JP2598301B2 - Driving method of electron-emitting device - Google Patents

Driving method of electron-emitting device

Info

Publication number
JP2598301B2
JP2598301B2 JP12186388A JP12186388A JP2598301B2 JP 2598301 B2 JP2598301 B2 JP 2598301B2 JP 12186388 A JP12186388 A JP 12186388A JP 12186388 A JP12186388 A JP 12186388A JP 2598301 B2 JP2598301 B2 JP 2598301B2
Authority
JP
Japan
Prior art keywords
electron
voltage
driving
emitting device
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12186388A
Other languages
Japanese (ja)
Other versions
JPH01292728A (en
Inventor
一郎 野村
俊彦 武田
哲也 金子
嘉和 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP12186388A priority Critical patent/JP2598301B2/en
Publication of JPH01292728A publication Critical patent/JPH01292728A/en
Application granted granted Critical
Publication of JP2598301B2 publication Critical patent/JP2598301B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/316Cold cathodes having an electric field parallel to the surface thereof, e.g. thin film cathodes
    • H01J2201/3165Surface conduction emission type cathodes

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電子放出素子、特に電圧制御型負性抵抗特
性を有する電子放出素子の駆動方法に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for driving an electron-emitting device, and more particularly to a method for driving an electron-emitting device having a voltage-controlled negative resistance characteristic.

[開示の概要] 本明細書及び図面は、電圧制御型負性抵抗特性を有す
る電子放出素子の駆動方法において、電子放出の本駆動
を行なう前に、電圧制御型負性抵抗特性を示す最大電圧
値以下の電圧を、前記素子に印加する前駆動プロセスを
設けることにより、放出電流のゆらぎ等の減少や寿命の
向上を実現する技術を開示する。
[Summary of Disclosure] The present specification and the drawings show that in a method of driving an electron-emitting device having a voltage-controlled negative resistance characteristic, a maximum voltage exhibiting a voltage-controlled negative resistance characteristic before the main driving of electron emission is performed. Disclosed is a technique for providing a driving process before applying a voltage equal to or less than a value to the element, thereby realizing a reduction in fluctuation of emission current and an improvement in life.

[従来の技術] 従来、簡単な構造で電子の放出が得られる素子とし
て、例えば、エム.アイ.エリンソン(M.I.Elinson)
等によって発表された冷陰極素子が知られている〔ラジ
オ エンジニアリング エレクトロン フィジィッス
(Radio Eng.Electron.Phys.)第10巻,1290〜1296頁,
(1965年)〕。
[Prior Art] Conventionally, as a device capable of emitting electrons with a simple structure, for example, M.I. Eye. Elinson
Are known [Radio Engineering Electron Phys., Vol. 10, pp. 1290-1296,
(1965)].

これは、基板上に形成された小面積の薄膜に、膜面に
平行に電流を流すことにより、電子放出が生ずる現象を
利用するもので、一般には表面伝導形電子放出素子と呼
ばれている。
This utilizes the phenomenon that electron emission occurs when a current flows through a thin film having a small area formed on a substrate in parallel with the film surface, and is generally called a surface conduction electron-emitting device. .

この電子放出素子としては、前記エリンソン等により
開発されたSnO2(Sb)薄膜を用いたもの、Au薄膜による
もの〔ジー.ディトマー:“スィンソリド フィルム
ス”(G.Dittmer:“Thin Solid Films")9巻,317頁(1
972年)〕、ITO薄膜によるもの〔エム.ハートウェル
アンド シー.ジー.フォンスタッド:“アイイーイー
イー トランス”イーディー コンファレン(M.Hartwe
ll and C.G.Fonstad:“IEEE Trans.ED Conf.")519頁
(1975年)〕、カーボン薄膜によるもの〔荒木久也:
“真空",第26巻,第1号,22頁(1983年)〕などが報告
されている。
Examples of the electron-emitting device include a device using a SnO 2 (Sb) thin film developed by Elinson et al. And a device using an Au thin film [G. G. Dittmer: “Thin Solid Films”, Vol. 9, p. 317 (1
972)], using an ITO thin film [M. Hartwell
And Sea. Gee. Fonstad: “EiiEi Trans” Edi Conference (M.Hartwe
ll and CGFonstad: “IEEE Trans.ED Conf.”) p. 519 (1975)], using a carbon thin film [Hisaya Araki:
"Vacuum," Vol. 26, No. 1, p. 22, p. 22 (1983)].

これらの電子放出素子の典型的な電子構成を第2図に
示す。
FIG. 2 shows a typical electronic configuration of these electron-emitting devices.

第2図において、1および2は電気的接続を得る為の
電極、3は電子放出材料で形成される薄膜、4は基板、
5は電子放出部を示す。
In FIG. 2, 1 and 2 are electrodes for obtaining electrical connection, 3 is a thin film formed of an electron emitting material, 4 is a substrate,
Reference numeral 5 denotes an electron emitting portion.

従来、これらの電子放出素子においては、電子放出を
行う前にあらかじめフォーミングと呼ばれる通電処理に
よって電子放出部を形成する。即ち、前記電極1と電極
2の間に電圧を印加する異により、薄膜3に通電し、こ
れにより発生するジュール熱で薄膜3を局所的に破壊、
変形もしくは変質せしめ、電気的に高抵抗な状態にした
電子放出部5を形成することにより電子放出機能を得て
いる。
Conventionally, in these electron-emitting devices, before performing electron emission, an electron-emitting portion is formed in advance by an energization process called forming. That is, a current is applied to the thin film 3 due to a voltage applied between the electrode 1 and the electrode 2, and the thin film 3 is locally destroyed by Joule heat generated thereby.
The electron emission function is obtained by forming the electron emission portion 5 which is deformed or altered to have a high electrical resistance state.

[発明が解決しようとする課題] しかしながら、この電子放出素子は、このまま電極1
と電極2に電圧を印加して電子放出させると、放出電流
と素子電流がゆらいだり、スパイク状ノイズが生じると
いう欠点があった。特に、駆動開始直後はこれらの現象
が大きい。
[Problem to be Solved by the Invention] However, this electron-emitting device does not
When a voltage is applied to the electrode 2 to cause electron emission, the emission current and the device current fluctuate and spike noise occurs. In particular, these phenomena are large immediately after the start of driving.

この原因は、第1に前記電子放出部5は酸素・水・酸
化カーボン等の様々なガスが吸着しているため、駆動直
後はこれらガスの脱着および吸着により電子放出部5の
表面状態が著しく変化するためと考えられる。第2に駆
動直後において、素子から放出されたガスや残留ガスが
電子衝突によりイオン化し、これらガスイオンが電子放
出部5に衝突する割合が高いためと考えられる。
Firstly, various kinds of gases such as oxygen, water and carbon oxide are adsorbed on the electron-emitting portion 5, and immediately after driving, the surface state of the electron-emitting portion 5 is remarkable due to desorption and adsorption of these gases. It is thought to change. Secondly, it is considered that the gas or residual gas emitted from the element is ionized by electron collision immediately after driving, and the ratio of these gas ions colliding with the electron emission portion 5 is high.

これらの原因は、冷陰極型電子放出素子において一般
的に起こるもので、従来はこれを解決するために駆動前
に予め素子を高温に長時間加熱し、電子放出面から吸着
ガスを取除くという面倒な熱処理工程を設けていた。
These causes generally occur in cold-cathode electron-emitting devices. Conventionally, in order to solve this problem, the device is heated to a high temperature for a long time before driving to remove adsorbed gas from the electron-emitting surface. A complicated heat treatment process was provided.

しかし、この様な熱処理工程を設けると、加熱温度が
高いため電子放出部の構造が変化し、特性を著しく劣化
させたり、加熱処理時間が長くなるという問題点があっ
た。
However, when such a heat treatment step is provided, there is a problem that the structure of the electron-emitting portion is changed due to a high heating temperature, the characteristics are remarkably deteriorated, and the heat treatment time is prolonged.

一方、電子放出素子は応用上大気中に出す必要性があ
り、酸化物熱カソードのように大気中に出せないものは
著しくその応用が設定される。また大気中に出せたとし
ても、面倒な熱処理工程を有するものは同じく応用が限
定される。そこで電子放出素子を大気中に出し、その後
の電子放出特性の検討を行なったが、前述したようにガ
スイオンが電子放出部に衝突し、電子放出部に決定的な
損傷を与え、寿命が短くなるという問題点のあることが
判明した。即ち、電子放出素子を真空から大気中に出し
再度使用するためには、前述した熱処理工程が必要とな
る。
On the other hand, it is necessary to put the electron-emitting device into the atmosphere for application, and the application is set remarkably for an oxide heat cathode that cannot be put into the atmosphere. Even if it can be exposed to the atmosphere, those having a troublesome heat treatment step are similarly limited in application. Therefore, the electron-emitting device was put into the atmosphere and the electron emission characteristics were examined.As described above, gas ions collided with the electron-emitting portion, causing decisive damage to the electron-emitting portion and shortening the life. It turned out to be a problem. That is, in order to take the electron-emitting device out of the vacuum into the atmosphere and use it again, the above-described heat treatment step is required.

本発明は、上記従来例の問題点に鑑みなされたもの
で、面倒な熱処理工程を設けることなく、放出電流のゆ
らぎやスパイク状ノイズの減少および寿命の向上を可能
とし、且つ大気中でも素子劣化に効果を有する電子放出
素子の駆動法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the related art, and enables fluctuation of emission current and reduction of spike-like noise and improvement of service life without providing a troublesome heat treatment step. It is an object of the present invention to provide a method for driving an electron-emitting device having an effect.

[課題を解決するための手段] 本発明による電子放出素子の駆動法は、電子放出の本
駆動を行う前に、電圧制御型負性抵抗特性を示す前の最
大電圧値以下の電圧を、前記電子放出素子に印加する前
駆動プロセスを設けることを特徴とする。
[Means for Solving the Problems] In a method for driving an electron-emitting device according to the present invention, a voltage equal to or less than a maximum voltage value before a voltage-controlled negative resistance characteristic is exhibited before the main driving of electron emission is performed. It is characterized in that a driving process before application to the electron-emitting device is provided.

本発明において、前駆動プロセスで印加する電圧は、
素子が電圧制御型負性抵抗特性を示す前の最大電圧値以
下の単調増加特性領域の電圧であればよく、一般的には
ほぼ最大電圧値付近の範囲とすることが好ましい。
In the present invention, the voltage applied in the pre-driving process is:
It is sufficient that the element has a voltage in a monotonically increasing characteristic region equal to or lower than the maximum voltage value before exhibiting the voltage-controlled negative resistance characteristic. Generally, it is preferable that the voltage be in a range near the maximum voltage value.

[作 用] 本発明において、前駆動プロセスを設けることが放出
電流のゆらぎやスパイク状ノイズの減少および寿命の向
上にどの様に作用するかは明らかではないが、前駆動プ
ロセス中に、電子放出部が高抵抗部により局所的に加熱
され、電子放出部に吸着している吸着ガスが取り去られ
るためであると考えられる。
[Operation] In the present invention, it is not clear how the provision of the pre-driving process affects the fluctuation of the emission current, the reduction of spike noise, and the improvement of the service life. This is considered to be because the portion is locally heated by the high-resistance portion, and the adsorbed gas adsorbed on the electron-emitting portion is removed.

[実施例] 以下、図面とともに本発明の実施例を説明するが、本
発明はこれらに限定されるものではない。
Examples Hereinafter, examples of the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

実施例1 本実施例に用いられる電子放出素子の構成を第2図を
用いて説明する。第2図において、電子放出材料3をSn
O2、電極1および2をNi、基板4を石英で形成し、通常
良く用いられる通電処理によりフォーミングを行ない、
前記高抵抗な電子放出部5を製造した。また、電子放出
材料の長さLと幅Wはそれぞれ0.3mmと0.1mmに形成し
た。
Embodiment 1 The configuration of an electron-emitting device used in this embodiment will be described with reference to FIG. In FIG. 2, the electron-emitting material 3 is Sn
O 2 , electrodes 1 and 2 are formed of Ni, and substrate 4 is formed of quartz.
The electron emitter 5 having high resistance was manufactured. The length L and width W of the electron-emitting material were set to 0.3 mm and 0.1 mm, respectively.

第3図は、上記電子放出素子の測定評価装置を示す概
略説明図である。図中、6は電子放出素子に電圧を印加
するための電源、7は電子放出素子に流れる電流を測定
するための電流計、8は素子より放出される電子9を測
定するためのアノード電極、10はアノード電極8に電圧
を印加するための電源、11は放出電流Ieを測定するため
の電流計である。かかる装置において、電源6により素
子に電圧Vfを印加して素子から電子放出させ、電流計7
により素子に流れる電流Ifと電流計11により素子からの
放出電流Ieを測定した。電源10に印加する電圧Vaは適当
な電圧でよいが、本実施例では1000Vの固定電圧とし
た。また本測定は1×10-4torr以上の真空度でおこなっ
た。
FIG. 3 is a schematic explanatory view showing the measurement and evaluation device for the electron-emitting device. In the figure, 6 is a power supply for applying a voltage to the electron-emitting device, 7 is an ammeter for measuring a current flowing through the electron-emitting device, 8 is an anode electrode for measuring electrons 9 emitted from the device, Reference numeral 10 denotes a power supply for applying a voltage to the anode electrode 8, and 11 denotes an ammeter for measuring the emission current Ie . In such an apparatus, a voltage Vf is applied to the device by a power supply 6 to cause the device to emit electrons, and an ammeter 7
Release was measured current I e from the elements by a current I f and the ammeter 11 flowing through the element by. Voltage V a applied to the power supply 10 may be any suitable voltage, but the fixed voltage 1000V in this embodiment. This measurement was performed at a vacuum degree of 1 × 10 −4 torr or more.

第1図は上述測定評価装置で測定した電子放出素子の
電流−電圧特性である。第1図に示すように、素子に流
れる電流Ifは印加電圧Vfにより3つの領域に別れる。す
なわち、電圧を増加させると電流が増加するI域(単調
増加領域)と、電圧を増加させると電流が減少するII領
域−VCNR(voltage controlled negative resistance)
領域と、さらに電圧を印加すると放出電流Ieが得られ素
子電流Ifが減少しないIII領域の3つの領域である。こ
のような電流−電圧特性は表面伝導形電子放出素子など
の冷陰極型電子放出素子の特徴である。
FIG. 1 shows current-voltage characteristics of the electron-emitting device measured by the above-described measurement and evaluation apparatus. As shown in FIG. 1, the current If flowing through the element is divided into three regions by the applied voltage Vf . That is, an I region (monotonically increasing region) in which the current increases as the voltage increases, and an II region—VCNR (voltage controlled negative resistance) in which the current decreases as the voltage increases.
There are three regions: a region and a region III where the emission current Ie is obtained when a voltage is further applied and the device current If does not decrease. Such current-voltage characteristics are characteristic of cold cathode type electron-emitting devices such as surface conduction electron-emitting devices.

次に本発明の駆動法を述べる。 Next, the driving method of the present invention will be described.

本発明の駆動法は、電子放出の本駆動を行なう前に素
子電流Ifが最大となる素子電圧(Vf=9.8V)以下の電圧
で適当な時間前駆動するものである。この前駆動の時間
は、素子の材質や真空度により異なることが予想される
が、前記素子を5×10-5torrの真空度で駆動する場合に
は1分以上の時間が必要であった。
According to the driving method of the present invention, before the main driving of the electron emission is performed, the driving is performed at a voltage equal to or lower than the element voltage ( Vf = 9.8 V) at which the element current If becomes maximum for an appropriate time. The pre-driving time is expected to vary depending on the material of the element and the degree of vacuum, but when the element is driven at a degree of vacuum of 5 × 10 −5 torr, a time of 1 minute or more was required. .

なお、本実施例の前駆動時間は3分とした。この前駆
動後、素子に14V以上の電圧(Vf)を印加し、放出電流
(Ie)を測定した。本実施例と従来例の特性比較を下記
表1に示す。
Note that the pre-driving time in this embodiment was 3 minutes. After the previous driving, a voltage ( Vf ) of 14 V or more was applied to the device, and the emission current ( Ie ) was measured. Table 1 below shows a comparison of characteristics between the present embodiment and the conventional example.

ここで、放出電流のゆらぎとは、下記式(1)で定義
されるもので、駆動を開始してから10分間の放出電流
(Ie)の変動を百分率で表わしたものである。
Here, the fluctuation of the emission current is defined by the following equation (1), and is a percentage change in the emission current ( Ie ) for 10 minutes after the start of driving.

また、寿命とは電子放出時間10分と休止時間10分を順
次繰り返す間欠耐久をおこなったときに、放出電流
(Ie)が初期から50%劣化するまでの時間をあらわした
ものである。本実施例の駆動は、電子放出時間10分間、
休止時間7分間、前駆動時間3分を順次繰り返した。
The lifetime indicates the time required for the emission current (I e ) to degrade by 50% from the initial stage when intermittent durability is performed in which electron emission time 10 minutes and pause time 10 minutes are sequentially repeated. The driving of the present embodiment is performed with an electron emission time of 10 minutes,
A rest time of 7 minutes and a pre-drive time of 3 minutes were sequentially repeated.

表1から明らかなように、前駆動プロセスを設けた駆
動は、放出電流のゆらぎの減少と寿命の向上に大きな効
果がある。
As is clear from Table 1, the driving provided with the pre-driving process has a great effect on reducing the fluctuation of the emission current and improving the life.

実施例2 第4図は本発明の第2の実施例を示すタイムチャート
である。
Embodiment 2 FIG. 4 is a time chart showing a second embodiment of the present invention.

本実施例は、素子を大気中に1時間報知した後、5×
10-5torr程度の真空度で電子放出させる場合、その電子
放出の前に素子電圧(Vf)=8Vで1時間駆動する前駆動
プロセスを設けたものである。
In this embodiment, the device is notified for one hour in the atmosphere, and then 5 ×
In the case where electrons are emitted at a degree of vacuum of about 10 −5 torr, a pre-driving process for driving the device at an element voltage (V f ) = 8 V for one hour is provided before the electron emission.

なお、素子と測定装置は前記実施例1と同一構成とす
る。本実施例と従来例の特性比較を下記表2に示す。
The element and the measuring device have the same configuration as in the first embodiment. Table 2 below shows a comparison of characteristics between the present embodiment and the conventional example.

ここで、スパイク状ノイズ発生数とは、駆動開始10分
間に発生する数をいう。また寿命とは、第4図において
本駆動時間を1時間として大気中放置・前駆動・本駆動
を繰り返し行なったときに、放出電流(Ie)の劣化が50
%になるまでの繰り返し回数である。
Here, the number of spike noises refers to the number of noises generated within 10 minutes from the start of driving. In addition, the life is defined as the deterioration of the emission current (I e ) when the main driving time is set to 1 hour and the driving in the atmosphere, the pre-driving, and the main driving are repeated in FIG.
It is the number of repetitions until it reaches%.

従来の駆動法において、大気中に放出した素子を5×
10-5torrの真空度で駆動すると、駆動の初期に素子電流
Ifと放出電流Ieに数ヘルツ以上のスパイク状ノイズが発
生する。しかしながら、表2から明らかなように、前駆
動プロセスを設けた場合は、スパイク状ノイズの減少と
寿命の向上に大きな効果がある。
In the conventional driving method, the element released to the atmosphere is 5 ×
When driven at a vacuum of 10 -5 torr, the device current
Spike noise of several hertz or more is generated in If and emission current Ie . However, as is clear from Table 2, when the pre-driving process is provided, there is a great effect on reduction of spike noise and improvement of life.

また、本発明の前駆動プロセスにおける駆動電圧V
Jは、VCNR特性の開始する電圧(この場合は9.8V)以下
であれば良く、好ましくは6V〜9V程度とすることが最適
である。
In addition, the driving voltage V in the pre-driving process of the present invention
J may be equal to or lower than the voltage at which the VCNR characteristic starts (9.8 V in this case), and is most preferably about 6 V to 9 V.

なお、VCNR特性の開始電圧以上の電圧で前駆動プロセ
スをおこなった場合でも特性の向上は期待できるが、VC
NR特性の開始電圧以下の電圧で前駆動をおこなった場合
に比べ、効果は低い程度に留まる。
Even if the pre-driving process is performed at a voltage higher than the starting voltage of the VCNR characteristics, the characteristics can be expected to be improved.
The effect is low to a lesser extent than when pre-driving is performed at a voltage lower than the start voltage of the NR characteristic.

[発明の効果] 以上説明したように、本発明によれば電子放出の本駆
動をおこなう前に、電圧制御型負性抵抗特性を示す最大
電圧値以下の電圧を前記電子放出素子に印加する前駆動
プロセスを設けることにより、放出電流をゆらぎやスパ
イク状ノイズの減少、及び寿命の向上に効果があり、面
倒な熱処理工程を不要とすることができる。また、電子
放出素子を大気中に出して駆動した場合でも素子劣化の
改善に効果があり、ディスプレイ,イオン発生器など様
々な用途への応用が期待できる。
[Effects of the Invention] As described above, according to the present invention, before the main driving of the electron emission is performed, before the voltage equal to or less than the maximum voltage value showing the voltage-controlled negative resistance characteristic is applied to the electron-emitting device. The provision of the driving process is effective in reducing the fluctuation of emission current and spike noise, and improving the life, and can eliminate a troublesome heat treatment step. In addition, even when the electron-emitting device is driven in the atmosphere, it is effective in improving the device deterioration, and can be expected to be applied to various uses such as a display and an ion generator.

【図面の簡単な説明】[Brief description of the drawings]

第1図は電子放出素子の電流−電圧特性図、第2図は電
子放出素子の構成図、第3図は測定評価装置の概略説明
図、第4図は第2の実施例を示すタイムチャートであ
る。 1,2……電極 3……電子放出材料による薄膜 4……基板、5……電子放出部 6,10……電源、7,11……電流計 8……アノード電極、9……電子
FIG. 1 is a current-voltage characteristic diagram of an electron-emitting device, FIG. 2 is a configuration diagram of an electron-emitting device, FIG. 3 is a schematic explanatory diagram of a measurement and evaluation device, and FIG. 4 is a time chart showing a second embodiment. It is. 1,2 ... Electrode 3 ... Thin film made of electron-emitting material 4 ... Substrate 5, Electron-emitting section 6,10 ... Power supply, 7,11 ... Ammeter 8 ... Anode electrode, 9 ... Electron

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂野 嘉和 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭58−201237(JP,A) ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshikazu Banno 3-30-2 Shimomaruko, Ota-ku, Tokyo Inside Canon Inc. (56) References JP-A-58-201237 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電圧制御型負性抵抗特性を有する電子放出
素子の駆動方法において、電子放出の本駆動を行う前
に、電圧制御型負性抵抗特性を示す前の最大電圧値以下
の電圧を、前記電子放出素子に印加する前駆動プロセス
を設けることを特徴とする電子放出素子の駆動方法。
In a method for driving an electron-emitting device having a voltage-controlled negative resistance characteristic, a voltage equal to or less than a maximum voltage value before the voltage-controlled negative resistance characteristic is displayed before the main driving of electron emission. A method of driving the electron-emitting device, wherein a driving process is performed before the electron-emitting device is applied.
JP12186388A 1988-05-20 1988-05-20 Driving method of electron-emitting device Expired - Fee Related JP2598301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12186388A JP2598301B2 (en) 1988-05-20 1988-05-20 Driving method of electron-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12186388A JP2598301B2 (en) 1988-05-20 1988-05-20 Driving method of electron-emitting device

Publications (2)

Publication Number Publication Date
JPH01292728A JPH01292728A (en) 1989-11-27
JP2598301B2 true JP2598301B2 (en) 1997-04-09

Family

ID=14821796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12186388A Expired - Fee Related JP2598301B2 (en) 1988-05-20 1988-05-20 Driving method of electron-emitting device

Country Status (1)

Country Link
JP (1) JP2598301B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225749B1 (en) 1998-09-16 2001-05-01 Canon Kabushiki Kaisha Method of driving electron-emitting device, method of driving electron source using the electron-emitting device, and method of driving image forming apparatus using the electron source

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2126509C (en) 1993-12-27 2000-05-23 Toshikazu Ohnishi Electron-emitting device and method of manufacturing the same as well as electron source and image-forming apparatus
US6802752B1 (en) 1993-12-27 2004-10-12 Canon Kabushiki Kaisha Method of manufacturing electron emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225749B1 (en) 1998-09-16 2001-05-01 Canon Kabushiki Kaisha Method of driving electron-emitting device, method of driving electron source using the electron-emitting device, and method of driving image forming apparatus using the electron source

Also Published As

Publication number Publication date
JPH01292728A (en) 1989-11-27

Similar Documents

Publication Publication Date Title
JPH10207416A (en) Method for driving field emission type cold cathode element and field emission type cold cathode electron gun
US6642649B1 (en) Electron-emitting device, electron source using the electron-emitting device, and image-forming apparatus using the electron source
US6208071B1 (en) Electron source substrate with low sodium upper surface
EP1178511B1 (en) Image-forming apparatus and method of manufacturing same
US6633118B1 (en) Electron-emitting device, electron source using the electron-emitting device, and image-forming apparatus using the electron source
US6731060B1 (en) Electron-emitting device, electron source using the electron-emitting device, and image-forming apparatus using the electron source
JP3437519B2 (en) Manufacturing method and adjustment method of electron-emitting device
US7276845B2 (en) Electron-emitting device, electron source using the electron-emitting device, and image-forming apparatus using the electron source
JP2598301B2 (en) Driving method of electron-emitting device
US6876156B1 (en) Electron-emitting device, electron source using the same, and image forming apparatus using the same
JP3147267B2 (en) Electron emitting device and method of manufacturing the same
JP2678757B2 (en) Electron emitting device and method of manufacturing the same
US5825134A (en) Method of holding field emission cathode in its standby state
JP3238346B2 (en) Image forming apparatus and method of manufacturing the same
JP2003045334A (en) Manufacturing method of vacuum container and image forming device
JP2923787B2 (en) Electron emitting element, electron source and image forming apparatus using the same
JPH0765696A (en) Electron emission device
JP3599574B2 (en) Electron emitting element, electron source and image forming apparatus using the same
RU2036529C1 (en) Method for recovery of cathode emission in cathode-ray tubes
JP2617739B2 (en) Method of manufacturing electron-emitting device and electron-emitting device
JPH07182970A (en) Manufacture of electron source
JPH07192629A (en) Repair method for electron emitting element and image forming device
JP2002134002A (en) Field emission type electron source and its manufacturing method
JPH01281646A (en) Surface conductive emission element
JP2000251644A (en) Electron emission element, electron source and image forming device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees