JP2604423B2 - Super heat resistant inclined coating forming method - Google Patents

Super heat resistant inclined coating forming method

Info

Publication number
JP2604423B2
JP2604423B2 JP63130231A JP13023188A JP2604423B2 JP 2604423 B2 JP2604423 B2 JP 2604423B2 JP 63130231 A JP63130231 A JP 63130231A JP 13023188 A JP13023188 A JP 13023188A JP 2604423 B2 JP2604423 B2 JP 2604423B2
Authority
JP
Japan
Prior art keywords
heat
resistant
super
alloy
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63130231A
Other languages
Japanese (ja)
Other versions
JPH01301848A (en
Inventor
忠一 加藤
三郎 北口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP63130231A priority Critical patent/JP2604423B2/en
Publication of JPH01301848A publication Critical patent/JPH01301848A/en
Application granted granted Critical
Publication of JP2604423B2 publication Critical patent/JP2604423B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は金属のみでは使用困難な超耐熱耐久性が要求
される環境において使用可能な複合被覆材料に関し、詳
しく述べると超耐熱合金粉末と金属被覆複合セラミック
ス粉末とにより成分を連続的に傾斜変化させた超耐熱傾
斜被覆層を形成する超耐熱傾斜被覆層形成方法に関する
ものである。
Description: FIELD OF THE INVENTION The present invention relates to a composite coating material that can be used in an environment requiring super heat resistance and durability, which is difficult to use with metal alone. The present invention relates to a method for forming a super heat-resistant gradient coating layer in which components are continuously changed in gradient with a coated composite ceramic powder.

[従来の技術] 極限状態で使用される材料はいわゆる超特性を有して
いることが必要であるが、近年開発中あるいは次世代と
して考えられている宇宙、航空、核融合炉においては、
超高温で使用されても耐久性のある材料から要求されて
いる。
[Prior art] Materials used in extreme conditions need to have so-called super-characteristics, but in space, aviation, and fusion reactors that are under development or considered as the next generation in recent years,
There is a demand for materials that are durable even when used at very high temperatures.

例えば、ロケットエンジンのノズル部における熱防禦
材料はおよそ表面温度2000K゜、温度落差1000K゜に耐え
る必要があるといわれている。
For example, it is said that the thermal protection material in the nozzle portion of a rocket engine needs to withstand a surface temperature of about 2000 K ゜ and a temperature drop of 1000 K ゜.

一般的に超耐熱・耐久材料としては、Ni基超耐熱合
金、Fe基超耐熱合金、Co超耐熱合金が用いられている
が、いずれも900℃以下でしか使用できない。これ以上
の高温領域においてはセラミックスコーティングが金属
の上に施されて用いられているが、高温・低温の繰り返
しがある環境においては破壊、脱落が生じ耐久性に欠け
る難点があった。これの解決策として特開昭62−156938
号で提案されているように被覆層に空孔を導入して応力
を緩和する方法や被覆層に濃度勾配をつける方法がある
が未だ十分に満足する性能のものが得られていない。
Generally, Ni-based super-heat-resistant alloys, Fe-based super-heat-resistant alloys, and Co-super-heat-resistant alloys are used as super heat-resistant and durable materials, but all of them can be used only at 900 ° C. or lower. In a higher temperature range, a ceramic coating is applied on a metal. However, in an environment where high and low temperatures are repeated, there is a drawback in that the coating is broken and falls off and lacks durability. As a solution to this, Japanese Patent Application Laid-Open No. 62-156938
As proposed in the above publication, there is a method of introducing a hole into the coating layer to relieve the stress and a method of giving a concentration gradient to the coating layer. However, satisfactory performance has not yet been obtained.

[発明が解決しようとする課題] 超高温および極めて大きい温度落差のある環境におい
て使用可能な材料として耐熱セラミックスと超耐熱合金
とからなる複合材料が考えられているが、超耐熱合金上
への極く単純な耐熱セラミックス被覆はもちろん、耐熱
セラミックスと超耐熱合金との複合容射により濃度勾配
をつけたいわゆる傾斜被覆においても、耐熱セラミック
スと超耐熱合金との密着性が劣るため、激しい熱応力に
よって界面剥離が生じる。したがって、耐熱セラミック
ス・超耐熱合金複合材料は超耐熱合金単体よりはもちろ
ん耐熱・耐久性に優れているものの、ロケットエンジン
のノズル部のような物の材料としての耐久性は満足しな
い。
[Problems to be Solved by the Invention] As a material usable in an environment having an extremely high temperature and an extremely large temperature drop, a composite material composed of a heat-resistant ceramic and a super-heat-resistant alloy has been considered. Not only simple heat-resistant ceramic coatings, but also so-called graded coatings, in which the concentration gradient is created by composite spraying of heat-resistant ceramics and super heat-resistant alloys, due to inferior adhesion between the heat-resistant ceramics and super heat-resistant alloys, Interfacial delamination occurs. Therefore, although the heat-resistant ceramic / super-heat-resistant alloy composite material is excellent in heat resistance and durability as well as the super-heat-resistant alloy alone, it does not satisfy the durability as a material for a nozzle part of a rocket engine.

そこで、本発明では耐熱セラミックスと超耐熱合金と
からなる傾斜被覆層において超高温・大温度落差環境下
で界面剥離を防止し、超耐熱傾斜被覆層の長寿命化とい
う難課題の解決を図った。
Therefore, in the present invention, in the gradient coating layer made of a heat-resistant ceramic and a super-heat-resistant alloy, interfacial delamination is prevented under an environment of an ultra-high temperature and a large temperature drop, thereby solving the difficult problem of extending the service life of the gradient gradient coating layer. .

[課題を解決するための手段] 本発明は、超高温・大温度落差環境下で使用可能な超
耐熱傾斜被覆層の形成を可能としたものである。対象と
する超耐熱合金耐熱傾斜被覆は通常耐熱セラミックスと
超耐熱合金とを溶射によりその濃度分布を替えながら形
成されている。しかし、形成された被覆層は耐熱セラミ
ックスと超耐熱合金粉末とが混合しているのみであり、
その密着性は異質なものの密着故極めて悪く、激しい熱
応力に耐えることが可能な程度までの密着性の向上は、
溶射粒子の粒度調整、溶射雰囲気、溶射条件等の変更で
は極めて困難であった。
[Means for Solving the Problems] The present invention makes it possible to form a super-heat-resistant inclined coating layer that can be used in an ultra-high temperature and large temperature drop environment. The heat resistant graded heat resistant alloy is usually formed by spraying a heat resistant ceramic and a super heat resistant alloy while changing their concentration distribution. However, the formed coating layer is only a mixture of heat-resistant ceramic and super heat-resistant alloy powder,
The adhesion is very poor due to the adhesion of different materials, and the improvement of the adhesion to the extent that it can withstand severe thermal stress,
It was extremely difficult to adjust the particle size of the thermal spray particles, change the thermal spray atmosphere, and the thermal spray conditions.

本発明者らは、上記の超耐熱傾斜被覆層の密着性・耐
久性向上について種々検討した結果、従来の技術思想と
は全く異なり、耐熱セラミックス粒子上に超耐熱合金の
主成分の金属あるいはその合金の被覆層を有する複合溶
射粉末を用いることによって密着性・耐久性が飛躍的に
向上することを見いだし、本発明をなすに至った。
The present inventors have conducted various studies on the improvement of the adhesion and durability of the above-mentioned super-heat-resistant inclined coating layer.As a result, completely different from the conventional technical idea, the metal or the main component of the super-heat-resistant alloy is formed on the heat-resistant ceramic particles. The inventors have found that the use of a composite sprayed powder having a coating layer of an alloy dramatically improves the adhesion and durability, and has accomplished the present invention.

すなわち、本発明は超耐熱合金表面に、最表面が純耐
熱セラミックス層で、それより内層になるに従い該耐熱
セラミックスと該超耐熱合金との成分比が連続的に変化
し、最内層が超耐熱合金成分になる超耐熱傾斜被覆層形
成に関するもので、その形成方法として該耐熱セラミッ
クス粉末及び該超耐熱合金粉末と、該耐熱セラミックス
粉末の表面に該超耐熱合金の主成分である金属またはそ
の合金を被覆してなる複合粉末とを用いて混合溶射する
ことを特徴とする。
That is, according to the present invention, the outermost surface is a pure heat-resistant ceramic layer on the surface of the superheat-resistant alloy, and the composition ratio between the heat-resistant ceramic and the superheat-resistant alloy changes continuously as the inner layer is formed therefrom. The present invention relates to the formation of a super-heat-resistant inclined coating layer which becomes an alloy component, and as a method of forming the super-heat-resistant ceramic powder and the super-heat-resistant alloy powder, a metal or an alloy thereof which is a main component of the super-heat-resistant alloy on the surface of the heat-resistant ceramic powder Mixed spraying using a composite powder coated with

本発明に用いる超耐熱合金は、Ni基あるいはCo基超耐
熱合金であること、耐熱セラミックスはアルミナ、ジル
コニア、安定化ジルコニア、部分安定化ジルコニアの1
種あるいは2種以上のセラミックスであることが望まし
い。
The super heat-resistant alloy used in the present invention is a Ni-based or Co-based super heat-resistant alloy, and the heat-resistant ceramic is one of alumina, zirconia, stabilized zirconia, and partially stabilized zirconia.
It is desirable to use one or more ceramics.

超耐熱傾斜被覆層は断熱効果を発揮して下地金属であ
る超耐熱合金表面の温度を低き保つものの、その温度は
約800℃にも達することがあるので、耐熱温度800℃以上
の特性を有するNi基あるいはCo基超耐熱合金を用いるこ
とが望ましい。同様に最表面は2000K゜にも達するので
この温度での耐熱性を有するアルミナ、ジルコニア、安
定化ジルコニア、部分安定化ジルコニアの1種あるいは
2種以上のセラミックスを使用することが望ましい。
Although the super heat-resistant inclined coating layer exerts the heat insulation effect and keeps the temperature of the super heat-resistant alloy surface as a base metal low, the temperature may reach about 800 ° C. It is desirable to use a Ni-base or Co-base super heat-resistant alloy having the same. Similarly, since the outermost surface reaches 2,000 K ゜, it is desirable to use one or more ceramics of alumina, zirconia, stabilized zirconia, and partially stabilized zirconia having heat resistance at this temperature.

複合溶射粉末としての耐熱セラミックス上に被覆され
る金属あるいはその合金は、Ni基超耐熱合金の場合はNi
あるいはNi−P.Ni−B,Ni−Co−Pが、Co基超耐熱合金の
場合はCo,Co−P,Co−B,Ni−Co−Pが適当である。被覆
の方法はNi,Coの場合はPVDによるのが最も適当であり、
Ni−P.Ni−B,Ni−Co−P Co−P,Co−Bの場合はSn,Pdに
より活性化した後めっきを行なう通常の無電解めっきが
よい。また、その場合の被覆厚みは0.05〜10μmが望ま
しい。すなわち、0.05μm未満では密着性が確保でき
ず、また10μm超では密着性は良いものの、被覆層の若
干劣る耐熱性のため界面から劣化を生じるからである。
The metal or its alloy coated on the heat-resistant ceramic as the composite sprayed powder is Ni
Alternatively, when Ni-P.Ni-B or Ni-Co-P is a Co-based super heat-resistant alloy, Co, Co-P, Co-B or Ni-Co-P is suitable. In the case of Ni and Co, the most suitable coating method is PVD,
In the case of Ni-P.Ni-B, Ni-Co-PCo-P, and Co-B, ordinary electroless plating in which plating is performed after activation with Sn and Pd is preferable. In this case, the coating thickness is desirably 0.05 to 10 μm. That is, if the thickness is less than 0.05 μm, the adhesion cannot be ensured, and if the thickness exceeds 10 μm, the adhesion is good, but the coating layer is slightly inferior in heat resistance, and thus deteriorates from the interface.

超耐熱傾斜被覆層は上述の耐熱セラミックス粉末、複
合粉末、超耐熱合金粉末とを用いて、超耐熱合金上へ混
合溶射の方法により形成される。すなわち、最表層は耐
熱セラミックスの超耐熱性を利用するため純耐熱セラミ
ックス層とし、それより内層に向かうにつれ複合粉末粒
と超耐熱合金粒との構成によって成立ち、次第に超耐熱
合金の濃度が高まり、最終的には超耐熱合金母材に至る
ように形成する。この場合の濃度勾配曲線は直線でもあ
る種の曲線でもよく、その選択は使用環境と使用材料と
の関係で決定すればよい。
The super-heat-resistant inclined coating layer is formed on the super-heat-resistant alloy by a mixed spraying method using the above-described heat-resistant ceramic powder, composite powder, and super-heat-resistant alloy powder. In other words, the outermost layer is a pure heat-resistant ceramic layer in order to utilize the super-heat resistance of the heat-resistant ceramic, and is formed by the composition of the composite powder particles and the super-heat-resistant alloy particles toward the inner layer, and the concentration of the super-heat-resistant alloy gradually increases. Finally, it is formed so as to reach the super heat resistant alloy base material. In this case, the concentration gradient curve may be a straight line or some kind of curve, and the selection may be determined according to the relationship between the use environment and the material used.

この3種の構成成分の超耐熱傾斜被覆層内での濃度構
成を概念図示したものが第1図〜第4図であり、このい
ずれの場合でも本発明の目的にかなうものである。なお
同図においては、簡単化のため基本的濃度勾配は直線の
場合を示している。
FIGS. 1 to 4 conceptually show the concentration constitutions of these three components in the super heat-resistant inclined coating layer, and all of these cases serve the purpose of the present invention. Note that FIG. 3 shows a case where the basic concentration gradient is a straight line for simplification.

第1図〜第3図は、最表面が耐熱セラミックス、最内
層が超耐熱合金であるが、中間は全て2者または3者複
合であり、金属被覆複合粉末はバインダーとしての役割
を果たしている。これに対し、第4図に示される場合は
中間に金属被覆複合粉末のみの層が存在する場合であ
り、複合粉末はバインダーの役割とともに主構成要素と
しての役割を果たすことになる。この場合は被覆金属の
厚みが比較的厚い物を使用する必要がある。
1 to 3 show that the outermost surface is made of heat-resistant ceramic and the innermost layer is made of a super-heat-resistant alloy, the middle of which is a composite of two or three, and the metal-coated composite powder plays a role as a binder. On the other hand, the case shown in FIG. 4 is a case where only the metal-coated composite powder is present in the middle, and the composite powder plays a role as a main component together with the role of the binder. In this case, it is necessary to use a material having a relatively thick coating metal.

傾斜被膜形成のための溶射は、通常の粉末溶射で複数
の溶射ガンを用いて行えばよく、3種の溶射粉末を用い
その供給量を制御することによって所定の濃度に調整す
る。溶射熱源はガスあるいはプラズマのいずれでもよ
く、溶射雰囲気も大気あるいは真空のいずれでもよい
が、被膜中の超耐熱合金の酸化を少なくし、密着性を向
上させるためにできれば真空(低圧)が望ましい。
The thermal spraying for forming the inclined coating may be performed by using a plurality of thermal spraying guns in a normal powder thermal spraying, and three kinds of thermal spraying powders are used to control the supply amount to adjust to a predetermined concentration. The thermal spraying heat source may be either gas or plasma, and the thermal spraying atmosphere may be either air or vacuum. However, vacuum (low pressure) is desirable if it is possible to reduce oxidation of the super heat-resistant alloy in the coating and to improve adhesion.

その他の溶射条件すなわち溶射粉末の粒度、溶射前処
理等は通常の溶射方法で良く、傾斜被覆層の厚みは使用
環境の温度と傾斜被覆層の断熱性とから考え得る所定の
厚みに調整すればよい。
Other spraying conditions, that is, the particle size of the sprayed powder, the spraying pretreatment, etc. may be a normal spraying method, and the thickness of the inclined coating layer is adjusted to a predetermined thickness that can be considered from the temperature of the use environment and the heat insulating property of the inclined coating layer. Good.

[実施例] 実施例1 19Cr−1.5Al−残Ni超耐熱合金表面に該超耐熱合金粉
末、ZrO2・8Y2O3溶射粉末およびその表面に第1表に示
すような金属を被覆した複合粉末を用いて、低圧プラズ
マ溶射法によって直線濃度勾配がつくように傾斜被覆層
を形成(第3図の構成)した。試験片は5t×50×50mmで
あり、傾斜被覆層は3mmとした。
EXAMPLES Example 1 19Cr-1.5Al- ultra-heat-resistant alloy powder with the remaining Ni superalloy surface, the composite coated metal as shown in Table 1 to ZrO 2 · 8Y 2 O 3 spray powder and its surface Using the powder, a gradient coating layer was formed by a low-pressure plasma spraying method so as to form a linear concentration gradient (the configuration of FIG. 3). The test piece was 5 t × 50 × 50 mm, and the inclined coating layer was 3 mm.

傾斜被覆層を形成した試験片は、水冷治具上に超耐熱
合金側が水冷されるように置き、耐熱セラミックス側を
10kwレーザーで照射加熱して1600℃とした後、N2ガス吹
き付けによって600℃まで急冷した。この操作を10回繰
り返した後、被膜断面を顕微鏡観察してクラックの発生
状況を観察した。
The test piece with the inclined coating layer is placed on a water-cooled jig so that the super heat-resistant alloy side is water-cooled, and the heat-resistant ceramic side is
After heating by irradiation with a 10 kw laser to 1600 ° C., it was rapidly cooled to 600 ° C. by blowing N 2 gas. After this operation was repeated 10 times, the cross section of the coating film was observed under a microscope to observe the occurrence of cracks.

ここで、試料1および2は比較材であり、試料3〜6
が本発明に関わるものである。耐久性試験結果から明ら
かなように、無処理材およびCrを被覆したものはクラッ
クが多く、耐久性に問題があるのに対し、Ni系の金属被
覆を施した複合セラミックス粉末を用いて作製した耐熱
傾斜被覆層は、全くクラックが発生せず優れた性能を示
した。
Here, samples 1 and 2 are comparative materials, and samples 3 to 6
Are related to the present invention. As is evident from the durability test results, the untreated material and the one coated with Cr had many cracks and had a problem in durability, but were manufactured using a composite ceramic powder coated with a Ni-based metal. The heat-resistant inclined coating layer exhibited excellent performance without any cracks.

実施例2 20Cr−10Ni−残Co超耐熱合金表面に該超耐熱合金粉
末、ZrO2・8Y2O3溶射粉末およびその表面に第2表に示
すような金属を被覆した複合粉末を用いて、低圧プラズ
マ溶射法によって直線濃度勾配がつくように傾斜被覆層
を形成(第2図の構成)した。試験片は5t×50×50mmで
あり、傾斜被覆層は3mmとした。
Example 2 Using a superheat-resistant alloy powder, a ZrO 2 .8Y 2 O 3 sprayed powder on the surface of a 20Cr-10Ni-remaining Co super heat-resistant alloy, and a composite powder having the surface coated with a metal as shown in Table 2, An inclined coating layer was formed by a low-pressure plasma spraying method so as to form a linear concentration gradient (the structure of FIG. 2). The test piece was 5 t × 50 × 50 mm, and the inclined coating layer was 3 mm.

傾斜被覆層を形成した試験片は、水冷治具上に超耐熱
合金側が水冷されるように置き、耐熱セラミックス側を
10kwレーザーで照射加熱して1600℃とした後、N2ガス吹
き付けによって600℃まで急冷した。この操作を10回繰
り返した後、被膜断面を顕微鏡観察してクラックの発生
状況を観察した。
The test piece with the inclined coating layer is placed on a water-cooled jig so that the super heat-resistant alloy side is water-cooled, and the heat-resistant ceramic side is
After heating by irradiation with a 10 kw laser to 1600 ° C., it was rapidly cooled to 600 ° C. by blowing N 2 gas. After this operation was repeated 10 times, the cross section of the coating film was observed under a microscope to observe the occurrence of cracks.

ここで、試料1および2は比較材であり、試料3〜6
が本発明に関わるものである。耐久性試験結果から明ら
かなように、無処理材およびCrを被覆したものはクラッ
クが多く、耐久性に問題があるのに対し、Ni系の場合と
全く同じようにCo系の金属被覆を施した複合セラミック
ス粉末を用いて作製した耐熱傾斜被覆層は全くクラック
が発生せず、優れた性能を示した。
Here, samples 1 and 2 are comparative materials, and samples 3 to 6
Are related to the present invention. As is clear from the durability test results, the untreated material and the one coated with Cr have many cracks and have a problem in durability, but the Co-based metal coating is applied just like the Ni-based one. The heat-resistant gradient coating layer produced by using the obtained composite ceramic powder did not crack at all and showed excellent performance.

[発明の効果] 本発明は、金属被覆複合セラミックス粉末を用いるこ
とにより、工業的に容易に超耐熱特性を有する超耐熱傾
斜被覆を製造するものであり、従来の傾斜被覆材料に比
べ耐久性を大幅に改善できるため、宇宙、航空、核融合
炉におけるロケットエンジン、ターボエンジン、宇宙往
還機、原子炉用壁材等に用いて利点が大きく、極めて工
業的に有用である。
[Effects of the Invention] The present invention is intended to easily and industrially produce a super heat resistant graded coating having super heat resistant properties by using a metal-coated composite ceramic powder, and has higher durability than a conventional graded coating material. Since it can be greatly improved, it has great advantages when used in rocket engines, turbo engines, space planes, reactor wall materials, etc. in space, aviation, and fusion reactors, and is extremely industrially useful.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第4図は超耐熱傾斜被覆層内の各構成成分の割
合を示す概念説明図である。 1……耐熱セラミックス、2……金属被覆複合粉末、3
……超耐熱合金。
1 to 4 are conceptual explanatory views showing the ratio of each component in the super heat-resistant inclined coating layer. 1 ... heat-resistant ceramic, 2 ... metal-coated composite powder, 3
...... Super heat resistant alloy.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−184261(JP,A) 特開 昭61−143576(JP,A) 特開 昭53−54214(JP,A) 日本複合材料学会誌 13[6 ](1987)P.257−264 日本金属学会誌 51[6](1987) P.525−529 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-1-184261 (JP, A) JP-A-61-143576 (JP, A) JP-A-53-54214 (JP, A) Journal of the Japan Society for Composite Materials 13 [6] (1987) p. 257-264 Journal of the Japan Institute of Metals 51 [6] (1987) 525-529

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】超耐熱合金表面に、最表面が純耐熱セラミ
ックス層で、それより内層になるに従い該耐熱セラミッ
クスと該超耐熱合金との成分比が連続的に変化し、最内
層が超耐熱合金成分になる傾斜被覆層の製造において、
該耐熱セラミックス粉末及び該超耐熱合金粉末と、該耐
熱セラミックス粉末の表面に該超耐熱合金の主成分であ
る金属またはその合金を被覆してなる複合粉末とを用い
て混合溶射することを特徴とする超耐熱傾斜被覆層形成
方法。
1. The superheat-resistant alloy surface has a pure heat-resistant ceramic layer on the outermost surface, and the composition ratio between the heat-resistant ceramic and the superheat-resistant alloy changes continuously as the inner layer is formed therefrom. In the production of a gradient coating layer that becomes an alloy component,
Mixing and spraying using the heat-resistant ceramic powder and the super-heat-resistant alloy powder and a composite powder obtained by coating the surface of the heat-resistant ceramic powder with a metal which is a main component of the super-heat-resistant alloy or its alloy. Method for forming a super heat-resistant inclined coating layer.
【請求項2】該超耐熱合金がNi基あるいはCo基超耐熱合
金であることを特徴とする請求項1記載の超耐熱傾斜被
覆層形成方法。
2. The method according to claim 1, wherein the super heat-resistant alloy is a Ni-based or Co-based super heat-resistant alloy.
【請求項3】該耐熱セラミックスがアルミナ、ジルコニ
ア、安定化ジルコニア、部分安定化ジルコニアの1種あ
るいは2種以上のセラミックスであることを特徴とする
請求項1記載の超耐熱傾斜被覆層形成方法。
3. The method of claim 1, wherein the heat-resistant ceramic is one or more of alumina, zirconia, stabilized zirconia, and partially stabilized zirconia.
JP63130231A 1988-05-30 1988-05-30 Super heat resistant inclined coating forming method Expired - Lifetime JP2604423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63130231A JP2604423B2 (en) 1988-05-30 1988-05-30 Super heat resistant inclined coating forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63130231A JP2604423B2 (en) 1988-05-30 1988-05-30 Super heat resistant inclined coating forming method

Publications (2)

Publication Number Publication Date
JPH01301848A JPH01301848A (en) 1989-12-06
JP2604423B2 true JP2604423B2 (en) 1997-04-30

Family

ID=15029238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63130231A Expired - Lifetime JP2604423B2 (en) 1988-05-30 1988-05-30 Super heat resistant inclined coating forming method

Country Status (1)

Country Link
JP (1) JP2604423B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109642306A (en) * 2016-07-13 2019-04-16 欧瑞康美科股份公司,沃伦 Cylinder perforation is coated in the case where no preactivated surface

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
日本複合材料学会誌 13[6](1987)P.257−264
日本金属学会誌 51[6](1987)P.525−529

Also Published As

Publication number Publication date
JPH01301848A (en) 1989-12-06

Similar Documents

Publication Publication Date Title
TW422889B (en) Process for depositing a bond coat for a thermal barrier coating system
CN1068387C (en) A process for producing an oxide dispersed mcraly-based coating
US5780116A (en) Method for producing an abradable seal
US3313633A (en) High temperature flame spray powder
US4588607A (en) Method of applying continuously graded metallic-ceramic layer on metallic substrates
US4645716A (en) Flame spray material
US6780526B2 (en) Process for producing graded coated articles
US6306515B1 (en) Thermal barrier and overlay coating systems comprising composite metal/metal oxide bond coating layers
US7141110B2 (en) Erosion resistant coatings and methods thereof
JPS61501637A (en) Manufacturing method for high temperature materials
US5281487A (en) Thermally protective composite ceramic-metal coatings for high temperature use
JP5676161B2 (en) Thermal spray powder and method of forming thermal spray coating
EP0688886A1 (en) A process for producing carbide particles dispersed in a MCrAIY-based coating
CA2896257A1 (en) Thermal spraying powder for highly stressed sliding systems
EP0185603A1 (en) Improved durability metallic-ceramic turbine air seals
JP2001104865A (en) Method of manufacturing metal/polymer composite product
JPH09316622A (en) Gas turbine member and its thermal insulation coating method
JP2604423B2 (en) Super heat resistant inclined coating forming method
US7401586B2 (en) Valve seat rings made of basic Co or Co/Mo alloys, and production thereof
Abbas et al. Enhancement of the hardness and wear-resistance of aluminum-silicon alloy using atmospheric plasma-sprayed ZrO2, Al2O3-ZrO2 multilayer, and Al2O3/ZrO2 composite coatings
JPH09176821A (en) Radiation shield coating member and its production
JPS6217169A (en) Surface coating method for metallic material
JP3503997B2 (en) Thermal barrier coating member and method of manufacturing the same
JP3332847B2 (en) Heat resistant member and method of manufacturing heat resistant member
JPH01172554A (en) Flame spraying material