JP2604164B2 - Catalytic combustion device - Google Patents

Catalytic combustion device

Info

Publication number
JP2604164B2
JP2604164B2 JP62175473A JP17547387A JP2604164B2 JP 2604164 B2 JP2604164 B2 JP 2604164B2 JP 62175473 A JP62175473 A JP 62175473A JP 17547387 A JP17547387 A JP 17547387A JP 2604164 B2 JP2604164 B2 JP 2604164B2
Authority
JP
Japan
Prior art keywords
temperature
catalyst
catalyst layer
combustion
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62175473A
Other languages
Japanese (ja)
Other versions
JPS6419220A (en
Inventor
成 冨永
公一 横山
Original Assignee
バブコツク日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコツク日立株式会社 filed Critical バブコツク日立株式会社
Priority to JP62175473A priority Critical patent/JP2604164B2/en
Publication of JPS6419220A publication Critical patent/JPS6419220A/en
Application granted granted Critical
Publication of JP2604164B2 publication Critical patent/JP2604164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/12Controlling catalytic burners

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)
  • Gas Burners (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、触媒の劣化対策に係り、特に、触媒層内の
燃焼温度を検出するとともに一定温度以下に制御できる
触媒燃焼装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst deterioration countermeasure, and more particularly, to a catalytic combustion device capable of detecting a combustion temperature in a catalyst layer and controlling the temperature to a certain temperature or less.

〔従来の技術〕[Conventional technology]

触媒燃焼は白金(pt)、パラジウム(pd)等の貴金属
酸化触媒を用いてガス中の可燃物を燃焼させる方法で、
従来の気相燃焼に比べて低カロリのガスや低O2の条件下
で燃焼でき、またNOxが少ないなどの特徴を有するため
に省エネルギ、無公害といった観点から各方面で注目し
ている技術である。その応用としては触媒バーナ、ガス
タービン、家庭用ファンヒータ等が検討されている。
Catalytic combustion is a method of burning combustibles in gas using a noble metal oxidation catalyst such as platinum (pt) or palladium (pd).
Technology that can be burned under low-calorie gas and low-O 2 conditions compared to conventional gas-phase combustion, and has features such as low NOx. It is. As its application, catalytic burners, gas turbines, household fan heaters, and the like are being studied.

触媒燃焼用の触媒担体の構造としては、幾何学的表面
積が大きく、圧力損失が小さい薄肉セルで形成されるハ
ニカムの一体構造型担体が前提になっており、これに触
媒成分(pd他)を含浸などの方法により担持しハニカム
触媒層として使用している。
The structure of the catalyst carrier for catalytic combustion is based on the premise that the honeycomb structured carrier is formed of a thin-walled cell with a large geometric surface area and a small pressure loss. It is supported by a method such as impregnation and used as a honeycomb catalyst layer.

触媒燃焼装置はあらかじめハニカム触媒層を数百℃に
予熱しておき、そこにメタンやプロパンなどの可燃性ガ
スを空気と混合して触媒層内に流し触媒と接触燃焼させ
るものである。ところが第11図に示すようにハニカム触
媒層内の温度がある一定温度以上になると貴金属酸化触
媒が急速に凝集粗大化あるいは蒸散することによって、
活性の低下(劣化)が加速され、寿命が著しく低下す
る。このような触媒の劣化が進行していくと燃焼が極め
て不安定になって、触媒燃焼の特徴である省エネルギ、
無公害燃焼が達成できなくなる。特に家庭用ファンヒー
タなどにおいてはNOxやCOの発生による人体への影響は
大きな社会的問題にもなる恐れがある。
The catalytic combustion device preheats a honeycomb catalyst layer to several hundred degrees Celsius, mixes a combustible gas such as methane or propane with air, flows into the catalyst layer, and burns the catalyst in contact with the catalyst. However, as shown in FIG. 11, when the temperature in the honeycomb catalyst layer exceeds a certain temperature, the noble metal oxidation catalyst rapidly agglomerates or evaporates,
The decrease (deterioration) of the activity is accelerated, and the life is remarkably reduced. When such catalyst deterioration progresses, combustion becomes extremely unstable, and energy saving, which is a feature of catalytic combustion,
Pollution-free combustion cannot be achieved. In particular, in the case of household fan heaters, the influence on the human body due to the generation of NOx and CO may be a serious social problem.

このように触媒の温度が高くなるほど触媒の劣化の問
題がある。ところが触媒燃焼装置においては温度が高い
方が安定な燃焼が可能であることから劣化温度に比較的
近い温度で運転条件(燃焼量・空気量)が設定される。
しかしこのように条件を一定にしても通常の装置では周
囲の環境条件が変わったり、燃料や空気量のわずかな変
動により触媒層内の温度は数十℃程度は容易に変化し、
このことが触媒の寿命を予想以上に低下させる原因とな
っていた。
As described above, there is a problem of deterioration of the catalyst as the temperature of the catalyst increases. However, in a catalytic combustion device, the higher the temperature, the more stable combustion is possible. Therefore, the operating conditions (combustion amount / air amount) are set at a temperature relatively close to the deterioration temperature.
However, even if the conditions are kept constant in this way, in a normal apparatus, the surrounding environmental conditions change, and the temperature in the catalyst layer easily changes by several tens degrees Celsius due to a slight change in the amount of fuel or air,
This has caused the life of the catalyst to be shorter than expected.

従来の触媒燃焼装置における触媒に対する安全装置と
しては触媒層の上流側に温度検出素子を設置して、触媒
の温度を間接的にモニタし、バックファイアや吹飛び等
の異常燃焼が生じた時に警報を発して燃料供給系を遮断
するといったシステムが提案されている。また、自動車
用排ガス浄化用ハニカム触媒においても排ガス出口部近
傍に温度センサが設置されており、一定温度以上になる
と温度警報を発するシステムが採用されている。これら
はいずれも間接的に触媒の温度を推定するもので主に装
置全体の保護並びに安全上の見地に基づいたものであ
り、装置としての定常的な燃焼監視による触媒劣化に対
処するものではなかった。
As a safety device for the catalyst in the conventional catalytic combustion device, a temperature detection element is installed upstream of the catalyst layer to indirectly monitor the temperature of the catalyst and to alert when abnormal combustion such as backfire or blow-off occurs. There has been proposed a system in which a fuel supply system is shut off by issuing an alarm. Further, a honeycomb sensor for purifying exhaust gas for automobiles is also provided with a temperature sensor in the vicinity of an exhaust gas outlet, and employs a system that issues a temperature alarm when the temperature exceeds a certain temperature. All of these methods indirectly estimate the temperature of the catalyst and are mainly based on the protection of the entire system and safety aspects, and do not deal with catalyst deterioration due to routine combustion monitoring of the system. Was.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

触媒劣化対策のむずかしさは、(1)触媒内の最高温
度を示す位置は触媒層内の触媒活性の分布や燃料の空間
速度によりかなり変化し、最高温度を簡単に検出できる
手段がない。すなわち、熱電対や温度センサはある点に
おける温度しか測定できないために、もし、ハニカム触
媒層内の最高温度を検出しようとするならば層内の各位
置に多数の温度センサを取り付けその最大値を求める必
要がある。また、(2)触媒層内の温度が設定値を越え
た場合、温度を設定値近くにすぐに下げる方法がないこ
とである。
Difficulty in countermeasures for catalyst deterioration is as follows: (1) The position of the maximum temperature in the catalyst varies considerably depending on the distribution of the catalyst activity in the catalyst layer and the space velocity of the fuel, and there is no means for easily detecting the maximum temperature. That is, since thermocouples and temperature sensors can measure only the temperature at a certain point, if it is intended to detect the maximum temperature in the honeycomb catalyst layer, a number of temperature sensors are attached to each position in the layer and the maximum value is measured. Need to ask. (2) When the temperature in the catalyst layer exceeds a set value, there is no method for immediately lowering the temperature to near the set value.

本発明の目的は、触媒層内の燃焼温度を検出して触媒
の温度が劣化する設定温度以上に上がらないように制御
する手段を有する触媒燃焼装置を提供することにある。
An object of the present invention is to provide a catalytic combustion device having means for detecting a combustion temperature in a catalyst layer and controlling the temperature of the catalyst so as not to exceed a set temperature at which the temperature of the catalyst deteriorates.

〔問題点を解決するための手段〕[Means for solving the problem]

前記の目的を達成するため、本発明は多数の貫通孔を
有する一体構造型担体に貴金属酸化触媒を担持して触媒
層を形成し、触媒層に空気と混合した可燃性ガスを流通
して高温で接触燃焼させる触媒燃焼装置において、触媒
層の貫通孔に挿入されかつその温度を検出する温度検出
素子と、その温度検出素子の信号で空気の流量を調整し
て燃焼温度を制御する手段とを備えるように構成されて
いる。
In order to achieve the above-mentioned object, the present invention forms a catalyst layer by supporting a noble metal oxidation catalyst on a monolithic carrier having a large number of through-holes, and flows a combustible gas mixed with air through the catalyst layer to increase the temperature. In a catalytic combustion device that performs contact combustion at a temperature, a temperature detecting element that is inserted into a through hole of a catalyst layer and detects the temperature, and a unit that controls a combustion temperature by adjusting a flow rate of air with a signal from the temperature detecting element. It is configured to be provided.

〔作用〕[Action]

本発明によれば、触媒燃焼装置の触媒層に温度検出素
子を挿入することによって、触媒が劣化し始める燃焼温
度を検出できるとともに、温度検出素子の信号によって
空気量が調整され、燃焼温度が制御される。
According to the present invention, by inserting the temperature detecting element into the catalyst layer of the catalytic combustion device, the combustion temperature at which the catalyst starts to deteriorate can be detected, and the air amount is adjusted by the signal of the temperature detecting element to control the combustion temperature. Is done.

〔実施例〕〔Example〕

本発明の第1実施例を第1図を参照しながら説明す
る。
A first embodiment of the present invention will be described with reference to FIG.

第1図に示されるように、多数の貫通孔を有する一体
構造型担体に貴金属酸化触媒を担持して触媒層、例えば
ハニカム触媒層1を形成し、触媒層に整流板6を経由し
て空気と混合した可燃性ガスを流通し、高温で触媒燃焼
させる触媒燃焼装置において、触媒層の貫通孔内に挿入
されかつその劣化し始める温度を検出する温度検出素子
2と、その温度検出素子2の信号で空気の流量を調整し
燃焼温度を制御する手段、すなわち、制御部3、燃料供
給部4及びファン5とを備える構成である。
As shown in FIG. 1, a catalyst layer, for example, a honeycomb catalyst layer 1 is formed by supporting a noble metal oxidation catalyst on an integrally-structured carrier having a large number of through holes, and air is passed through a rectifying plate 6 to the catalyst layer. And a combustible gas which flows through the combustible gas and performs catalytic combustion at a high temperature, a temperature detecting element 2 which is inserted into a through hole of the catalyst layer and detects a temperature at which the temperature starts to deteriorate, This is a configuration including means for adjusting the flow rate of air by a signal to control the combustion temperature, that is, a control unit 3, a fuel supply unit 4, and a fan 5.

そして、燃焼温度範囲で抵抗温度係数が負でかつ温度
係数が大きいZrO2系素子等の半導体を導電性材で挾みこ
んだ構造からなる温度検出素子によりハニカム触媒層内
温度が検出され、その温度が触媒の劣化し始める温度以
上に達した時に層内に送風される空気量を調節すること
により設定温度以下に下げることができる。
The temperature in the honeycomb catalyst layer is detected by a temperature detecting element having a structure in which a semiconductor such as a ZrO 2 element having a negative temperature coefficient of resistance and a large temperature coefficient is sandwiched between conductive materials in the combustion temperature range. By adjusting the amount of air blown into the bed when the temperature of the catalyst reaches or exceeds the temperature at which the catalyst starts to deteriorate, the temperature can be reduced to or below the set temperature.

第6図に空気量と触媒層内の温度分布との関係が示さ
れているが、空気量を約5%増加させることで触媒層内
の燃焼温度は約30℃低下でき、空気量のわずかな調整で
燃焼温度を制御できることが分る。
FIG. 6 shows the relationship between the amount of air and the temperature distribution in the catalyst layer. By increasing the amount of air by about 5%, the combustion temperature in the catalyst layer can be reduced by about 30 ° C. It can be seen that the combustion temperature can be controlled by appropriate adjustment.

また、第7図はファンから送給される空気量と層内温
度の関係を示したものである。空気量と燃焼温度は良い
対応関係にあり、高精度の層内温度設定が可能である。
FIG. 7 shows the relationship between the amount of air supplied from the fan and the temperature in the layer. There is a good correspondence between the air amount and the combustion temperature, and it is possible to set the in-layer temperature with high accuracy.

空気量の制御はダンパの開口率を検知電流値に基づい
て変化させることで行うか、または検知した電流値が劣
化温度に相当する設定電流値以上にならないようにファ
ンの動力周波数を変化させるインバータ制御等で行うこ
とで触媒層内の過温を防止することができる。
The air amount is controlled by changing the opening ratio of the damper based on the detected current value, or the inverter that changes the power frequency of the fan so that the detected current value does not exceed the set current value corresponding to the deterioration temperature By performing the control or the like, it is possible to prevent overheating in the catalyst layer.

本発明の第2実施例を第2図を参照しながら説明す
る。
A second embodiment of the present invention will be described with reference to FIG.

温度検出素子の構造は第2図に示されるように、中央
部に半導体7のZrO2−CaO固溶体を配し、これを電極線
9と接続する電導性材8の導電性セラミックスで挾んで
両面に接合した積層体になっている。寸法は断面形状が
0.4×0.4mm2〜2×2.4mm2といった非常に小さいもので
ある。
As shown in FIG. 2, the structure of the temperature detecting element is such that a ZrO 2 —CaO solid solution of a semiconductor 7 is disposed in the center, and this is sandwiched between conductive ceramics 8 of a conductive material 8 connected to an electrode wire 9. It is a laminated body joined to. The dimensions are
It is very small, such as 0.4 × 0.4 mm 2 to 2 × 2.4 mm 2 .

温度検出素子がハニカム触媒層内の温度分布を検出で
きる原理が第8図に示される。すなわち、温度検出素子
は燃焼温度範囲で抵抗温度係数が負で、かつ温度係数が
大きいZrO2系素子等の半導体を導電性材で挾みこんだ構
造から構成される。中の半導体は第9図のZrO2系半導体
の例に示されるように温度が上がると抵抗が著しく低下
する特性を示す。したがってこのような材料をハニカム
触媒層内に挿入した場合、最も温度の高い部分で抵抗が
最小になることから、この半導体を導電性材で挾みこん
で電圧をかけておくと優先的にこの抵抗の小さな部分に
電流が流れ、この電流を検知することにより層内の温度
を検出できることになる。このような素子を用いること
により最高温度を示す位置が変わっても最高温度は検出
できることになる。
The principle by which the temperature detecting element can detect the temperature distribution in the honeycomb catalyst layer is shown in FIG. That is, the temperature detecting element has a structure in which a semiconductor such as a ZrO 2 -based element having a negative temperature coefficient of resistance and a large temperature coefficient in a combustion temperature range is sandwiched between conductive materials. The semiconductor in the middle shows a characteristic that the resistance is remarkably reduced when the temperature rises, as shown in the example of the ZrO 2 -based semiconductor in FIG. Therefore, when such a material is inserted into the honeycomb catalyst layer, the resistance is minimized at the portion where the temperature is highest. Therefore, if a voltage is applied between the semiconductor and the conductive material, the resistance is preferentially increased. Current flows in a small portion of the layer, and by detecting this current, the temperature in the layer can be detected. By using such an element, the maximum temperature can be detected even if the position indicating the maximum temperature changes.

一例として、ZrO2−CaO固溶体の導電特性は第9図に
示した通りであるが、半導体に要求される特性としては
(1)燃焼温度範囲(800〜1000℃)で抵抗温度係数が
負であり、しかも係数の絶対値が大きいこと(抵抗値が
熱敏感であること)。(2)熱的に特性が安定であるこ
と。の2点が要求される。
As an example, the conductive properties of the ZrO 2 —CaO solid solution are as shown in FIG. 9, but the properties required of the semiconductor are (1) a combustion temperature range (800 to 1000 ° C.) and a negative temperature coefficient of resistance. Yes, and the absolute value of the coefficient is large (the resistance value is thermally sensitive). (2) Thermally stable characteristics. The following two points are required.

この条件に合致するものとしてはCaO,MgO,Y2O3を添加
して安定化した安定化ジルコニアがあり、この場合には
固溶させる安定化成分やその量によって抵抗特性を変化
できる。このほかにCoO−Al2O3等のスピネル型半導体も
上記条件を満足しており適用可能である。
As a material that satisfies this condition, there is stabilized zirconia stabilized by adding CaO, MgO, and Y 2 O 3. In this case, the resistance characteristics can be changed depending on the stabilizing component to be dissolved and its amount. Spinel type semiconductor such as CoO-Al 2 O 3 In addition to this can also be applied which satisfies the above conditions.

一方、導電性材は燃焼範囲において前記半導体より少
なくても100倍以上の導電性を有すること及び半導体と
の接合性や熱膨張率が近いことが必要である。第10図に
は代表的な導電性セラミックス材料の抵抗特性を示す。
この多くはSiCやZrO2等の基材セラミックスとZrB2,TiN
及びTiC導電性セラミックスの混合体で両者の比率で抵
抗特性が変化する。
On the other hand, it is necessary that the conductive material has at least 100 times or more the conductivity in the combustion range as compared with the semiconductor and that the bonding property with the semiconductor and the coefficient of thermal expansion are close. FIG. 10 shows the resistance characteristics of typical conductive ceramic materials.
Most of them are made of base ceramics such as SiC or ZrO 2 and ZrB 2 , TiN
And a mixture of TiC conductive ceramics, the resistance characteristics of which change with the ratio of both.

半導体と導電性材の積層体は圧粉成形体の段階で重ね
あわせ、これを一体焼結させることにより得られ、これ
を第3図に示されるように短ざく状に切断して温度検出
素子とする。
The laminated body of the semiconductor and the conductive material is obtained by superimposing at the stage of the green compact and sintering it integrally, and cutting this into a short shape as shown in FIG. And

温度検出素子の構造としてはこのような積層型のほか
に第4図に示されるようなPt等の耐熱・耐食性のある電
極線9を埋めこんだものでも良い。この場合は温度検出
素子の成形体に電極線9を埋め込み焼成することにより
製造できる。
As a structure of the temperature detecting element, in addition to such a laminated type, a structure in which an electrode wire 9 having heat resistance and corrosion resistance such as Pt as shown in FIG. 4 may be embedded. In this case, it can be manufactured by embedding the electrode wire 9 in the molded body of the temperature detecting element and firing it.

以上のような構造の温度検出素子に電圧を印加してお
くと、ハニカム触媒層内の最高温度の部分で大きく抵抗
が低下し電流が流れる。この電流値により最高温度を推
定し、劣化温度に対応した電流値以上にならないように
ファンによる空気量を制御し、層内の燃焼温度が一定値
以下となるように保持できる。
When a voltage is applied to the temperature detecting element having the above-described structure, the resistance is greatly reduced at the highest temperature portion in the honeycomb catalyst layer, and a current flows. The maximum temperature is estimated based on this current value, the amount of air by the fan is controlled so as not to exceed the current value corresponding to the deterioration temperature, and the combustion temperature in the layer can be maintained at a certain value or less.

ハニカム触媒層内の温度と温度検出素子の出力電流の
関係は層内の温度分布の形状により異なりこれが誤差要
因となる。例えば分布の幅が2倍になると抵抗値は1/2
となり、電流値は倍増する。ところが実際には分布の形
状は実験的に触媒の担持の状態、空気過剰率及び空間速
度を変えても最高温度付近の分布形状の差はたかだか20
%程度である。さらに製品の場合には条件が比較的一定
しているためせいぜい5%以下となり誤差は非常に小さ
い。一例として第5図に分布の広さが20%異なる場合の
温度と出力電流の関係を模式的に示される。ある標準的
な分布Aに対して分布の20%広いBでは最高温度が一致
した時出力電流は20%高目となる。したがって、出力電
流に基づく温度の推定誤差は抵抗温度係数(出力電流の
温度に対する増加割合……勾配)に依存し、抵抗温度係
数が大なるほど推定誤差は小さくなる。実際に第9図に
示されるZrO2−CaO固溶体を用いた温度検出素子につい
て試算すると温度1000℃前後における温度推定誤差は1
〜2%であり、実用上ほとんど問題ないといえる。
The relationship between the temperature in the honeycomb catalyst layer and the output current of the temperature detecting element differs depending on the shape of the temperature distribution in the layer, and this causes an error. For example, if the width of the distribution doubles, the resistance value will be 1/2
And the current value doubles. However, in practice, the difference between the distribution shapes near the maximum temperature is at most 20 even when the catalyst loading state, air excess ratio and space velocity are experimentally changed.
%. Further, in the case of a product, since the conditions are relatively constant, the error is very small at most 5% or less. As an example, FIG. 5 schematically shows the relationship between the temperature and the output current when the distribution width differs by 20%. In the case of B, which is 20% wider than the standard distribution A, the output current is 20% higher when the maximum temperature matches. Therefore, the error in estimating the temperature based on the output current depends on the temperature coefficient of resistance (the rate of increase of the output current with respect to the temperature...). The larger the temperature coefficient of resistance, the smaller the estimation error. Actual calculation of the temperature detecting element using the ZrO 2 -CaO solid solution shown in FIG.
22%, which means that there is almost no problem in practical use.

〔発明の効果〕〔The invention's effect〕

本発明によれば、触媒燃焼装置の触媒層の貫通孔に温
度検出素子を挿入することによって、燃焼温度の検出と
制御が可能になり、触媒の劣化を未然に防止できる。ま
た、このシステムを用いれば、バックファイアや吹き消
え時の警報や安全対策も同時にできて装置に対する信頼
性が向上する。
According to the present invention, by inserting the temperature detecting element into the through hole of the catalyst layer of the catalytic combustion device, it becomes possible to detect and control the combustion temperature, and to prevent the deterioration of the catalyst. Further, if this system is used, an alarm at the time of backfire or blowout and safety measures can be performed at the same time, and the reliability of the device is improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例を示す断面図、第2図は本
発明の第2実施例を示す温度検出素子の断面図、第3図
は温度検出素子の製造法を示す斜視図、第4図は温度検
出素子の他の製造法を示す斜視図、第5図は温度検出素
子の誤差を示すグラフ、第6図は空気量増加によるハニ
カム触媒層の位置に対する温度を示すグラフ、第7図は
空気量の増減に対するハニカム触媒層内温度を示すグラ
フ、第8図は本発明の温度検出素子の原理、作用を示す
グラフ、第9図は温度検出素子の特性を示すグラフ、第
10図は導電性セラミックスの特性を示す図、第11図は触
媒の劣化特性を示すグラフである。 1……(ハニカム)触媒層、2……温度検出素子、 3……制御部、4……可燃性ガス、 5……ファン(空気)、7……半導体、 8……導電性材。
FIG. 1 is a sectional view showing a first embodiment of the present invention, FIG. 2 is a sectional view of a temperature detecting element showing a second embodiment of the present invention, and FIG. 3 is a perspective view showing a method of manufacturing the temperature detecting element. FIG. 4 is a perspective view showing another method of manufacturing the temperature detecting element, FIG. 5 is a graph showing an error of the temperature detecting element, FIG. 6 is a graph showing the temperature with respect to the position of the honeycomb catalyst layer due to an increase in the amount of air, FIG. 7 is a graph showing the temperature in the honeycomb catalyst layer with respect to the increase and decrease of the air amount, FIG. 8 is a graph showing the principle and operation of the temperature detecting element of the present invention, FIG. 9 is a graph showing the characteristics of the temperature detecting element,
FIG. 10 is a diagram showing the characteristics of the conductive ceramics, and FIG. 11 is a graph showing the deterioration characteristics of the catalyst. 1 ... (honeycomb) catalyst layer, 2 ... temperature detection element, 3 ... control unit, 4 ... flammable gas, 5 ... fan (air), 7 ... semiconductor, 8 ... conductive material.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】多数の貫通孔を有する一体構造型担体に貴
金属酸化触媒を担持して触媒層を形成し、該触媒層に空
気と混合した可燃性ガスを流通して高温で接触燃焼させ
る触媒燃焼装置において、前記触媒層の貫通孔に挿入さ
れかつその温度を検出する温度検出素子と、該温度検出
素子の信号で前記空気の流量を調整し燃焼温度を制御す
る手段とを備えることを特徴とする触媒燃焼装置。
1. A catalyst in which a noble metal oxidation catalyst is supported on a monolithic carrier having a large number of through-holes to form a catalyst layer, and a combustible gas mixed with air flows through the catalyst layer to contact and burn at a high temperature. In the combustion device, a temperature detection element inserted into the through hole of the catalyst layer and detecting the temperature thereof, and a means for adjusting a flow rate of the air by a signal of the temperature detection element and controlling a combustion temperature are provided. And a catalytic combustion device.
【請求項2】温度検出素子が燃焼温度範囲で負の抵抗温
度係数を有しかつその抵抗温度係数が大きい半導体と、
該半導体を挾んで両面に接合して電極線に接続する導電
性材とからなることを特徴とする特許請求の範囲第1項
記載の触媒燃焼装置。
2. A semiconductor wherein the temperature detecting element has a negative temperature coefficient of resistance in a combustion temperature range and has a large temperature coefficient of resistance.
2. The catalytic combustion apparatus according to claim 1, wherein said apparatus comprises a conductive material which is joined to both sides of said semiconductor and connected to an electrode wire.
JP62175473A 1987-07-14 1987-07-14 Catalytic combustion device Expired - Fee Related JP2604164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62175473A JP2604164B2 (en) 1987-07-14 1987-07-14 Catalytic combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62175473A JP2604164B2 (en) 1987-07-14 1987-07-14 Catalytic combustion device

Publications (2)

Publication Number Publication Date
JPS6419220A JPS6419220A (en) 1989-01-23
JP2604164B2 true JP2604164B2 (en) 1997-04-30

Family

ID=15996671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62175473A Expired - Fee Related JP2604164B2 (en) 1987-07-14 1987-07-14 Catalytic combustion device

Country Status (1)

Country Link
JP (1) JP2604164B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1282428B1 (en) * 1995-08-01 1998-03-23 Zeltron Spa CONTROL SYSTEM FOR CATALYTIC BURNER
DE19542038A1 (en) * 1995-11-10 1997-05-15 Roth Technik Gmbh catalyst
FR2741140B1 (en) * 1995-11-14 1998-01-30 Applic Gaz Sa HEATING APPARATUS WITH CATALYTIC BURNER
JPWO2013099916A1 (en) * 2011-12-28 2015-05-07 川崎重工業株式会社 Flow velocity distribution homogenizer

Also Published As

Publication number Publication date
JPS6419220A (en) 1989-01-23

Similar Documents

Publication Publication Date Title
US4578172A (en) Air/fuel ratio detector
US4543176A (en) Oxygen concentration detector under temperature control
JP6691447B2 (en) Catalyst deterioration diagnosis method
JP3546590B2 (en) Air-fuel ratio sensor
EP1271054B1 (en) Method and apparatus for controlling combustion using an oxygen sensor
JP4973533B2 (en) Electric current control system for electric heating type catalytic device
GB2062244A (en) System for feedback control of air/fuel ratio in ic engine with means to control supply of current to oxygen sensor
GB2060177A (en) System for feedback control of air-fuel ration in ic engine with subsystem to control current supply to oxygen sensor
CN1327120C (en) O sensor and air-fuel-ratio control device
JP2604164B2 (en) Catalytic combustion device
JP3481344B2 (en) Method for detecting deterioration of exhaust gas purifying catalyst and system therefor
US6348872B1 (en) Gas detector-alarm employing hot-wire gas sensor
US4358265A (en) Combustion appliance with a safety device
JPH01139906A (en) Catalytic combustor
JP5021400B2 (en) Combustible gas detector
JPS63165744A (en) Sensor for diagnosing deterioration of catalyst
JP2008076410A (en) Gas concentration detector
JP3013270B2 (en) Exhaust gas purification device
JPH0789109B2 (en) Oxygen concentration detector
JPS6144209B2 (en)
JP3809897B2 (en) Combustible gas concentration measuring device
JP6923470B2 (en) Plasma generator and its control method.
JPS5941385Y2 (en) Sensors for safety devices for gas combustion equipment
JPS61241652A (en) Method for discriminating activation of oxygen concentration sensor
JPS62178818A (en) Exhaust gas detector attaching structure for burner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees