JP2608984B2 - Actuator drive control device - Google Patents

Actuator drive control device

Info

Publication number
JP2608984B2
JP2608984B2 JP27131790A JP27131790A JP2608984B2 JP 2608984 B2 JP2608984 B2 JP 2608984B2 JP 27131790 A JP27131790 A JP 27131790A JP 27131790 A JP27131790 A JP 27131790A JP 2608984 B2 JP2608984 B2 JP 2608984B2
Authority
JP
Japan
Prior art keywords
control
curve
input
characteristic
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27131790A
Other languages
Japanese (ja)
Other versions
JPH04151007A (en
Inventor
順市 成澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP27131790A priority Critical patent/JP2608984B2/en
Publication of JPH04151007A publication Critical patent/JPH04151007A/en
Application granted granted Critical
Publication of JP2608984B2 publication Critical patent/JP2608984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Servomotors (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

【発明の詳細な説明】 A.産業上の利用分野 本発明は、電気油圧変換弁などのアクチュエータの駆
動制御装置に関する。
The present invention relates to a drive control device for an actuator such as an electro-hydraulic conversion valve.

B.従来の技術 多関節作業機などでは、電気油圧変換弁によって例え
ば油圧シリンダや油圧モータを駆動し、アームや作業ア
タッチメントを回動させて軌跡制御や姿勢角制御を行な
う。この電気油圧変換弁は、例えば比例ソレノイドを有
する電磁比例圧力制御弁とそれによって駆動される方向
制御弁とから構成され、比例ソレノイドへの入力指令電
流Iに対して第4図(a)に示すような制御量、すなわ
ち流量Qを出力する。
B. Conventional Art In an articulated work machine, for example, a hydraulic cylinder or a hydraulic motor is driven by an electro-hydraulic conversion valve, and an arm or a work attachment is rotated to perform trajectory control or attitude angle control. This electro-hydraulic conversion valve is composed of, for example, an electromagnetic proportional pressure control valve having a proportional solenoid and a directional control valve driven by the solenoid, and shows an input command current I to the proportional solenoid as shown in FIG. The control amount, that is, the flow rate Q is output.

ところで、この電気油圧変換弁の流量特性は、製品毎
のスプールや弁本体の加工誤差およびばね力などのばら
つきによって第4図(a)の点線A2で示す+側の特性
と、点線A3で示す−側の特性の範囲でばらつく。そこ
で、従来はそのばらつきを按分した実線A1の特性を想定
して各種の機器を設計したり制御するようにしている。
By the way, the flow characteristic of this electro-hydraulic conversion valve is represented by a plus side characteristic indicated by a dotted line A2 in FIG. 4 (a) and a dotted line A3 in FIG. It varies within the range of the negative characteristics. Therefore, conventionally, various devices are designed and controlled assuming the characteristics of the solid line A1 in which the variation is proportionally divided.

C.発明が解決しようとする課題 今、実線A1で示す基準流量Qrに対するばらつき量ΔQ
の誤差割合ΔQ/Qrを入力電流Iごとに算出すると、第4
図(b)に示すようになる。つまり、+側の特性A2の誤
差割合ΔQ/Qrは第4図(b)の実線A2′で示すように、
小流量域で無限大となり、流量の増加とともに減少す
る。また、−側の特性A3の小流量域では入力指令値Iに
対してQが発生しないので、第4図(b)の実線A3′に
示すようにこの領域のΔQ/Qrは−1となり、流量が増加
するにしたがい誤差割合ΔQ/Qrは減少する。
C. Problems to be Solved by the Invention Now, the variation ΔQ with respect to the reference flow rate Qr indicated by the solid line A1
Calculating the error ratio ΔQ / Qr for each input current I,
The result is as shown in FIG. That is, the error ratio ΔQ / Qr of the characteristic A2 on the + side is, as shown by the solid line A2 ′ in FIG.
It becomes infinite in the small flow rate range, and decreases as the flow rate increases. Further, since Q does not occur for the input command value I in the small flow rate region of the negative characteristic A3, ΔQ / Qr in this region is -1 as shown by the solid line A3 'in FIG. As the flow rate increases, the error rate ΔQ / Qr decreases.

このような誤差は、起動時にアクチュエータが急激に
動きだしてハンチングの原因になったり、逆に動かない
ために制御精度を悪化させる。とくに+側の誤差がある
と、次のような問題が顕在化する。すなわち、一般に制
御値を出力する際には緩起動処理を行って急激な制御値
の変化を防ぐようにし、振動によるハンチングなどを防
止しているが、誤差が+側にある場合、第5図(a)に
実線で示すように起動時に制御値の急激な立上りが発生
し、ハンチングの原因となる。
Such an error causes hunting when the actuator suddenly starts to move at the time of startup, or deteriorates control accuracy because the actuator does not move. In particular, if there is an error on the + side, the following problem becomes apparent. That is, generally, when outputting a control value, a gentle start process is performed to prevent a sudden change in the control value, thereby preventing hunting or the like due to vibration. However, if the error is on the + side, FIG. As shown by the solid line in (a), a sharp rise of the control value occurs at the time of startup, which causes hunting.

また、フィードバック制御を行う場合には、フィード
バックの効果は立上り以降に働くため、第5図(b)に
実線で示すように、かえって制御値が振動的になりハン
チングを起こしやすい。
Further, when performing feedback control, the effect of the feedback is applied after the rise, so that the control value is rather oscillating and hunting is liable to occur, as shown by the solid line in FIG. 5 (b).

本発明の目的は、電気油圧変換弁などのアクチュエー
タの立上り特性を向上させたアクチュエータの駆動制御
装置を提供することにある。
An object of the present invention is to provide a drive control device for an actuator in which the rising characteristics of an actuator such as an electro-hydraulic conversion valve are improved.

D.発明の概要 一実施例である第1図および第2図に対応づけて本発
明を説明すると、本発明は、所定のバラツキの範囲が許
容されるI−Q制御特性を有し、このI−Q制御特性に
より入力指令値Iに対する制御量Qを出力するアクチュ
エータ5の駆動制御装置であって、I−Q制御特性にお
けるバラツキ範囲の上限曲線A2と下限曲線A3との間に代
表的な特性を示す曲線Bを設定し、その設定曲線Bに基
づいてQ′−I入出力特性を決定し、アクチュエータ5
の出力制御量の目標値Q′が入力されるとQ′−I入出
力特性にしたがってアクチュエータ5の入力指令値Iを
発生する指令値発生手段3を備えた駆動制御装置に適用
される。
D. Summary of the Invention The present invention will be described with reference to FIGS. 1 and 2 which are one embodiment. The present invention has IQ control characteristics that allow a predetermined range of variation. A drive control device for an actuator 5 that outputs a control amount Q with respect to an input command value I based on IQ control characteristics, wherein a typical range between an upper limit curve A2 and a lower limit curve A3 of a variation range in the IQ control characteristics. A curve B indicating the characteristic is set, and the Q'-I input / output characteristic is determined based on the set curve B.
When the target value Q 'of the output control amount is inputted, the present invention is applied to a drive control device having a command value generating means 3 for generating an input command value I of the actuator 5 according to the Q'-I input / output characteristics.

そして、設定曲線Bの立上がり点PFを、バラツキ範囲
の上限曲線A2の立上がり点PA以下に設定した。
Then, the rising point PF of the setting curve B was set to be equal to or lower than the rising point PA of the upper limit curve A2 of the variation range.

I−Q制御特性のバラツキ範囲の上限曲線A2の立上が
り点PA以下に設定された点PFは、指令値発生手段3の
Q′−I入出力特性の点CP(第2図)に対応し、指令値
発生手段3から出力されるアクチュエータ5の入力指令
値Iは点PFに対応する点CPから立上がるので、アクチュ
エータ5のI−Q制御特性にバラツキがあってもアクチ
ュエータ5の制御量Qは必ず0から滑らかに立上がり、
急激な起動が防止される。
The point PF set below the rising point PA of the upper limit curve A2 of the variation range of the IQ control characteristic corresponds to the point CP (FIG. 2) of the Q'-I input / output characteristic of the command value generating means 3, Since the input command value I of the actuator 5 output from the command value generating means 3 rises from the point CP corresponding to the point PF, even if the IQ control characteristics of the actuator 5 vary, the control amount Q of the actuator 5 is reduced. Always rises smoothly from 0,
A sudden start is prevented.

なお、本発明の構成を説明する上記D項では、本発明
を分かり易くするために各手段の符号に対応する実施例
の要素と同一の符号を用いたが、これにより本発明が実
施例に限定されるものではない。
In the above section D explaining the configuration of the present invention, the same reference numerals as those of the embodiment corresponding to the reference numerals of the respective means are used to make the present invention easy to understand. It is not limited.

E.実施例 第2図は本発明の一実施例を示すブロック図である。E. Embodiment FIG. 2 is a block diagram showing an embodiment of the present invention.

1は種々のレバーやポテンショメータなどにより構成
される操作部であり、例えば軌跡制御時の指令速度Vを
出力する。2は演算処理回路であり、指令速度Vと後述
するセンサ7からの角度信号θとに基づいて軌跡制御な
どを行なうための制御流量の目標値Q′を演算する。3
は関数発生器であり、電気油圧変換弁5の指令電流I
(入力指令値)−流量Q(制御量)特性に基づいて入力
制御流量Q′(制御量の目標値)に応じた指令電流Iを
出力する。4は電気油圧変換弁5を駆動する駆動回路で
ある。
An operation unit 1 includes various levers, potentiometers, and the like, and outputs, for example, a command speed V during trajectory control. An arithmetic processing circuit 2 calculates a target value Q 'of a control flow rate for performing trajectory control or the like based on a command speed V and an angle signal θ from a sensor 7 described later. 3
Is a function generator, the command current I of the electro-hydraulic conversion valve 5
A command current I corresponding to an input control flow rate Q '(a target value of the control quantity) is output based on the (input command value) -flow rate Q (control quantity) characteristic. Reference numeral 4 denotes a drive circuit for driving the electro-hydraulic conversion valve 5.

電気油圧変換弁5には不図示の油圧源から圧油が導か
れており、指令電流Iに応じた流量Qと送油方向で圧油
をシリンダ6へ供給し、アーム(不図示)を回動する。
7は周知のレバー機構およびポテンショメータから構成
される角度センサであり、アームの回動支点付近に取り
付けられてアームの相対角度や姿勢角θを検出する。
Pressure oil is guided to the electro-hydraulic conversion valve 5 from a hydraulic source (not shown). The pressure oil is supplied to the cylinder 6 in a flow rate Q according to the command current I and the oil supply direction, and the arm (not shown) is rotated. Move.
Reference numeral 7 denotes an angle sensor including a well-known lever mechanism and a potentiometer. The angle sensor 7 is mounted near a pivot point of the arm and detects a relative angle and a posture angle θ of the arm.

関数発生器3のQ′−I特性は次のように定められ
る。
The Q'-I characteristic of the function generator 3 is determined as follows.

電気油圧変換弁5の制御特性(I−Q特性)は個体間
でばらつくから、第4図(a)に示したように実際の制
御特性は平均的な制御特性A1を境として+側の特性A2お
よび−側の特性A3で区画される範囲に分布する。従来技
術で述べたように、このような平均的な制御特性A1に基
づいて関数発生器3のQ′−I入出力特性を設定する
と、実際の制御特性が+側に分布する場合、目標制御流
量Q′が立上って関数発生器3が指令電流Iを電気油圧
変換弁5に入力するとき、電気油圧変換弁5は急激に起
動する。そこで、この実施例では、電気油圧変換弁5の
代表的な制御特性(I−Q特性)に第1図(a)に実線
で示す曲線Bを設定する。この設定曲線Bは、電気油圧
変換弁5の制御特性のバラツキ範囲の上限の特性曲線A2
の立上がり点PA、すなわち立上がり点のバラツキ範囲の
下限PA以下の点PFを電気油圧変換弁5の立上がり点と
し、この点PFと第4図(a)に示す平均的な特性曲線A1
とを滑らかに結ぶことにより得られる。そして、第2図
に示す関数発生器3には、点PFに対応する点CPを立上が
り点として設定曲線Bに対応する入出力特性(Q′−I
特性)Cを設定する。なお、特性A2の立上り点PAは電気
油圧変換弁5の+側の下限である。
Since the control characteristics (I-Q characteristics) of the electro-hydraulic conversion valve 5 vary among individuals, as shown in FIG. 4 (a), the actual control characteristics are on the + side with respect to the average control characteristics A1. It is distributed in the range defined by A2 and the negative characteristic A3. As described in the prior art, if the Q'-I input / output characteristics of the function generator 3 are set based on such an average control characteristic A1, if the actual control characteristics are distributed on the + side, the target control When the flow rate Q 'rises and the function generator 3 inputs the command current I to the electro-hydraulic conversion valve 5, the electro-hydraulic conversion valve 5 is rapidly activated. Therefore, in this embodiment, a curve B shown by a solid line in FIG. 1A is set as a representative control characteristic (I-Q characteristic) of the electro-hydraulic conversion valve 5. This setting curve B is a characteristic curve A2 of the upper limit of the variation range of the control characteristics of the electro-hydraulic conversion valve 5.
A rising point PA, that is, a point PF below the lower limit PA of the variation range of the rising point is defined as a rising point of the electrohydraulic conversion valve 5, and this point PF and the average characteristic curve A1 shown in FIG.
Can be obtained by smoothly connecting The input / output characteristic (Q'-I) corresponding to the set curve B is set in the function generator 3 shown in FIG.
(Characteristics) C is set. The rising point PA of the characteristic A2 is the lower limit on the + side of the electro-hydraulic conversion valve 5.

こうすることによって、第1図(b)に実線A2″で示
すように、電気油圧変換弁5の制御特性が最大に+側に
振れる特性A2の場合でも、立上り領域が必ず−側の特性
となり、かつ、中流量領域での誤差流量ΔQ/Qrを低減す
る。
By doing so, as shown by the solid line A2 ″ in FIG. 1B, even when the control characteristic of the electro-hydraulic conversion valve 5 is the characteristic A2 that swings to the + side at the maximum, the rising region always becomes the − side characteristic. In addition, the error flow rate ΔQ / Qr in the middle flow rate region is reduced.

次に、この実施例の動作を説明する。 Next, the operation of this embodiment will be described.

演算処理回路2は、操作部1からの軌跡制御などの速
度指令値Vと角度センサ8からの角度信号θとに基づい
てシリンダ6への圧油流量の目標値Q′を演算し、関数
発生器3に出力する。関数発生器3は、第2図の実線で
示す特性Cに基づいて、入力される目標流量Q′に応じ
た指令電流Iを算出し、駆動回路4を介して指令電流I
で電流油圧変換弁5を駆動する。
The arithmetic processing circuit 2 calculates a target value Q ′ of the pressure oil flow rate to the cylinder 6 based on a speed command value V such as a trajectory control from the operation unit 1 and an angle signal θ from the angle sensor 8 to generate a function. Output to the container 3. The function generator 3 calculates a command current I corresponding to the input target flow rate Q ′ based on the characteristic C shown by the solid line in FIG.
Drives the current-hydraulic conversion valve 5.

関数発生器3のQ′−I特性Cを上述したように定め
ているから、第3図(a)の破線のように指令電流Iが
立ち上がっても電気油圧変換弁は直ぐには駆動されず、
時間遅れを伴って第3図(a)の実線のように制御流量
を出力する。したがって、起動時の急激な動作が防止さ
れ、それに伴うハンチングも抑制される。また、フィー
ドバック制御を行えば、第3図(b)の実線に示すよう
にその時間遅れ要素も低減できる効果がある。
Since the Q'-I characteristic C of the function generator 3 is determined as described above, even if the command current I rises as shown by the broken line in FIG.
The control flow rate is output as shown by the solid line in FIG. Therefore, abrupt operation at the time of startup is prevented, and hunting accompanying the operation is also suppressed. Further, if the feedback control is performed, there is an effect that the time delay element can be reduced as shown by the solid line in FIG. 3 (b).

上記実施例では、電気油圧変換弁5によりシリンダ6
を駆動して多関節アームの軌跡制御を行う制御装置につ
いて説明したが、軌跡制御装置以外の制御装置でもよ
く、また油圧モータ、油圧ロータリーアクチュエータな
どを用いたものでもよく、角度センサ8の代わりに他の
センサを用いてもよい。さらに、非線形な制御特性を持
つ電気油圧変換弁について説明したが、制御特性が線形
な場合にも本発明を適用できる。
In the above embodiment, the cylinder 6
The control device that drives the trajectory to control the trajectory of the articulated arm has been described. However, a control device other than the trajectory control device may be used, or a hydraulic motor, a hydraulic rotary actuator, or the like may be used. Other sensors may be used. Furthermore, although the electro-hydraulic conversion valve having a non-linear control characteristic has been described, the present invention can be applied to a case where the control characteristic is linear.

以上の実施例の構成において、関数発生器3が指令値
発生手段を、電気油圧変換弁5がアクチュエータをそれ
ぞれ構成する。
In the configuration of the above embodiment, the function generator 3 constitutes a command value generating means, and the electrohydraulic conversion valve 5 constitutes an actuator.

F.発明の効果 以上説明したように本発明によれば、制御特性におけ
るバラツキ範囲の上限曲線と下限曲線との間に代表的な
特性を示す曲線を設定する時に、設定曲線の立上がり点
をバラツキ範囲の上限曲線の立上がり点以下に設定し、
その設定曲線に基づいて指令値発生手段の入出力特性を
決定し、アクチュエータの出力制御量の目標値が入力さ
れると前記入出力特性にしたがってアクチュエータの入
力指令値を発生するようにしたので、起動時の制御特性
の改善と制御精度の向上が図られる。
F. Effects of the Invention As described above, according to the present invention, when a curve showing a representative characteristic is set between the upper limit curve and the lower limit curve of the variation range in the control characteristic, the rising point of the set curve varies. Set it below the rising point of the upper limit curve of the range,
The input / output characteristics of the command value generating means are determined based on the set curve, and when a target value of the output control amount of the actuator is input, the input command value of the actuator is generated according to the input / output characteristics. The control characteristics at the time of startup and the control accuracy are improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は本発明を適用した電気油圧変換弁の制御
特性を示す図、第1図(b)はその誤差割合を示す図、
第2図は本発明の一実施例を示すブロック図、第3図
(a),第3図(b)は電気油圧変換弁の動特性を示す
図、第4図(a)は従来の電気油圧変換弁の制御特性を
示す図、第4図(b)はその誤差割合を示す図、第5図
(a),第5図(b)は従来の電気油圧変換弁の動特性
を示す図である。 1:操作部、2:演算処理回路 3:関数発生器、4:駆動回路 5:電気油圧変換弁、6:シリンダ 7:角度センサ
FIG. 1 (a) is a diagram showing control characteristics of an electro-hydraulic conversion valve to which the present invention is applied, FIG. 1 (b) is a diagram showing an error ratio thereof,
FIG. 2 is a block diagram showing one embodiment of the present invention, FIGS. 3 (a) and 3 (b) show the dynamic characteristics of the electrohydraulic conversion valve, and FIG. FIG. 4 (b) is a diagram showing control characteristics of the hydraulic pressure conversion valve, FIG. 4 (b) is a diagram showing the error ratio thereof, and FIGS. 5 (a) and 5 (b) are diagrams showing dynamic characteristics of a conventional electro-hydraulic conversion valve. It is. 1: Operation unit, 2: Operation processing circuit 3: Function generator, 4: Drive circuit 5: Electro-hydraulic conversion valve, 6: Cylinder 7: Angle sensor

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】所定のバラツキの範囲が許容される制御特
性を有し、この制御特性により入力指令値に対する制御
量を出力するアクチュエータの駆動制御装置であって、 前記制御特性における前記バラツキ範囲の上限曲線と下
限曲線との間に代表的な特性を示す曲線を設定し、その
制定曲線に基づいて入出力特性を決定し、前記アクチュ
エータの出力制御量の目標値が入力されると前記入出力
特性にしたがって前記アクチュエータの入力指令値を発
生する指令値発生手段を備えた駆動制御装置において、 前記設定曲線の立上がり点を、前記バラツキ範囲の上限
曲線の立上がり点以下に設定したことを特徴とするアク
チュエータの駆動制御装置。
1. A drive control device for an actuator having a control characteristic in which a predetermined variation range is allowed, and outputting a control amount with respect to an input command value by the control characteristic, wherein: A curve showing typical characteristics is set between the upper limit curve and the lower limit curve, input / output characteristics are determined based on the established curve, and when a target value of the output control amount of the actuator is input, the input / output In a drive control device including a command value generating means for generating an input command value of the actuator according to characteristics, a rising point of the setting curve is set to be equal to or less than a rising point of an upper curve of the variation range. Actuator drive control device.
JP27131790A 1990-10-09 1990-10-09 Actuator drive control device Expired - Fee Related JP2608984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27131790A JP2608984B2 (en) 1990-10-09 1990-10-09 Actuator drive control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27131790A JP2608984B2 (en) 1990-10-09 1990-10-09 Actuator drive control device

Publications (2)

Publication Number Publication Date
JPH04151007A JPH04151007A (en) 1992-05-25
JP2608984B2 true JP2608984B2 (en) 1997-05-14

Family

ID=17498367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27131790A Expired - Fee Related JP2608984B2 (en) 1990-10-09 1990-10-09 Actuator drive control device

Country Status (1)

Country Link
JP (1) JP2608984B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167777B1 (en) * 1999-12-28 2013-03-06 Kayaba Kogyo Kabushiki Kaisha Signal processor of joystick input device

Also Published As

Publication number Publication date
JPH04151007A (en) 1992-05-25

Similar Documents

Publication Publication Date Title
JP4954405B2 (en) Steering resistance device
US4510750A (en) Circuit pressure control system for hydrostatic power transmission
US6282891B1 (en) Method and system for controlling fluid flow in an electrohydraulic system having multiple hydraulic circuits
JP2647852B2 (en) Method and apparatus for measuring fluid flow characteristics
WO2012036877A2 (en) Closed loop transmission torque control
KR100257852B1 (en) Engine rotation number controlling method for hydraulic construction machine
JPS63186978A (en) Hydraulic device
US6551212B2 (en) Decelerator system for a work machine
JPH0623680A (en) Speed mode hand controller accompanied by reactive force
JP2608984B2 (en) Actuator drive control device
US11603127B2 (en) Work vehicle
US11400972B2 (en) Work vehicle
JPH11100868A (en) Positioning device and method for excavator housing
JPH09328785A (en) Work device controller of construction machine
JP2758493B2 (en) Actuator drive control device
JP2652167B2 (en) Excavator work equipment position control device
JP2000303492A (en) Front controller for construction machinery
JP6684240B2 (en) Construction machinery
JP3494897B2 (en) Operating devices for working machines
JP2001020325A (en) Actuator drive controller
US5694016A (en) Method for controlling a servo system having friction
EP0186092B1 (en) Power transmission
JP3538001B2 (en) Engine control device for construction machinery
JPH09279633A (en) Work machine controller of construction machine
JP3565871B2 (en) Control method of engine for driving hydraulic pump

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20080213

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090213

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100213

LAPS Cancellation because of no payment of annual fees