JP2605333B2 - Ultrasonic motor drive - Google Patents

Ultrasonic motor drive

Info

Publication number
JP2605333B2
JP2605333B2 JP63063994A JP6399488A JP2605333B2 JP 2605333 B2 JP2605333 B2 JP 2605333B2 JP 63063994 A JP63063994 A JP 63063994A JP 6399488 A JP6399488 A JP 6399488A JP 2605333 B2 JP2605333 B2 JP 2605333B2
Authority
JP
Japan
Prior art keywords
oscillator
ultrasonic motor
resistor
frequency
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63063994A
Other languages
Japanese (ja)
Other versions
JPH01238474A (en
Inventor
博三 田上
健一郎 高橋
則行 原尾
享 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63063994A priority Critical patent/JP2605333B2/en
Publication of JPH01238474A publication Critical patent/JPH01238474A/en
Application granted granted Critical
Publication of JP2605333B2 publication Critical patent/JP2605333B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • H02N2/142Small signal circuits; Means for controlling position or derived quantities, e.g. speed, torque, starting, stopping, reversing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/163Motors with ring stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧電体を用いて駆動力を発生する超音波モ
ータに係わり、特に超音波モータの圧電体を駆動させる
超音波モータの駆動装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic motor that generates a driving force using a piezoelectric body, and more particularly to a driving apparatus for an ultrasonic motor that drives a piezoelectric body of an ultrasonic motor.

従来の技術 近年、圧電体等の電気−機械変換子を用いて超音波振
動を励振することにより、回転あるいは走行運動を得る
超音波モータが従来のモータに比べ単位体積当たりの出
力が大きいということで注目されている。
2. Description of the Related Art In recent years, an ultrasonic motor that obtains rotation or running motion by exciting ultrasonic vibration using an electro-mechanical transducer such as a piezoelectric body has a larger output per unit volume than a conventional motor. It is attracting attention.

この超音波モータの断面図を第3図に示す。 FIG. 3 is a sectional view of the ultrasonic motor.

第3図において、円形の圧電体1および圧電体2と円
形の弾性体3とを厚み方向に重ねて構成したステータ4
と、このステータ4に面接触するライニング材5を備え
た円形のローラ6と、軸受け7と、前記ステータ4とロ
ータ6とを加圧接触するための締結部材8と、電気信号
を前記2枚の圧電体に印加するための端子9,10,11とか
ら超音波モータ12は構成されている。
In FIG. 3, a stator 4 is formed by stacking a circular piezoelectric body 1 and a piezoelectric body 2 and a circular elastic body 3 in the thickness direction.
A circular roller 6 provided with a lining material 5 which comes into surface contact with the stator 4; a bearing 7; a fastening member 8 for pressing the stator 4 and the rotor 6 in pressure contact; The ultrasonic motor 12 is composed of the terminals 9, 10, 11 for applying to the piezoelectric body.

この超音波モータの駆動方法として、超音波モータ12
を構成するステータ4により定まる駆動周波数で、互い
に電気角で90゜度の位相差をもつ2つの交流信号をそれ
ぞれ圧電体1と圧電体2に印加することにより回転力を
発生させる方法が、一般的に知られている。
As a driving method of this ultrasonic motor, an ultrasonic motor 12 is used.
Generally, a method of generating a rotational force by applying two AC signals having a phase difference of 90 ° in electrical angle to each of the piezoelectric body 1 and the piezoelectric body 2 at a drive frequency determined by the stator 4 constituting the Is known.

第6図に超音波モータの駆動装置を示す。この構成に
ついて以下説明する。
FIG. 6 shows a driving device of the ultrasonic motor. This configuration will be described below.

12は超音波モータを構成する圧電体1と圧電体2とを
電気回路図で示したものである。
Numeral 12 denotes an electric circuit diagram of the piezoelectric body 1 and the piezoelectric body 2 constituting the ultrasonic motor.

51は発振器で、市販されているタイマーIC(NEC社
製;μPC617/1555,μPD5555C/5555G 日本テキサス・イ
ンスツルメンツ(株)社製;TL1555など)49と、G点の
発振周波数を決定する抵抗45,抵抗47,コンデンサ50、お
よび前記発振周波数を調整する可変抵抗46とで構成され
ている。また発振器51はF点において可変抵抗46を介し
て供給する電圧を変化させることによりG点の発振周波
数が可変できるようになっている。
Reference numeral 51 denotes an oscillator, a commercially available timer IC (manufactured by NEC; μPC617 / 1555, μPD5555C / 5555G manufactured by Texas Instruments Japan Ltd .; TL1555, etc.) 49 and a resistor 45 for determining the oscillation frequency at point G. It comprises a resistor 47, a capacitor 50, and a variable resistor 46 for adjusting the oscillation frequency. Further, the oscillator 51 can change the oscillation frequency at the point G by changing the voltage supplied via the variable resistor 46 at the point F.

52は温度特性補正回路であり、前記発振器51の発振周
波数が超音波モータ12を構成するステータ4の共振周波
数の温度変化率に等しくなるように動作するものであ
る。
A temperature characteristic correction circuit 52 operates so that the oscillation frequency of the oscillator 51 becomes equal to the temperature change rate of the resonance frequency of the stator 4 constituting the ultrasonic motor 12.

温度特性補正回路52は、(+)側給電端子31と(−)
側給電端子32との間に温度変化率の異なる抵抗33と抵抗
34とを直列に接続し、それらの接続点Cを出力端子とし
て構成した温度変化検出回路35と、(+)側給電端子31
と(−)側給電端子32との間にそれぞれ温度変化率の等
しい抵抗36と抵抗37とを直列に接続しそれらの接続点D
を出力端子として構成した定電圧源38と、抵抗39,40,4
1、演算増幅器43とで構成された演算増幅回路44と、抵
抗42とで構成されている。
The temperature characteristic correction circuit 52 is connected to the (+) side power supply terminal 31 and the (−) side.
Resistance 33 with different temperature change rate and resistance between side power supply terminal 32
34, and a temperature change detection circuit 35 having their connection point C as an output terminal, and a (+) side power supply terminal 31.
A resistor 36 and a resistor 37 having the same temperature change rate are connected in series between the power supply terminal 32 and the (−) side power supply terminal 32, respectively.
And a resistor 39, 40, 4
1. An operational amplifier circuit 44 composed of an operational amplifier 43 and a resistor 42.

22は駆動回路で、前記温度特性補正回路52と可変抵抗
46とで発振器51の発振周波数を超音波モータの駆動周波
数に調整し、この発振周波数に応じて超音波モータを構
成する2枚の圧電体1,圧電体2を端子9,10,11を介して
駆動するものである。
Reference numeral 22 denotes a drive circuit, which includes the temperature characteristic correction circuit 52 and a variable resistor.
With 46, the oscillation frequency of the oscillator 51 is adjusted to the drive frequency of the ultrasonic motor, and the two piezoelectric members 1 and 2 constituting the ultrasonic motor are connected via terminals 9, 10, 11 according to the oscillation frequency. Drive.

発明が解決しようとする課題 ところが、発振器により出力される発振周波数fmを、
温度特性補正回路を用いてステータ4の共振周波数fr0
の温度傾斜にΔfで一致させていても、発振器51の発振
周波数を決める可変抵抗46を動かして発振周波数の調整
を行うと、調整した可変抵抗46の抵抗値によるF点のイ
ンピーダンスの変化、即ちF点の電位変化によって、周
囲温度Tcの変化に対して第7図に示すように発振器51の
出力信号の温度補正の傾斜がfd1およびfd2のように変化
する。このため図中A点(+20℃)で発振周波数の調整
を行うと、温度が異なる状態、例えば−20℃の低温では
発振周波数がステータの共振点に近づくためモータに過
大電流が流れてモータの出力が不安定になったり、逆
に、+60℃の高温になると発振周波数がステータの共振
特性から大きくずれるため、モータ特性が低下したり、
極端な場合はモータ停止になり起動も不可能となるとい
う欠点があった。
However, the oscillation frequency fm output from the oscillator is
Using the temperature characteristic correction circuit, the resonance frequency fr 0 of the stator 4 is used.
If the oscillation frequency is adjusted by moving the variable resistor 46 that determines the oscillation frequency of the oscillator 51 even when the temperature gradient is matched with Δf, the change in the impedance at the point F due to the adjusted resistance value of the variable resistor 46, that is, Due to the change in the potential at the point F, the slope of the temperature correction of the output signal of the oscillator 51 changes as fd 1 and fd 2 with respect to the change in the ambient temperature Tc as shown in FIG. Therefore, if the oscillation frequency is adjusted at point A (+ 20 ° C.) in the drawing, when the temperature is different, for example, at a low temperature of −20 ° C., the oscillation frequency approaches the resonance point of the stator, so that an excessive current flows through the motor, and When the output becomes unstable, or when the temperature rises to + 60 ° C, the oscillation frequency greatly deviates from the resonance characteristics of the stator.
In an extreme case, there is a disadvantage that the motor is stopped and cannot be started.

本発明は、この欠点を解決するもので、発振器の出力
信号の温度変化率をステータの共振周波数fr0の温度変
化率につねに等しくし、モータの駆動効率の低下を防止
し、安定なモータ回転状態を現出し得る機能をもつ超音
波モータの駆動装置を提供するものである。
The present invention solves this drawback by making the temperature change rate of the output signal of the oscillator always equal to the temperature change rate of the resonance frequency fr 0 of the stator, preventing a decrease in motor driving efficiency, and ensuring a stable motor rotation. It is an object of the present invention to provide an ultrasonic motor driving device having a function capable of displaying a state.

課題を解決するための手段 上記課題を解決するために本発明の超音波モータの駆
動装置は、超音波モータの駆動周波数を設定する可変抵
抗を備えた回路と、超音波モータの共振特性の温度変化
に合わせて駆動周波数を調整する感温素子を備えた回路
とをそれぞれ増幅器に接続し、その増幅器の出力を発振
器に入力して発振器の周波数を微調整するように構成し
たものである。
Means for Solving the Problems In order to solve the above problems, a driving device for an ultrasonic motor according to the present invention includes a circuit having a variable resistor for setting a driving frequency of the ultrasonic motor, and a temperature of resonance characteristics of the ultrasonic motor. A circuit provided with a temperature-sensitive element for adjusting the drive frequency according to the change is connected to an amplifier, and the output of the amplifier is input to an oscillator to finely adjust the frequency of the oscillator.

作用 本発明は、上記した構成によって、発振器により発振
される出力信号の発振周波数をモータの共振特性のバラ
ツキに応じて調整しても、発振器の発振周波数fmの温度
変化率をステータの共振周波数fr0の温度変化率に対し
つねに等しくできる。
Effect of the Invention According to the present invention, even if the oscillation frequency of the output signal oscillated by the oscillator is adjusted according to the variation in the resonance characteristics of the motor, the temperature change rate of the oscillation frequency fm of the oscillator can be reduced by the stator resonance frequency fr. It can always be equal for a temperature change rate of zero .

従って、第4図のように、発振器の発振周波数をfmか
らfd1またはfd2と変えても周囲温度変化に対し常に安定
した駆動状態(共振点から所定の周波数Δf,Δf1,Δf2
(Hz)ずれた点の駆動)が得られ、モータの駆動効率の
低下を防止し、安定なモータ回転状態を現出し得る。
Accordingly, as shown in FIG. 4, the oscillator constantly stable predetermined frequency Delta] f from the drive state (the resonance point was to ambient temperature change by changing the fd 1 or fd 2 the oscillation frequency from the fm of, Delta] f 1, Delta] f 2
(Driving at a point shifted by (Hz)) can be obtained, and a reduction in the driving efficiency of the motor can be prevented, and a stable motor rotation state can be realized.

実施例 以下本発明の超音波モータの駆動装置について、図面
を参照しながら説明する。
Embodiment Hereinafter, an ultrasonic motor driving device according to the present invention will be described with reference to the drawings.

第1図は本発明の第1の実施例を示す超音波モータの
駆動装置である。従来例と同一部分には同一符号を付し
ている。
FIG. 1 shows an ultrasonic motor driving apparatus according to a first embodiment of the present invention. The same parts as those in the conventional example are denoted by the same reference numerals.

58は調整回路で、発振器51の出力信号である発振周波
数をモータのバラツキに応じて調整するものである。
Numeral 58 denotes an adjusting circuit for adjusting the oscillation frequency, which is the output signal of the oscillator 51, according to the variation of the motor.

調整回路58は、(+)側給電端子31と(−)側給電端
子32との間に接続された可変抵抗53と、抵抗54と、該抵
抗54と接続され、バッファの働きをする演算増幅器56と
で構成されている。
The adjustment circuit 58 includes a variable resistor 53 connected between the (+) side power supply terminal 31 and the (−) side power supply terminal 32, a resistor 54, and an operational amplifier connected to the resistor 54 and acting as a buffer. It is composed of 56.

抵抗57は前記調整回路58の出力を発振器51のF点へ電
流としてバイパスする働きをもつ。
The resistor 57 has a function of bypassing the output of the adjustment circuit 58 to the point F of the oscillator 51 as a current.

発振器51は抵抗45,47、コンデンサ48、タイマーIC4
9、コンデンサ50とで無安定発振回路を構成しており、
コンデンサ48は抵抗45,47を通り充電され、抵抗47を通
り放電される。今、抵抗45の抵抗値をR1,抵抗47の抵抗
値R2、コンデンサ48の静電容量値をC1とするとG点の発
振周波数fは、 となる。(以上、日本電気(株)発行;産業用リニアIC
1986,日本テキサスインスツルメンツ(株)発行;リニ
アサーキットデータブック1985参照) 本実施例では、発振周波数fを決定するコンデンサ48
への充電、放電電流を、前記調整回路58の出力と抵抗57
を介してF点へ電流をバイパスすることで変化させてい
る。第5図に可変抵抗53を調整してI点の電圧を変化さ
せた時の発振周波数fの実測値の一例を示す。
Oscillator 51 has resistors 45, 47, capacitor 48, timer IC 4
9, the capacitor 50 constitutes an unstable oscillation circuit,
The capacitor 48 is charged through the resistors 45 and 47 and discharged through the resistor 47. Now, assuming that the resistance of the resistor 45 is R 1 , the resistance of the resistor 47 is R 2 , and the capacitance of the capacitor 48 is C 1 , the oscillation frequency f at point G is Becomes (The above is issued by NEC Corporation; Industrial linear IC
1986, published by Texas Instruments Japan Limited; see Linear Circuit Data Book 1985) In this embodiment, the capacitor 48 that determines the oscillation frequency f
Charge and discharge current to the output of the adjustment circuit 58 and the resistance 57
Is changed by bypassing the current to the point F through. FIG. 5 shows an example of the actually measured value of the oscillation frequency f when the voltage at the point I is changed by adjusting the variable resistor 53.

第2図は本発明の第2の実施例である。 FIG. 2 shows a second embodiment of the present invention.

55は調整回路で、(+)側給電端子31と(−)側給電
端子32との間に接続された可変抵抗53aと、抵抗54aとで
構成されている。抵抗54aの一方は可変抵抗53aに接続さ
れており、他方は温度特性補正回路52の演算増幅回路44
に接続されることにより抵抗54a,39,40とで加算回路を
構成している。C点,D点,I点,E点のそれぞれの電圧を
VC,VD,VI,VEとし、抵抗39,40,54aをそれぞれR39,R40,R
54とすると、 となる。
Reference numeral 55 denotes an adjustment circuit, which includes a variable resistor 53a connected between the (+) side power supply terminal 31 and the (-) side power supply terminal 32, and a resistor 54a. One of the resistors 54a is connected to the variable resistor 53a, and the other is an operational amplifier 44 of the temperature characteristic correction circuit 52.
To form an adder circuit with the resistors 54a, 39, and 40. The voltages at points C, D, I, and E are
V C , V D , V I , V E, and resistors 39 , 40 , 54a are R 39 , R 40 , R
Assuming 54 , Becomes

すなわち、可変抵抗53aを調整してI点の電圧を変化
させると、E点の電圧VEも(2)式に従い変化し、この
電圧VEを抵抗42を介して発振器51のF点に電流をバイパ
スすることによりG点の発振周波数fが変化することに
なる。
That is, when the voltage at the point I is changed by adjusting the variable resistor 53a, the voltage V E at the point E also changes according to the equation (2), and the voltage V E is supplied to the point F of the oscillator 51 via the resistor 42. , The oscillation frequency f at the point G changes.

発明の効果 以上のように本発明は、発振器と、超音波モータの駆
動周波数を調整する可変抵抗を備えた調整回路と、前記
発振器の発振周波数の温度変化率を超音波モータを構成
する圧電体により決まる共振周波数の温度変化率に等し
くなるように感温素子を備えた温度特性補正回路とをそ
れぞれ増幅器に接続し、その増幅器の出力を発振器に入
力して発振器の周波数を微調整するように構成したこと
により、モータの共振特性のバラツキに応じて、発振器
の発振周波数を調整回路で最適駆動周波数に合わせるこ
とができ、さらに、周囲温度が変化しても、常にステー
タの共振周波数より任意の値だけずれたポイントで圧電
体を駆動させることができるため、常に安定した駆動状
態が得られる。
As described above, the present invention provides an oscillator, an adjustment circuit including a variable resistor that adjusts a driving frequency of an ultrasonic motor, and a piezoelectric body that constitutes an ultrasonic motor with a temperature change rate of the oscillation frequency of the oscillator. A temperature characteristic correction circuit provided with a temperature sensitive element is connected to each amplifier so as to be equal to the temperature change rate of the resonance frequency determined by the above, and the output of the amplifier is input to the oscillator to fine-tune the frequency of the oscillator. With this configuration, the oscillation frequency of the oscillator can be adjusted to the optimum drive frequency by the adjustment circuit according to the variation in the resonance characteristics of the motor. Since the piezoelectric body can be driven at a point shifted by the value, a stable driving state can always be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1の実施例における超音波モータの
駆動装置のブロック図、第2図は本発明の第2の実施例
における超音波モータの駆動装置のブロック図、第3図
は超音波モータの構造断面図、第4図は本発明の超音波
モータの駆動装置の温度特性図、第5図は本発明におけ
るI点の電圧を変化させた時の発振周波数fの変化の実
測図、第6図は従来の超音波モータの駆動装置のブロッ
ク図、第7図は従来の超音波モータの駆動装置の温度特
性図である。 1,2……圧電体、12……超音波モータ、22……駆動回
路、33,34,36,37,39,40,41,42,45,47,54,54a,57……抵
抗、35……温度変化検出回路、38……定電圧源、43,56
……演算増幅器、44……演算増幅回路、48,50……コン
デンサ、49……タイマーIC、51……発振器、52……温度
特性補正回路、53,53a……可変抵抗、55,58……調整回
路。
FIG. 1 is a block diagram of an ultrasonic motor driving device according to a first embodiment of the present invention, FIG. 2 is a block diagram of an ultrasonic motor driving device according to a second embodiment of the present invention, and FIG. FIG. 4 is a temperature characteristic diagram of the ultrasonic motor drive device of the present invention, and FIG. 5 is a measurement of a change in the oscillation frequency f when the voltage at point I is changed in the present invention. FIG. 6 is a block diagram of a conventional ultrasonic motor driving device, and FIG. 7 is a temperature characteristic diagram of a conventional ultrasonic motor driving device. 1,2… Piezoelectric, 12… Ultrasonic motor, 22… Drive circuit, 33,34,36,37,39,40,41,42,45,47,54,54a, 57… Resistance, 35: Temperature change detection circuit, 38: Constant voltage source, 43, 56
…………………………………………………………………………………………………… ··············································································· ... adjustment circuit.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】任意の発振周波数で発振する発振器を備え
た超音波モータの駆動装置において、超音波モータの駆
動周波数を設定する可変抵抗を備えた回路と、超音波モ
ータの共振特性の温度変化に合わせて駆動周波数を調整
する感温素子を備えた回路とをそれぞれ増幅器に接続
し、その増幅器の出力を発振器に入力して前記発振器の
周波数を微調整する超音波モータの駆動装置。
An ultrasonic motor driving device having an oscillator oscillating at an arbitrary oscillation frequency, a circuit having a variable resistor for setting the driving frequency of the ultrasonic motor, and a temperature change of resonance characteristics of the ultrasonic motor. And a circuit provided with a temperature-sensitive element for adjusting a driving frequency in accordance with the above, connected to an amplifier, and an output of the amplifier is input to an oscillator to fine-tune the frequency of the oscillator.
【請求項2】コンデンサの充電、放電により発振周波数
を決定し、さらに外部電圧により発振周波数が可変可能
な発振器を備え、(+)側給電端子31と(−)側給電端
子32との間に接続された周波数調整のための可変抵抗53
と抵抗54、演算増幅器56からなる調整回路と、この調整
回路の出力を抵抗57を介して前記発振器に供給するよう
に構成された特許請求の範囲第1項記載の超音波モータ
の駆動装置。
2. An oscillator which determines an oscillation frequency by charging and discharging a capacitor, and which can vary an oscillation frequency by an external voltage, is provided between a (+) side power supply terminal 31 and a (-) side power supply terminal 32. Variable resistor 53 for frequency adjustment connected
2. The ultrasonic motor driving device according to claim 1, wherein an adjustment circuit including a resistor, a resistor and an operational amplifier is provided, and an output of the adjustment circuit is supplied to the oscillator via a resistor.
【請求項3】可変抵抗53に接続された抵抗54の他端の出
力信号を温度特性補正回路の演算増幅回路44、定電圧源
38、抵抗42により前記発振器に供給するように構成され
た特許請求の範囲第1項又は第2項記載の超音波モータ
の駆動装置。
3. An output signal of the other end of the resistor 54 connected to the variable resistor 53 is supplied to an operational amplifier circuit 44 of a temperature characteristic correction circuit and a constant voltage source.
38. The ultrasonic motor driving device according to claim 1, wherein said oscillator is supplied to said oscillator by a resistor.
JP63063994A 1988-03-17 1988-03-17 Ultrasonic motor drive Expired - Fee Related JP2605333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63063994A JP2605333B2 (en) 1988-03-17 1988-03-17 Ultrasonic motor drive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63063994A JP2605333B2 (en) 1988-03-17 1988-03-17 Ultrasonic motor drive

Publications (2)

Publication Number Publication Date
JPH01238474A JPH01238474A (en) 1989-09-22
JP2605333B2 true JP2605333B2 (en) 1997-04-30

Family

ID=13245336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63063994A Expired - Fee Related JP2605333B2 (en) 1988-03-17 1988-03-17 Ultrasonic motor drive

Country Status (1)

Country Link
JP (1) JP2605333B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4522055B2 (en) * 2003-05-22 2010-08-11 太平洋セメント株式会社 Driving method and driving apparatus for ultrasonic motor
US20110209569A1 (en) 2009-09-01 2011-09-01 Renato Bastos Ribeiro Power multiplier lever system

Also Published As

Publication number Publication date
JPH01238474A (en) 1989-09-22

Similar Documents

Publication Publication Date Title
US4888514A (en) Driving apparatus for ultrasonic motor
US4853579A (en) Drive method for ultrasonic motor providing enhanced stability of rotation
US5130619A (en) Drive control apparatus for an ultrasonic motor
KR100228610B1 (en) Method for driving and driving circuit of an ultrasonic motor
JP2737420B2 (en) Ultrasonic motor drive system
JPH0667224B2 (en) Ultrasonic motor drive
JP2605333B2 (en) Ultrasonic motor drive
JPH09163769A (en) Ultrasonic motor apparatus
JPS622869A (en) Supersonic motor drive device
JPH01321876A (en) Ultrasonic motor driving device
JP2583904B2 (en) Ultrasonic motor driving method
JP3260041B2 (en) Ultrasonic motor driving method and driving circuit
JP2794692B2 (en) Ultrasonic motor drive circuit
JP2532516B2 (en) Ultrasonic motor drive
JP2574293B2 (en) Ultrasonic motor driving method
JP3198041B2 (en) Ultrasonic motor speed controller
JP2814148B2 (en) Ultrasonic motor drive controller
JPS6292782A (en) Ultrasonic motor device
JP2667811B2 (en) Vibration type motor
JPH11191976A (en) Motor-driving circuit
JPH11237403A (en) External force detecting sensor and its offset voltage regulating method
JPH10155288A (en) Drive equipment for ultrasonic motor
JP2577485B2 (en) Driving method of ultrasonic motor
JP2691969B2 (en) Ultrasonic motor
JPH04322179A (en) Method of driving ultrasonic motor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees