JP2599786B2 - Waveguide type diffraction grating - Google Patents

Waveguide type diffraction grating

Info

Publication number
JP2599786B2
JP2599786B2 JP6558889A JP6558889A JP2599786B2 JP 2599786 B2 JP2599786 B2 JP 2599786B2 JP 6558889 A JP6558889 A JP 6558889A JP 6558889 A JP6558889 A JP 6558889A JP 2599786 B2 JP2599786 B2 JP 2599786B2
Authority
JP
Japan
Prior art keywords
waveguide
dimensional
dimensional waveguide
waveguides
diffraction grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6558889A
Other languages
Japanese (ja)
Other versions
JPH02244105A (en
Inventor
浩 ▲高▼橋
功雄 西
邦治 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP6558889A priority Critical patent/JP2599786B2/en
Publication of JPH02244105A publication Critical patent/JPH02244105A/en
Application granted granted Critical
Publication of JP2599786B2 publication Critical patent/JP2599786B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、優れた分解能および高い回折効率を有する
導波路形回折格子に関するものである。
The present invention relates to a waveguide type diffraction grating having excellent resolution and high diffraction efficiency.

「従来の技術」 近年、波長分割多重伝送システムにおいて、多重度を
増やし伝送量を増大させようという試みがなされてい
る。これを実現するには波長間隔の小さい光を分波でき
る分波器が必要であるが、従来の回折格子を用いた分波
器では、分解能を上げるために回折次数の高い回折光を
用いると、回折効率が低下するという欠点があった。こ
れを回避する有用な方法の1つとして、複数の同心円弧
上に配置された三次元導波路により、回折格子の機能を
持たせる方法が知られている('New focusing and disp
ersive planar component based on an optical phased
array';M.K.Smit,Electronics Letters,Vol.24,pp.385
−386,1988.)。同論文の方法においては、回折角θ、
導波路間隔ΔR、円弧の開き角φ、二次元導波路の等価
屈折率ns、三次元導波路の等価屈折率nc、回折次数m、
真空中での波長λは次式の関係にある。
[Related Art] In recent years, in a wavelength division multiplexing transmission system, attempts have been made to increase the degree of multiplexing and increase the amount of transmission. To achieve this, a demultiplexer capable of demultiplexing light with a small wavelength interval is necessary.However, in a demultiplexer using a conventional diffraction grating, if high-order diffracted light is used to increase the resolution, However, there is a disadvantage that the diffraction efficiency is reduced. As one of useful methods for avoiding this, a method is known in which a three-dimensional waveguide arranged on a plurality of concentric arcs has the function of a diffraction grating ('New focusing and disp.
ersive planar component based on an optical phased
array '; MKSmit, Electronics Letters, Vol.24, pp.385
−386, 1988.). In the method of the same paper, the diffraction angle θ,
Waveguide spacing ΔR, arc opening angle φ, equivalent refractive index n s of a two-dimensional waveguide, equivalent refractive index n c of a three-dimensional waveguide, diffraction order m,
The wavelength λ in a vacuum has the following relationship.

nsΔRsinθ+ncφΔR=mλ ……(1) 中心波長λの近傍においてはθ=0であり、このと
き回折次数mは次式で与えられる。
n s ΔR sin θ + n c φΔR = mλ (1) θ = 0 near the center wavelength λ o , and the diffraction order m is given by the following equation.

従って、分解可能最小波長間隔Δλは、導波路数をN
として、次式で与えられる。
Therefore, the minimum resolvable wavelength interval Δλ is equal to N
Is given by the following equation.

上式(3)において、導波路数Nと導波路間隔ΔRの
積NΔRは、およそその導波路形回折格子の横幅を示す
もので、その大きさは導波路を形成する基板の大きさに
制限される。ns,ncは導波路の材料により定まるもので
ある。従って、導波路材料と基板の大きさが限定された
場合、高分解能な回折格子を得るためには円弧の開き角
φを大きく取れば良い。
In the above equation (3), the product NΔR of the number N of waveguides and the spacing ΔR of the waveguides roughly indicates the width of the waveguide type diffraction grating, and the size is limited by the size of the substrate forming the waveguide. Is done. n s and n c are determined by the material of the waveguide. Therefore, when the size of the waveguide material and the size of the substrate are limited, in order to obtain a high-resolution diffraction grating, the opening angle φ of the arc may be set to be large.

「発明が解決しようとする課題」 ところが、現実的には開き角φを2π以上取ることは
不可能であり、これが高分解能化の障害となっている。
[Problem to be Solved by the Invention] However, it is practically impossible to set the opening angle φ to 2π or more, which is an obstacle to high resolution.

また、各三次元導波路の曲率半径が異なるため各三
次元導波路の伝搬特性が一様でない、入力光軸と出力
光軸のなす角度を任意に設定できないため実際の合分波
器として組み立てる際に光軸合わせなどが煩雑になる、
という欠点があった。
In addition, since the three-dimensional waveguides have different curvature radii, the propagation characteristics of the three-dimensional waveguides are not uniform, and the angle between the input optical axis and the output optical axis cannot be set arbitrarily. When the optical axis alignment becomes complicated,
There was a disadvantage.

本発明は、このような問題を解決課題とし、波長間隔
の狭い波長分割多重伝送システム用光合分波器に適用で
きる高分解能でかつ回折効率の高い導波路形回折格子を
提供することを目的とする。
An object of the present invention is to provide a waveguide type diffraction grating with high resolution and high diffraction efficiency which can be applied to an optical multiplexer / demultiplexer for a wavelength division multiplexing transmission system having a narrow wavelength interval to solve such a problem. I do.

「課題を解決するための手段」 本発明の導波路形回折格子は、入力端を有する第1の
二次元導波路と、出力端を有する第2の二次元導波路
と、第1の二次元導波路と第2の二次元導波路を接続す
る長さの異る複数の三次元導波路からなり、三次元導波
路を伝搬した後の光の位相が各三次元導波路間で異なる
ことにより波長依存性角度分散を有することを特徴とす
る。
[Means for Solving the Problems] A waveguide type diffraction grating according to the present invention includes a first two-dimensional waveguide having an input end, a second two-dimensional waveguide having an output end, and a first two-dimensional waveguide. It consists of a plurality of three-dimensional waveguides having different lengths connecting the waveguide and the second two-dimensional waveguide, and the phase of light after propagating through the three-dimensional waveguide is different between the three-dimensional waveguides. It is characterized by having wavelength-dependent angular dispersion.

「作用」 本発明の導波路形回折格子は、長さが異なる複数の三
次元導波路によって、光の位相を各三次元導波路間で異
ならせることにより、形状的に制限されることなく、基
板の大きさが許す範囲内で三次元導波路間に大きな行路
長差を生じさせて、高分解能化を実現する。
"Operation" The waveguide-type diffraction grating of the present invention, by a plurality of three-dimensional waveguides having different lengths, by making the phase of light different between each three-dimensional waveguide, without being limited in shape, A large path length difference is generated between the three-dimensional waveguides within a range allowed by the size of the substrate, thereby realizing high resolution.

また、各三次元導波路を円弧状および直線状の三次元
導波路の組合せとすることにより、隣接する三次元導波
路間の行路長差を、直線部分の長さを変えることによっ
て発生させる。また、この場合には、円弧部の曲率半径
を等しくし、その円弧部の伝搬特性を全ての導波路にお
いて等しくして、三次元導波路からの出力を均一にする
と共に、円弧と直線の組合せによって入力光軸と出力光
軸の角度を任意に設定できるものとする。
Further, by making each three-dimensional waveguide a combination of an arc-shaped and a linear three-dimensional waveguide, a path length difference between adjacent three-dimensional waveguides is generated by changing the length of the linear part. In this case, the radius of curvature of the arc portion is made equal, the propagation characteristics of the arc portion are made equal in all the waveguides, the output from the three-dimensional waveguide is made uniform, and the combination of the arc and the straight line is performed. Thus, the angle between the input optical axis and the output optical axis can be set arbitrarily.

また、入力端を含むローランド円の直径を半径とする
円周上に三次元導波路と第1の二次元導波路の結合部を
配置し、出力端を含むローランド円の直径を半径とする
円周上に三次元導波路の他端と第2の二次元導波路の結
合部の配置することにより、コリメート及び集光用のレ
ンズを必要としない設計を可能とする。
In addition, a coupling portion between the three-dimensional waveguide and the first two-dimensional waveguide is arranged on a circumference having a radius equal to the diameter of the Roland circle including the input end, and a circle having a radius equal to the diameter of the Roland circle including the output end. By arranging the coupling portion between the other end of the three-dimensional waveguide and the second two-dimensional waveguide on the circumference, it is possible to perform a design that does not require a collimating and focusing lens.

さらに、各三次元導波路の途中に高反射率の終端処理
を施すことにより、第1の二次元導波路と第2の二次元
導波路を同一のものとして全体の大きさを半減すると共
に、円弧状の三次元導波路を必要としない構成を実現し
て、導波路設計の労力を低減する。
Further, by performing a high-reflectance termination treatment in the middle of each three-dimensional waveguide, the first two-dimensional waveguide and the second two-dimensional waveguide are made the same, and the entire size is reduced by half. A configuration that does not require an arcuate three-dimensional waveguide is realized, and the effort of waveguide design is reduced.

「実施例」 以下、本発明の実施例を説明するに先立ち、本発明の
特徴と従来技術との差異について説明する。
"Embodiments" Before describing the embodiments of the present invention, the features of the present invention and the differences between the present invention and the prior art will be described.

先述の論文の方法における分解能の限界の原因は、複
数の三次元導波路間の行路長差を円弧の曲率の違いによ
り発生させていたことにある。一方本発明においては、
長さの異なる複数の三次元導波路によって、三次元導波
路間に行路長差を生じさせるものであり、そのための一
構成例としては、各三次元導波路を円弧状および直線状
の三次元導波路の組合せとして、隣接する三次元導波路
間の行路長差を、それらの直線部分の長さを変えること
によって発生させる。この構成例において、円弧状の三
次元導波路の目的は、長さの異なる直線状三次元導波路
を配置するために行路を曲げることであり、行路長差を
発生させることを目的としていないため、曲率半径はす
べて等しい。この点において本発明と先述の論文の方法
はまったく異なる。
The cause of the limitation of the resolution in the method of the above-mentioned article is that a difference in path length between a plurality of three-dimensional waveguides is caused by a difference in curvature of an arc. On the other hand, in the present invention,
A path length difference is generated between three-dimensional waveguides by a plurality of three-dimensional waveguides having different lengths. One example of a configuration for this purpose is to form each three-dimensional waveguide into an arc-shaped and linear three-dimensional waveguide. As a combination of waveguides, a path length difference between adjacent three-dimensional waveguides is generated by changing the length of their linear portions. In this configuration example, the purpose of the arc-shaped three-dimensional waveguide is to bend the path to arrange linear three-dimensional waveguides having different lengths, and is not intended to generate a path length difference. , The radii of curvature are all equal. In this respect, the method of the present invention is completely different from that of the above-mentioned article.

ところで、隣接する三次元導波路間の行路長差をΔL
とすると第2の二次元導波路内の回折光の回折角βは次
式で与えられる。
By the way, the path length difference between adjacent three-dimensional waveguides is ΔL
Then, the diffraction angle β of the diffracted light in the second two-dimensional waveguide is given by the following equation.

a(sinα+sinβ)ns+ΔLnc=mλ ……(4) ここで、aは第2の二次元導波路に結合する部分にお
ける複数の三次元導波路の間隔、αは入射角である。si
nα+sinβ=0なる中心波長λにおいては次式が成立
する。
a (sinα + sinβ) n s + ΔLn c = mλ ...... (4) where, a is the interval of a plurality of three-dimensional waveguide at a portion coupled to the second two-dimensional waveguide, alpha is the incident angle. si
The following equation is established in nα + sinβ = 0 become a center wavelength λ o.

従って、分解可能最小波長間隔Δλは次式で与えられ
る。
Therefore, the minimum resolvable wavelength interval Δλ is given by the following equation.

ΔLには形状的な制限がないため、本発明において
は、基板の大きさが許す範囲内でその値を大きく設定す
ることが可能となる。従って、容易に高分解能化が可能
である。
Since there is no limitation on the shape of ΔL, in the present invention, it is possible to set the value as large as possible within the range permitted by the size of the substrate. Therefore, high resolution can be easily achieved.

次に、図面に基づき本発明の実施例について詳述す
る。
Next, an embodiment of the present invention will be described in detail with reference to the drawings.

第1図に本発明の第1の実施例を示す。 FIG. 1 shows a first embodiment of the present invention.

本実施例では、導波路基板1上に入力用三次元導波路
9、第1の二次元導波路2、コリメート用導波路レンズ
7、三次元導波路4、第2の二次元導波路3、集光用導
波路レンズ8、出力用三次元導波路10が配置されてい
る。各三次元導波路4は4個の90゜円弧状三次元導波路
5と5個の直線状三次元導波路6からなり、その行路長
は隣接するものとΔLだけ異なるように設計する。全て
の円弧状三次元導波路5の曲率半径は等しく、隣接する
導波路間の行路長差ΔLは直線部の長さの違いにより生
じている。同第1図から明らかなように、本実施例にお
いては、基板の大きさの範囲内であれば、形状的な制限
無しでΔLを設定できることになる。
In this embodiment, the input three-dimensional waveguide 9, the first two-dimensional waveguide 2, the collimating waveguide lens 7, the three-dimensional waveguide 4, the second two-dimensional waveguide 3, A condensing waveguide lens 8 and an output three-dimensional waveguide 10 are arranged. Each three-dimensional waveguide 4 is composed of four 90 ° arc-shaped three-dimensional waveguides 5 and five linear three-dimensional waveguides 6, and their path lengths are designed to be different from the adjacent ones by ΔL. All the arcuate three-dimensional waveguides 5 have the same radius of curvature, and the path length difference ΔL between adjacent waveguides is caused by the difference in the length of the linear portion. As is apparent from FIG. 1, in this embodiment, ΔL can be set without any limitation in shape within the range of the size of the substrate.

このような構成において、入力用三次元導波路9から
入射した波長の異なる光の混合光は、導波路レンズ7に
より平行光に変換され、第1の二次元導波路2と結合し
ている複数の三次元導波路4に導かれる。三次元導波路
4を伝搬した後の混合光は第2の二次元導波路3内を伝
搬する際、それぞれ前述した(4)式を満足する方向に
回折し、導波路レンズ8により収束され異なる位置に焦
点を結ぶ。出力用三次元導波路10の一端はあらかじめ各
波長の光が収束する位置に配置されており、異なる波長
の光はそれぞれ異なる三次元導波路8内を伝搬し基板端
に到達する。
In such a configuration, the mixed light of light having different wavelengths incident from the input three-dimensional waveguide 9 is converted into parallel light by the waveguide lens 7 and is coupled to the first two-dimensional waveguide 2. To the three-dimensional waveguide 4. When the mixed light having propagated through the three-dimensional waveguide 4 propagates through the second two-dimensional waveguide 3, it is diffracted in directions satisfying the above-described equation (4), and is converged by the waveguide lens 8 to be different. Focus on position. One end of the output three-dimensional waveguide 10 is previously arranged at a position where light of each wavelength converges, and light of different wavelengths propagates in different three-dimensional waveguides 8 and reaches the substrate end.

本実施例では、各三次元導波路4が5個の直線状三次
元導波路6と4個の円弧状三次元導波路5からなり、入
射光軸と出射光軸が同一直線上にあるとしたが、本発明
はこの実施例に限定されるものでなく、例えば、2個の
直線状三次元同一と1個の円弧上三次元導波路を組み合
わせて、入射光軸と出射光軸を直行させる、等の設計が
できることは自明である。
In this embodiment, each three-dimensional waveguide 4 is composed of five linear three-dimensional waveguides 6 and four arc-shaped three-dimensional waveguides 5, and the incident optical axis and the outgoing optical axis are on the same straight line. However, the present invention is not limited to this embodiment. For example, by combining two linear three-dimensional identical and one circular three-dimensional waveguides, the incident optical axis and the exit optical axis It is obvious that such a design can be made.

第2図は本発明の第2の実施例である。 FIG. 2 shows a second embodiment of the present invention.

本実施例では、第1の二次元導波路12と結合する三次
元導波路14の端部が入力用三次元導波路19端部を含む第
1のローランド円17の直径を半径とする円周上に配置さ
れ、第2の二次元導波路13と接合する三次元導波路14の
端部が出力用三次元導波路20端部を含むローランド円18
の直径を半径とする円周上に配置されている。このよう
な配置によりコリメート用レンズと集光用レンズが不用
となることは従来の凹面回折格子から明らかである。二
次元導波路内にレンズを作製する必要がないため、1回
のパタンニングで作製できプロセスの時間と経費を大幅
に軽減できる。本実施例における回折格子としての動作
及び得られる効果は第1の実施例と同様である。
In the present embodiment, the end of the three-dimensional waveguide 14 coupled to the first two-dimensional waveguide 12 has a circumference whose radius is the diameter of the first Rowland circle 17 including the end of the input three-dimensional waveguide 19. The end of the three-dimensional waveguide 14 arranged above and joined to the second two-dimensional waveguide 13 is a Rowland circle 18 including the end of the output three-dimensional waveguide 20.
Are arranged on a circumference having a radius of. It is apparent from the conventional concave diffraction grating that such an arrangement eliminates the need for the collimating lens and the condensing lens. Since it is not necessary to manufacture a lens in a two-dimensional waveguide, the lens can be manufactured by one patterning, and the time and cost of the process can be greatly reduced. The operation as a diffraction grating and the effects obtained in this embodiment are the same as those in the first embodiment.

第3図は本発明の第3の実施例である。 FIG. 3 shows a third embodiment of the present invention.

本実施例の特徴は、直線状三次元導波路23の一端に高
反射率終端処理24を施すことにより、第1および第2の
実施例で2個必要だった二次元導波路を1個としている
点である。入力用三次元導波路26の一端と出力用三次元
導波路27の一端は同一のローランド円25上に配置され、
ローランド円25の直径を半径とする円周上に三次元導波
路23と二次元導波路22の結合部が配置されている。第1
および第2の実施例が透過形回折格子であったのに対し
て、本実施例は反射形回折格子である。本実施例の構造
とすることにより、構造の簡易化と小型化を図ることが
できる。また、本実施例では所望の行路長差ΔLを円弧
状三次元導波路を用いず実現できるのも特筆すべき点で
ある。本実施例の回折格子としての動作及び得られる効
果は第1および第2の実施例と同様である。
The feature of the present embodiment is that the two-dimensional waveguides required in the first and second embodiments are reduced to one by applying a high-reflectance termination treatment 24 to one end of the linear three-dimensional waveguide 23. It is a point. One end of the input three-dimensional waveguide 26 and one end of the output three-dimensional waveguide 27 are arranged on the same Rowland circle 25,
The joint between the three-dimensional waveguide 23 and the two-dimensional waveguide 22 is arranged on a circumference having a radius equal to the diameter of the Rowland circle 25. First
In contrast to the transmission type diffraction grating in the second embodiment, the present embodiment is a reflection type diffraction grating. With the structure of this embodiment, the structure can be simplified and downsized. Also, it should be noted that in this embodiment, a desired path length difference ΔL can be realized without using an arcuate three-dimensional waveguide. The operation of the diffraction grating of this embodiment and the effects obtained are the same as those of the first and second embodiments.

ところで、上述した第1から第3の実施例において
は、二次元導波路と複数の三次元導波路は直接端面結合
しているためモード変換損失を生じ、回折効率の点から
は最適な構造とは言い難い。この欠点を解決するには、
二次元導波路と複数の三次元導波路の間にテーパ状導波
路を挿入することが有効である。この構造により、本発
明の回折格子としての特徴を損なうことなく回折効率を
さらに向上させることが可能である。
By the way, in the above-described first to third embodiments, since the two-dimensional waveguide and the plurality of three-dimensional waveguides are directly coupled to each other at the end face, mode conversion loss occurs. Is hard to say. To overcome this shortcoming,
It is effective to insert a tapered waveguide between a two-dimensional waveguide and a plurality of three-dimensional waveguides. With this structure, the diffraction efficiency can be further improved without impairing the characteristics of the diffraction grating of the present invention.

また、第1から第3の実施例においては、第1の二次
元導波路レンズと第2の二次元導波路レンズを等しいと
し、第1の二次元導波路に結合する三次元導波路の間隔
と第2の二次元導波路に結合する三次元導波路の間隔と
を等しいとしたが、本発明はこの実施例に限定されるも
のではなく、異なった値に設計することが可能であるこ
とは明らかである。
In the first to third embodiments, it is assumed that the first two-dimensional waveguide lens is equal to the second two-dimensional waveguide lens, and the distance between the three-dimensional waveguides coupled to the first two-dimensional waveguide is set. And the distance between the three-dimensional waveguides coupled to the second two-dimensional waveguide is assumed to be equal. However, the present invention is not limited to this embodiment, and can be designed to have different values. Is clear.

また、第1から第3の実施例においては、三次元導波
路の間隔を一定値とし、三次元導波路の導波路長差を一
定値としたが、本発明はこの実施例に限定されるもので
はなく、間隔と導波路長差が比例の関係にあれば必ずし
も一定の値である必要がないことは明らかである。
In the first to third embodiments, the distance between the three-dimensional waveguides is set to a constant value, and the difference in the waveguide length of the three-dimensional waveguide is set to a constant value. However, the present invention is limited to this embodiment. Obviously, it is not always necessary to have a constant value if the distance and the waveguide length difference are in a proportional relationship.

また、第1から第3の実施例においては、第1の二次
元導波路に入力用三次元導波路を備え、第2の二次元導
波路に出力用三次元導波路を備えていたが、本発明はこ
の実施例に限定されるものではなく、第1の二次元導波
路および第2の二次元導波路の端部から直接入出力が可
能であることは自明である。
In the first to third embodiments, the first two-dimensional waveguide is provided with the input three-dimensional waveguide, and the second two-dimensional waveguide is provided with the output three-dimensional waveguide. The present invention is not limited to this embodiment, and it is obvious that direct input / output is possible from the ends of the first two-dimensional waveguide and the second two-dimensional waveguide.

「発明の効果」 以上説明したように、本発明の導波路形回折格子は、
長さが異なる複数の三次元導波路によって、光の位相を
各三次元導波路間で異ならせる構成であるから、形状的
に制限されることなく、基板の大きさが許す範囲内で三
次元導波路間に大きな行路長差を生じさせて、高分解能
化を実現することができる。従って、本発明によればフ
ォトリングラフィ技術を用いて、従来の回折格子よりも
高分解能で、しかも回折効率が高い導波路形回折格子を
得ることができる。また、コリメート用および集光用レ
ンズを不用とすることも可能である。これらの特徴は、
波長間隔の小さな波長分割多重伝送システム用導波路形
光合分波器を構成する上で非常に大きな利点となる。
"Effect of the Invention" As described above, the waveguide type diffraction grating of the present invention is:
Since the phase of light is made different among the three-dimensional waveguides by a plurality of three-dimensional waveguides having different lengths, the three-dimensional waveguides are not limited in shape and are three-dimensional as long as the size of the substrate allows. A large path length difference is generated between the waveguides, and high resolution can be realized. Therefore, according to the present invention, a waveguide-type diffraction grating having higher resolution and higher diffraction efficiency than conventional diffraction gratings can be obtained by using the photolinography technique. It is also possible to eliminate the need for collimating and focusing lenses. These features
This is a great advantage in forming a waveguide type optical multiplexer / demultiplexer for a wavelength division multiplex transmission system having a small wavelength interval.

また、各三次元導波路を円弧状および直線状の三次元
導波路の組合せとすることにより、隣接する三次元導波
路間の行路長差を、直線部分の長さを変えることによっ
て発生させることができる。また、その円弧部の曲率半
径を等しくすることにより、その円弧部の伝搬特性を全
ての導波路において等しくして、三次元導波路からの出
力を均一にすることができる。また、円弧と直線の組合
せにより入力光軸と出力光軸の角度を任意に設定でき
る、等先述の論文の方法で問題となっていた点を解決す
ることができる。しかも、上述した(5)式で与えられ
る回折次数の回折光に光の強度が集中して不用次数への
放射が少なく、回折効率が非常に高い。
Further, by making each three-dimensional waveguide a combination of an arc-shaped and a linear three-dimensional waveguide, a path length difference between adjacent three-dimensional waveguides can be generated by changing the length of the linear part. Can be. Further, by making the radius of curvature of the arc portion equal, the propagation characteristics of the arc portion can be made equal in all the waveguides, and the output from the three-dimensional waveguide can be made uniform. In addition, it is possible to solve the problem caused by the method described in the above-mentioned paper, such that the angle between the input optical axis and the output optical axis can be arbitrarily set by a combination of an arc and a straight line. Moreover, the intensity of the light is concentrated on the diffracted light of the diffraction order given by the above equation (5), so that the radiation to the unnecessary orders is small and the diffraction efficiency is very high.

また、入力端を含むローランド円の直径を半径とする
円周上に三次元導波路と第1の二次元導波路の結合部を
配置し、出力端を含むローランド円の直径を半径とする
円周上に三次元導波路の他端と第2の二次元導波路の結
合部を配置することにより、コリメート及び集光用のレ
ンズを必要としない設計が可能となる。
In addition, a coupling portion of the three-dimensional waveguide and the first two-dimensional waveguide is arranged on a circumference having a radius equal to the diameter of the Roland circle including the input end, and a circle having a radius equal to the diameter of the Roland circle including the output end. By arranging the coupling portion between the other end of the three-dimensional waveguide and the second two-dimensional waveguide on the circumference, a design that does not require a lens for collimation and light collection becomes possible.

さらに、各三次元導波路の途中に高反射率の終端処理
を施すことにより、第1の二次元導波路と第2の二次元
導波路を同一のものとすることができる。また、この場
合には、全体の大きさが半減できるだけでなく、円弧状
の三次元導波路を必要としない構成ができて導波路設計
の労力を低減することも可能となる。
Further, by performing a high-reflectance termination process in the middle of each three-dimensional waveguide, the first two-dimensional waveguide and the second two-dimensional waveguide can be made the same. In this case, not only can the entire size be reduced by half, but also a configuration that does not require an arcuate three-dimensional waveguide can be achieved, and the labor for designing the waveguide can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1の実施例の構成図、第2図は本発
明の第2の実施例の構成図、第3図は本発明の第3の実
施例の構成図である。 1……導波路基板、2……第1の二次元導波路、 3……第2の二次元導波路、4……三次元導波路、 5……円弧状三次元導波路、 6……直線状三次元導波路、 7……コリメート用導波路レンズ、 8……集光用導波路レンズ、 9……入力用三次元導波路、 10……出力用三次元導波路、 11……導波路基板、 12……第1の二次元導波路、 13……第2の二次元導波路、 14……三次元導波路、 15……円弧状三次元導波路、 16……直線状三次元導波路、 17……第1のローランド円、 18……第2のローランド円、 19……入力用三次元導波路、 20……出力用三次元導波路、 21……導波路基板、22……二次元導波路、 23……三次元導波路、 24……高反射率終端処理、 25……ローランド円、 26……入力用三次元導波路、 27……出力用三次元導波路。
FIG. 1 is a block diagram of a first embodiment of the present invention, FIG. 2 is a block diagram of a second embodiment of the present invention, and FIG. 3 is a block diagram of a third embodiment of the present invention. DESCRIPTION OF SYMBOLS 1 ... Waveguide board, 2 ... 1st two-dimensional waveguide, 3 ... 2nd two-dimensional waveguide, 4 ... 3D waveguide, 5 ... Arc-shaped 3D waveguide, 6 ... Linear three-dimensional waveguide, 7: waveguide lens for collimation, 8: waveguide lens for condensing, 9: three-dimensional waveguide for input, 10: three-dimensional waveguide for output, 11: conductive Waveguide substrate, 12: first two-dimensional waveguide, 13: second two-dimensional waveguide, 14: three-dimensional waveguide, 15: arc-shaped three-dimensional waveguide, 16: linear three-dimensional Waveguide 17 First Rowland circle 18 Second Rowland circle 19 Three-dimensional waveguide for input 20 Three-dimensional waveguide for output 21 Waveguide substrate 22 ... 2D waveguide, 23 ... 3D waveguide, 24 ... High reflectivity termination, 25 ... Roland circle, 26 ... 3D waveguide for input, 27 ... 3D waveguide for output.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】入力端を有する第1の二次元導波路と、出
力端を有する第2の二次元導波路と、第1の二次元導波
路と第2の二次元導波路を接続する長さの異る複数の三
次元導波路からなり、三次元導波路を伝搬した後の光の
位相が各三次元導波路間で異なることにより波長依存性
角度分散を有することを特徴とする導波路形回折格子。
1. A first two-dimensional waveguide having an input end, a second two-dimensional waveguide having an output end, and a length connecting the first two-dimensional waveguide and the second two-dimensional waveguide. A waveguide comprising a plurality of three-dimensional waveguides having different wavelengths, and having a wavelength-dependent angular dispersion due to the phase of light after propagating through the three-dimensional waveguide being different between the three-dimensional waveguides. Shaped diffraction grating.
【請求項2】各三次元導波路が、複数の直線状三次元導
波路と、曲率半径の等しい複数の円弧状三次元導波路の
組合せから構成され、各三次元導波路の行路長を直線部
分の長さで調整することにより、任意の位相分布を得る
ことを特徴とする第1請求項に記載の導波路形回折格
子。
2. Each three-dimensional waveguide is composed of a combination of a plurality of linear three-dimensional waveguides and a plurality of arc-shaped three-dimensional waveguides having the same radius of curvature. The waveguide type diffraction grating according to claim 1, wherein an arbitrary phase distribution is obtained by adjusting the length of the portion.
【請求項3】第1の二次元導波路と結合する三次元導波
路の一端は、入力端を含む第1のローランド円の直径を
半径とする円周上に配置され、第2の二次元導波路と結
合する三次元導波路の他端は、出力端を含む第2のロー
ランド円の直径を半径とする円周上に配置されているこ
とを特徴とする第1請求項に記載の導波路形回折格子。
3. One end of the three-dimensional waveguide coupled to the first two-dimensional waveguide is disposed on a circumference having a radius equal to the diameter of the first Roland circle including the input end, and is connected to the second two-dimensional waveguide. 2. The waveguide according to claim 1, wherein the other end of the three-dimensional waveguide coupled to the waveguide is disposed on a circumference having a radius equal to the diameter of the second Rowland circle including the output end. Waveguide diffraction grating.
【請求項4】第1の二次元導波路と第2の二次元導波路
は同一であって、入力端、出力端及び複数の三次元導波
路の片端と結合し、三次元導波路の他端は高反射率終端
とされていることを特徴とする第1請求項に記載の導波
路形回折格子。
4. The first two-dimensional waveguide is identical to the second two-dimensional waveguide, and is coupled to an input end, an output end, and one end of a plurality of three-dimensional waveguides. 2. The waveguide type diffraction grating according to claim 1, wherein the end is a high reflectance terminal.
JP6558889A 1989-03-17 1989-03-17 Waveguide type diffraction grating Expired - Lifetime JP2599786B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6558889A JP2599786B2 (en) 1989-03-17 1989-03-17 Waveguide type diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6558889A JP2599786B2 (en) 1989-03-17 1989-03-17 Waveguide type diffraction grating

Publications (2)

Publication Number Publication Date
JPH02244105A JPH02244105A (en) 1990-09-28
JP2599786B2 true JP2599786B2 (en) 1997-04-16

Family

ID=13291323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6558889A Expired - Lifetime JP2599786B2 (en) 1989-03-17 1989-03-17 Waveguide type diffraction grating

Country Status (1)

Country Link
JP (1) JP2599786B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6795631B2 (en) 2001-05-31 2004-09-21 Hoya Corporation Optical waveguide apparatus and method of producing the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5339157A (en) * 1993-02-19 1994-08-16 At&T Bell Laboratories Rapidly tunable integrated optical filter
JP3309877B2 (en) * 1993-08-30 2002-07-29 日本電信電話株式会社 Optical waveguide circuit
JP3615069B2 (en) * 1998-12-09 2005-01-26 古河電気工業株式会社 Arrayed waveguide grating optical multiplexer / demultiplexer
JP3679016B2 (en) 2001-02-27 2005-08-03 エヌティティエレクトロニクス株式会社 Optical multiplexing circuit and optical multiplexing device
JP3939325B2 (en) 2002-05-24 2007-07-04 Hoya株式会社 Optical switch and optical add / drop device using the same
US7164817B2 (en) 2002-05-24 2007-01-16 Hoya Corporation Optical switch and optical add/drop multiplexer using the same
EP1426799A3 (en) 2002-11-29 2005-05-18 Matsushita Electric Industrial Co., Ltd. Optical demultiplexer, optical multi-/demultiplexer, and optical device
JP4007329B2 (en) * 2004-02-19 2007-11-14 学校法人慶應義塾 Arrayed waveguide grating
JP2009251176A (en) * 2008-04-03 2009-10-29 Nippon Telegr & Teleph Corp <Ntt> Optical signal processing circuit
JP5720354B2 (en) 2011-03-25 2015-05-20 富士通株式会社 Optical waveguide device and optical hybrid circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6795631B2 (en) 2001-05-31 2004-09-21 Hoya Corporation Optical waveguide apparatus and method of producing the same

Also Published As

Publication number Publication date
JPH02244105A (en) 1990-09-28

Similar Documents

Publication Publication Date Title
EP0444817B1 (en) Optical multiplexer/demultiplexer
JP3578351B2 (en) Method of changing intensity and phase characteristics in multimode interference coupler
US6553162B1 (en) Optical multiplexer-demultiplexer with mutually intersecting sub-gratings
US5212758A (en) Planar lens and low order array multiplexer
US6987911B2 (en) Multimode planar waveguide spectral filter
CN103608708B (en) Optical device
JP3222163B2 (en) Diffraction grating with multiple output end faces arranged in parallel with optical waveguides
US20050141808A1 (en) Optical off-chip interconnects in multichannel planar waveguide devices
JP2000321447A (en) Low loss optical wavelength dividing device having flat frequency response
JP2599786B2 (en) Waveguide type diffraction grating
WO2001033270A1 (en) Phasar with flattened pass-band
US6768842B2 (en) Arrayed waveguide grating
US6434303B1 (en) Optical waveguide slab structures
JPS61113009A (en) Optical multiplexer/demultiplexer
EP1020740B1 (en) Optical device having equal length waveguide paths
JP2002510402A (en) Phased fiber array for multiplexing and demultiplexing
JP2733116B2 (en) Optical multiplexer / demultiplexer
EP1430342B1 (en) Passband flattening in an arrayed waveguide grating
US6396977B1 (en) Wavelength router with a wide passband realized using two gratings of opposite angular dispersions
JPS60257411A (en) Optical multiplexer/demultiplexer
JP2002148115A (en) Spectroscope, and light wavelength multiplexer using the same
JP2683161B2 (en) Optical multiplexer / demultiplexer
US6650796B2 (en) Waveguide optical frequency router
JP2019124712A (en) Grating coupler and optical transmitter
JP3643058B2 (en) Waveguide grating

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13