concentration in the waste liquid analyzed and confirmed by the waste liquid sampling pipe 72.
The electric signal 83 from the waste liquid evaporation input device 82 for inputting the waste liquid processing amount based on the operation plan of 81 and the waste liquid concentrating device is processed by the controller 80 which is a signal processing device, and is output as a signal of the optimum electric power amount required for the operation. Sent to the heating power regulator 74,
The heating power is controlled.

第2図は廃液加熱器56の構造を示すものである。廃液
は加熱器56の下部91から入り、上下の加熱器管板77に多
数取り付けた加熱管57の内部を図中の矢印方向に導びか
れ、ここで加熱されて加熱器56の上部から出る。電力供
給線75は加熱器57の1本1本と、上下の管板77に接続さ
れている。電気は、管板77と加熱管57を流れるので、加
熱管57は電気抵抗により発熱し、内部の廃液は加熱され
る。
FIG. 2 shows the structure of the waste liquid heater 56. The waste liquid enters from the lower portion 91 of the heater 56, is guided in the direction of the arrow in the drawing of the heating tubes 57 attached to the upper and lower heater tube plates 77, is heated there, and exits from the upper portion of the heater 56. . The power supply line 75 is connected to each of the heaters 57 and the upper and lower tube sheets 77. Since electricity flows through the tube sheet 77 and the heating tube 57, the heating tube 57 generates heat by electric resistance, and the waste liquid inside is heated.

ここで加熱に使用される電力は直流でも交流でもよ
く、この濃縮装置が使用される施設の中で適した方が選
ばれればよい。
The electric power used for heating here may be direct current or alternating current, and a suitable one may be selected from the facilities where this concentrator is used.

次に第1図により作用を説明する。 Next, the operation will be described with reference to FIG.

廃液濃縮装置は、一般に廃液の発生状態により、停止
と起動と処理運転をくり返すように運用される。停止時
には廃液中の不純物が循環ループの機器の内面に結晶と
して析出することを防止するため、不純物濃度が溶解度
を超えない様常に電気保温される。運転時には、必要な
蒸発量となる様、廃液沸騰点まで加熱される。起動時に
は、温度上昇による機器の歪を小さくするため、温度変
化率を制御して加熱される。停止時には、廃液密度計79
及び廃液サンプリング配管72によって採取した廃液の分
析による不純物濃度の値と、廃液温度計78の信号をコン
トローラ80に入力し廃液中の不純物が析出しないための
必要最低温度付近に維持される様に、このコントローラ
80によって加熱用電力調整器74を制御する。さらに起動
時には、廃液温度計78の信号に基づいて、単位時間当り
の温度変化率を調整するように、コントローラ80と加熱
用電力調整器74を使用する。
The waste liquid concentrating apparatus is generally operated so as to stop, start, and process repeatedly depending on the state of generation of the waste liquid. At the time of stoppage, impurities in the waste liquid are prevented from precipitating as crystals on the inner surface of the equipment of the circulation loop, so that the impurity concentration does not exceed the solubility and is always kept warm. During operation, the waste liquid is heated to the boiling point so that the required amount of evaporation is obtained. At the time of start-up, heating is performed by controlling the rate of temperature change in order to reduce distortion of the device due to temperature rise. When stopped, the waste liquid density meter 79
And the value of the impurity concentration obtained by analyzing the waste liquid collected by the waste liquid sampling pipe 72 and the signal of the waste liquid thermometer 78 are input to the controller 80 so as to be maintained near the minimum temperature required for impurities in the waste liquid not to precipitate. This controller
The heating power regulator 74 is controlled by 80. Further, at the time of startup, the controller 80 and the heating power regulator 74 are used to adjust the temperature change rate per unit time based on the signal from the waste liquid thermometer 78.

運転中は、廃液発生量に基づいた必要運転量を、廃液
蒸発量入力器82から入力し、コントローラ80によって加
熱用電力調整器74を制御する。
During operation, the required operation amount based on the waste liquid generation amount is input from the waste liquid evaporation amount input device 82, and the controller 80 controls the heating power regulator 74.

以上の本発明の一実施例に係る廃液濃縮装置によれ
ば、廃液濃縮装置の停止、起動、処理運転の全ての状態
において、廃液の性状や必要蒸発量に応じた最適な加熱
エネルギー量を他の設備の運転と無関係に容易に調整で
きる。
According to the waste liquid concentrating device according to the embodiment of the present invention described above, the optimum heating energy amount according to the property of the waste liquid and the required evaporation amount can be obtained in all states of the waste liquid concentrating device such as stop, start, and processing operation. Can be easily adjusted regardless of the operation of the equipment.

また、従来のボイラー蒸気による加熱方式と比較し
て、複数の蒸気流量調整弁や、蒸気ドレン移送配管等の
機械が不要となるので装置の故障の可能性も低減させる
ことができる。
Further, as compared with the conventional heating method using boiler steam, a plurality of steam flow rate adjusting valves, a machine such as a steam drain transfer pipe, etc. are not required, so that the possibility of device failure can be reduced.

さらに万一廃液加熱器加熱管に穴があいて廃液が漏出
してもボイラーへ混入することは全くないので、漏出監
視装置が不要でありかつ、ボイラー蒸気を使用する各種
負荷への影響は全くない。
Furthermore, even if there is a hole in the heating pipe of the waste liquid heater and the waste liquid leaks out, it will not be mixed into the boiler at all.Therefore, there is no need for a leak monitoring device, and there is no effect on various loads using boiler steam. Absent.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、廃液濃縮装置の廃液加
熱器の加熱用として電気を使用し、かつ使用電力量を廃
液蒸発量や廃液温度及び廃液不純物濃度により調整する
ので、装置構成が簡単となり、また必要最小限の熱エネ
ルギーで運転可能となるため、経済性と信頼性と運転性
を向上させることができる。
As described above, according to the present invention, electricity is used for heating the waste liquid heater of the waste liquid concentrating device, and the amount of power used is adjusted by the waste liquid evaporation amount, the waste liquid temperature, and the waste liquid impurity concentration. In addition, since the operation can be performed with the minimum necessary thermal energy, the economy, reliability, and operability can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例に係る廃液濃縮装置の系統構
成図、第2図は第1図に示す廃液加熱器の概略構造図、
第3図は廃液濃縮装置の従来例を示す系統構成図、第4
図は第3図に示す廃液加熱合の概略構造図である。 51……廃液収集タンク、56……廃液加熱器 57……廃液加熱器加熱管、58……廃液蒸発缶 59……廃液循環配管、66……復水器 68……廃液蒸留水タンク、71……濃縮廃液タンク 72……廃液サンプリング配管 75……電力供給線、78……廃液温度計 79……廃液密度計
1 is a system configuration diagram of a waste liquid concentrating device according to an embodiment of the present invention, FIG. 2 is a schematic structural diagram of a waste liquid heater shown in FIG. 1,
FIG. 3 is a system configuration diagram showing a conventional example of a waste liquid concentrator,
The figure is a schematic structural view of the waste liquid heating unit shown in FIG. 51… Waste liquid collection tank, 56… Waste liquid heater 57 …… Waste liquid heater heating tube, 58 …… Waste liquid evaporator 59 …… Waste liquid circulation pipe, 66 …… Condenser 68 …… Waste liquid distilled water tank, 71 …… Concentrated waste liquid tank 72 …… Waste liquid sampling pipe 75 …… Power supply line, 78 …… Waste liquid thermometer 79 …… Waste liquid density meter

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】廃液を貯溜する廃液収集タンクと、この廃
液収集タンク内の廃液を導入して加熱する廃液加熱器
と、加熱された廃液を導き濃縮する廃液蒸発缶と、この
廃液蒸発缶と前記廃液加熱器との間で廃液を循環させる
廃液循環配管と、前記廃液蒸発缶で発生した蒸気を凝縮
させる復水器と、この復水器で凝縮した蒸留水を導入す
る廃液蒸溜水タンクと、廃液蒸発缶内で濃縮した廃液を
導入する濃縮廃液タンクから成る廃液濃縮装置におい
て、前記廃液加熱器内に設け、電気抵抗によって発熱さ
せる熱交換用チューブと、前記廃液の温度を計測する温
度計と、前記廃液の密度を計測する密度計と、この温度
計および密度計からの少なくとも1個の計測信号に基づ
いて前記熱交換用チューブに導く加熱用電力量を調整す
る加熱用電力調整器とから成ることを特徴とする廃液濃
縮装置。
1. A waste liquid collecting tank for storing waste liquid, a waste liquid heater for introducing and heating the waste liquid in the waste liquid collecting tank, a waste liquid evaporator for guiding and concentrating the heated waste liquid, and a waste liquid evaporator. A waste liquid circulation pipe for circulating a waste liquid between the waste liquid heater, a condenser for condensing vapor generated in the waste liquid evaporator, and a waste liquid distilled water tank for introducing distilled water condensed by the condenser. A waste liquid concentrating device comprising a concentrated waste liquid tank for introducing a waste liquid concentrated in a waste liquid evaporator, a heat exchange tube provided in the waste liquid heater and generating heat by electric resistance, and a thermometer for measuring the temperature of the waste liquid And a density meter for measuring the density of the waste liquid, and a heating power regulator for adjusting a heating power amount guided to the heat exchange tube based on at least one measurement signal from the thermometer and the density meter. Water concentrate apparatus characterized by comprising al.
JP63030775A 1988-02-15 1988-02-15 Waste liquid concentrator Expired - Fee Related JP2609661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63030775A JP2609661B2 (en) 1988-02-15 1988-02-15 Waste liquid concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63030775A JP2609661B2 (en) 1988-02-15 1988-02-15 Waste liquid concentrator

Publications (2)

Publication Number Publication Date
JPH01207184A JPH01207184A (en) 1989-08-21
JP2609661B2 true JP2609661B2 (en) 1997-05-14

Family

ID=12313060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63030775A Expired - Fee Related JP2609661B2 (en) 1988-02-15 1988-02-15 Waste liquid concentrator

Country Status (1)

Country Link
JP (1) JP2609661B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4593191B2 (en) * 2004-06-21 2010-12-08 月島環境エンジニアリング株式会社 Cleaning method of heat exchanger in incinerator
JP7079151B2 (en) * 2018-06-04 2022-06-01 オルガノ株式会社 Evaporation and concentration equipment and methods for power generation equipment and power generation equipment
CN113436771B (en) * 2021-06-21 2022-05-24 西安热工研究院有限公司 Nuclear power station radioactive waste liquid treatment system
CN113963832B (en) * 2021-11-30 2023-10-27 中国原子能科学研究院 Heat pump evaporation treatment system and method for radioactive waste liquid treatment

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50102573A (en) * 1974-01-18 1975-08-13
JPS5612837A (en) * 1979-07-13 1981-02-07 Hitachi Ltd Brush unit
JPS62103401U (en) * 1985-12-20 1987-07-01

Also Published As

Publication number Publication date
JPH01207184A (en) 1989-08-21

Similar Documents

Publication Publication Date Title
KR100271115B1 (en) A water distillation system
RU2134851C1 (en) Method and device for coolant regeneration
US9803853B2 (en) Heat recovery and utilization system
US4613071A (en) Steam heating equipment with condensate vessel and return line
KR920003906B1 (en) Absorption system hot and cold water supply apparatus
KR100892547B1 (en) Absorption type water chiller and heater
JP2609661B2 (en) Waste liquid concentrator
CN113963832B (en) Heat pump evaporation treatment system and method for radioactive waste liquid treatment
US9208905B2 (en) Auxiliary feedwater valve control apparatus of steam generator
JP2000035497A (en) Waste liquid concentrating/disposing device
CN208477399U (en) Rapidly and efficiently cooling control temperature controlling machine
JP4362979B2 (en) Constant temperature and humidity device
JPH06296801A (en) Method of controlling concentration of concentrated liquid and apparatus for controlling concentration of concentrated liquid
JP2011112247A (en) Boiler system
JP2002156493A (en) Site heat supply equipment of nuclear power station
JPS59134459A (en) Solar heat collector
JPH11300341A (en) Distillation device
RU182097U1 (en) Device for monitoring and controlling the quality of steam in surface-type evaporators
JPS6080088A (en) Controlling method of heat exchanging amount in separate type heat exchanger
JPH0353544B2 (en)
JP3600604B2 (en) Steam generation equipment blowdown recovery system
JPH10233224A (en) Fuel cell power generator
JPH06198101A (en) Evaporating concentrator
JPS625003A (en) Drain tank
JPH11294713A (en) Water supply device for exhaust heat recovery boiler

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees