JP2597027B2 - Wave observation radar - Google Patents

Wave observation radar

Info

Publication number
JP2597027B2
JP2597027B2 JP2063321A JP6332190A JP2597027B2 JP 2597027 B2 JP2597027 B2 JP 2597027B2 JP 2063321 A JP2063321 A JP 2063321A JP 6332190 A JP6332190 A JP 6332190A JP 2597027 B2 JP2597027 B2 JP 2597027B2
Authority
JP
Japan
Prior art keywords
signal
sea surface
surface reflection
wave
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2063321A
Other languages
Japanese (ja)
Other versions
JPH03262990A (en
Inventor
昌幸 石原
達生 荒木
輝 丸嶋
祐作 箱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2063321A priority Critical patent/JP2597027B2/en
Publication of JPH03262990A publication Critical patent/JPH03262990A/en
Application granted granted Critical
Publication of JP2597027B2 publication Critical patent/JP2597027B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は海面反射の状況に対応した受信信号から、海
面の波浪状況に係る波向、波長、波速および波高の情報
が好適に得られる波浪観測レーダに関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a wave in which information on a wave direction, a wavelength, a wave velocity and a wave height relating to a sea surface wave condition can be suitably obtained from a received signal corresponding to a sea surface reflection condition. Observation radar.

[従来の技術] 近年、船舶の安全ならびに効率的運行等に供される波
浪状況の情報等を得るため、波浪によって生じる海面か
らの反射信号をスペクトル分析する観測・研究が進めら
れている。
[Related Art] In recent years, in order to obtain information on the state of waves provided for the safety and efficient operation of ships and the like, observations and studies for spectral analysis of reflected signals from the sea surface caused by waves have been promoted.

このような波浪状況、すなわち、波長、波向を算出す
る事例として、例えば、昭和57年5月発行の日本航海学
会論文集第67号127頁〜135頁、「船舶レーダを利用した
波浪解析の一方法」が知悉されている。
As an example of calculating such a wave situation, that is, a wavelength and a wave direction, for example, Japanese Society of Navigational Sciences, Vol. 67, pp. 127-135, published in May 1982, “Wave Analysis Using Ship Radar” "One method" is known.

この方法では、レーダ指示機におけるPPIスコープの
画像の撮影写真をフォトセンサを用いてXY方向の走査を
行い、ここで得られたアナログ信号をデジタル信号に変
換し、次いで、2次元フーリエ変換により空間的なパワ
ースペクトルを算出して波浪の波長、方向を求めてい
る。
In this method, a photograph of a PPI scope image taken by a radar indicator is scanned in the XY direction using a photosensor, and the obtained analog signal is converted into a digital signal, and then spatially converted by a two-dimensional Fourier transform. The power spectrum is calculated to determine the wavelength and direction of the waves.

この方式ではパワースペクトルが点対称となり波の方
向の識別が不能であり、さらに、波の移動速度が検出で
きない。
In this method, the power spectrum becomes point symmetric, the direction of the wave cannot be identified, and the moving speed of the wave cannot be detected.

これらの改善を図るべく当出願人は、特開昭60−2268
0号公報において、波浪信号の2画面のクロススペクト
ルをレーダ空中線の1回転毎に演算し、その振幅と位相
から波浪の真の移動方向と速度を求める波浪レーダ観測
方式を提案している。
In order to achieve these improvements, the applicant has disclosed in Japanese Patent Application Laid-Open No. 60-2268.
No. 0 proposes a wave radar observation method in which a cross spectrum of two screens of a wave signal is calculated for each rotation of the radar antenna, and the true moving direction and speed of the wave are obtained from the amplitude and phase.

[発明が解決しようとする課題] しかしながら、上記の従来例に係る波浪レーダ観測方
式においては、得られる観測値は極めて正確なときと、
誤差が増大するときがあり、高度の信頼性が得られ難い
不都合を伴う。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional wave radar observation method, when the obtained observation value is extremely accurate,
The error sometimes increases, which is accompanied by a disadvantage that a high degree of reliability cannot be obtained.

本発明は係る点に鑑みてなされたものであって、波
向、波長、波速および波高の波浪状況とともに、波浪の
観測値の信頼度を示す値を同時に得ることにより、波浪
状況の把握が正確、且つ、安定に得られる波浪観測レー
ダを提供することを目的とする。
The present invention has been made in view of the above point, and by simultaneously obtaining the wave condition of the wave direction, the wavelength, the wave speed and the wave height, and a value indicating the reliability of the wave observation value, the wave condition can be accurately grasped. Another object of the present invention is to provide a wave observation radar that can be stably obtained.

[課題を解決するための手段] 前記課題を解決するために、本発明の波浪観測レーダ
は、 レーダ受信機から導出される海面反射ビデオ信号が供
給されてデジタル化された海面反射ビデオ信号を導出す
るA/D変換回路と、 前記A/D変換回路から導出される海面反射ビデオ信号
を記憶するビデオメモリと、 前記ビデオメモリから導出される海面反射ビデオ信号
のレベルを海面とレーダ受信機との距離に無関係とする
べく一定化する補正を行い、かつ補正された前記海面反
射ビデオ信号を距離補正信号として導出する距離補正回
路と、 前記距離補正信号を極座標から直交座標に交換して前
記海面反射ビデオ信号の直交座標信号を送出するXY座標
変換回路と、 前記直交座標信号に対して2次元FFTの処理範囲を設
定するゲート信号を導出する処理ゲート信号発生回路
と、 前記ゲート信号によって設定された処理範囲内の直交
座標信号について2次元FFT処理を行い2次元フーリエ
変換信号を送出する2次元FFT回路と、 前記2次元フーリエ変換信号から連続するアンテナ2
回転の海面反射信号に基づく2画面のクロススペクトル
を演算するクロススペクトル演算回路と、 前記クロススペクトル演算回路によって演算されたク
ロススペクトルから波向、波長、波速を演算する波向/
波長/波速演算回路と、 前記波向/波長/波速演算回路によって演算された波
長と波速とから海面反射の強弱を示す海面反射検出信号
を送出する海面反射検出回路と、 前記海面反射検出回路から送出された海面反射検出信
号と基準信号とを比較して海面反射判定信号を導出する
比較器とを備えて、 前記比較器から導出された海面反射判定信号により波
向、波長、波速の信頼度を判断可能とすることを特徴と
する。
Means for Solving the Problems In order to solve the above problems, a wave observation radar of the present invention derives a digitalized sea surface reflected video signal supplied with a sea surface reflected video signal derived from a radar receiver. An A / D conversion circuit, a video memory for storing a sea surface reflected video signal derived from the A / D conversion circuit, and a sea level and radar receiver for determining the level of the sea surface reflected video signal derived from the video memory. A distance correction circuit for performing a correction to be constant so as to be independent of distance, and deriving the corrected sea surface reflection video signal as a distance correction signal; and exchanging the distance correction signal from polar coordinates to rectangular coordinates to obtain the sea surface reflection. An XY coordinate conversion circuit for transmitting a rectangular coordinate signal of a video signal; and a processing gate for deriving a gate signal for setting a processing range of a two-dimensional FFT for the rectangular coordinate signal A two-dimensional FFT circuit for performing a two-dimensional FFT process on a rectangular coordinate signal within a processing range set by the gate signal and transmitting a two-dimensional Fourier transform signal; an antenna continuous from the two-dimensional Fourier transform signal 2
A cross spectrum calculating circuit for calculating a cross spectrum of two screens based on the rotation sea surface reflection signal; and a wave direction / wavelength / wave speed for calculating a wave direction, a wavelength, and a wave speed from the cross spectrum calculated by the cross spectrum calculating circuit.
A wavelength / wave speed calculation circuit, a sea surface reflection detection circuit for transmitting a sea surface reflection detection signal indicating the strength of sea surface reflection from the wavelength and the wave speed calculated by the wave direction / wavelength / wave speed calculation circuit, and A comparator for comparing the transmitted sea surface reflection detection signal and the reference signal to derive a sea surface reflection determination signal, and the reliability of the wave direction, wavelength, and wave speed based on the sea surface reflection determination signal derived from the comparator. Can be determined.

[作用] 上記のように構成される本発明の波浪観測レーダにお
いては、海面反射の状態が明確に判定される。この場
合、波長、波速の演算値を利用して検出していることに
より、演算の信頼性の良否が判定でき、波向、波長、波
速の情報の信頼性の判断が可能になる。
[Operation] In the wave observation radar of the present invention configured as described above, the state of sea surface reflection is clearly determined. In this case, since the detection is performed using the calculated values of the wavelength and the wave speed, it is possible to determine whether or not the reliability of the calculation is good, and it is possible to determine the reliability of the information on the wave direction, the wavelength, and the wave speed.

[実施例] 次に、本発明に係る波浪観測レーダの一実施例を、添
付図面を参照しながら以下詳細に説明する。
Embodiment Next, an embodiment of a wave observation radar according to the present invention will be described in detail below with reference to the accompanying drawings.

第1図は実施例の全体構成を示すブロック図、第2図
は海面反射信号と2次元FFT処理範囲を示す説明図、第
3図は第2図の2次元FFT処理範囲における2次元FFT処
理を説明するための図、第4図はクロススペクトル演算
後の振幅スペクトラムと位相スペクトラムの説明図、第
5図はクロススペクトル演算後に波向を決定する処理の
説明のための図、第6図は海面反射の程度と本発明の原
理に従い算出した海面反射検出信号を示す説明図、第7
図は海面反射の目視基準図である。
FIG. 1 is a block diagram showing the overall configuration of the embodiment, FIG. 2 is an explanatory diagram showing a sea surface reflection signal and a two-dimensional FFT processing range, and FIG. 3 is a two-dimensional FFT process in the two-dimensional FFT processing range of FIG. FIG. 4 is an explanatory diagram of the amplitude spectrum and the phase spectrum after the cross spectrum calculation, FIG. 5 is a diagram for explaining the process of determining the wave direction after the cross spectrum calculation, and FIG. FIG. 7 is an explanatory view showing the degree of sea surface reflection and a sea surface reflection detection signal calculated according to the principle of the present invention, FIG.
The figure is a visual reference diagram of sea surface reflection.

第1図において、参照符号RDはレーダであり、パラボ
ラ等のビーム方式のアンテナ12と、送受信切換器14と、
送信機16と、アンテナ12に入感した受信信号の検波出力
である海面反射ビデオ信号Sbを送出する受信機18と、指
示器19とが設けられている。
In FIG. 1, reference numeral RD denotes a radar, and a beam type antenna 12 such as a parabola, a transmission / reception switch 14,
A transmitter 16, a receiver 18 for transmitting a sea surface reflected video signal Sb which is a detection output of a received signal received by the antenna 12, and an indicator 19 are provided.

さらに、参照符号MSは、海面反射ビデオ信号Sbから、
信頼度を示す海面反射判定信号Snを得る海面反射検知部
であり、A/D変換回路20と、ビデオメモリ22と、距離補
正回路24と、XY座標変換回路26とが設けられている。さ
らに、処理ゲート信号発生回路28と、2次元FFT回路30
と、クロススペクトル演算回路32と、波向/波長/波速
演算回路34と、海面反射検出回路36と、さらに比較器38
とを有している。
Further, the reference symbol MS is derived from the sea surface reflected video signal Sb,
This is a sea surface reflection detection unit that obtains a sea surface reflection determination signal Sn indicating reliability, and includes an A / D conversion circuit 20, a video memory 22, a distance correction circuit 24, and an XY coordinate conversion circuit 26. Further, a processing gate signal generation circuit 28 and a two-dimensional FFT circuit 30
A cross spectrum calculation circuit 32, a wave direction / wavelength / wave speed calculation circuit 34, a sea surface reflection detection circuit 36, and a comparator 38
And

次に、上記の構成における動作を説明する。 Next, the operation in the above configuration will be described.

レーダRDの送信機16から送受信切換器14とアンテナ12
を通して送信された電波は海面に放射される。そして、
レーダRDは適切に海面反射の状況に係る信号(海面反射
信号)が受信できるように受信利得調整が行われてお
り、ここで、アンテナ12から送受信切換器14を通して海
面反射信号が受信機18に供給される。
Radar RD transmitter 16 to transmit / receive switch 14 and antenna 12
The radio waves transmitted through are radiated to the sea surface. And
The radar RD performs reception gain adjustment so that a signal (sea surface reflection signal) relating to the state of sea surface reflection can be appropriately received. Here, the sea surface reflection signal is transmitted from the antenna 12 to the receiver 18 through the transmission / reception switch 14. Supplied.

受信機18において、海面反射信号は対数増幅の後、検
波されて海面反射ビデオ信号SbとしてA/D変換回路20へ
送給される。ここでデジタル信号に変換された後、ビデ
オメモリ22において、アンテナ12の2回転分の信号(海
面反射ビデオ信号Sb)が記憶される。
In the receiver 18, the sea surface reflection signal is logarithmically amplified, detected, and sent to the A / D conversion circuit 20 as a sea surface reflection video signal Sb. Here, after being converted into a digital signal, the video memory 22 stores a signal for two rotations of the antenna 12 (sea surface reflected video signal Sb).

2回転分が記憶された海面反射ビデオ信号Sbは、距離
補正回路24へ供給されて、レーダRDの近距離における受
信信号の強度の増大を補正する。この補正は、距離補正
信号Scのレベルが海面とレーダ受信機との間の距離に無
関係に、ほぼ一定となるように補正することによって行
われる。続いて、一定に変換された距離補正信号ScはXY
座標変換回路26に供給されて、極座標から直交座標を示
す直交座標信号Sdに変換される。その画像は第2図に示
されるように任意の位置に2次元FFTの処理範囲を処理
ゲート信号発生回路28から送出されるゲート信号Seによ
って設定される。ここで、2次元FFT回路30は、直交座
標に変換された2回転分の海面反射信号の各1回転毎に
2次元フーリエ変換を行い、2次元フーリエ変換信号Sf
を導出する。ここで第2図に示される画像をフーリエ変
換した後、すなわち、2次元フーリエ変換信号Sfにおけ
る画像例を第3図に示す。この画像は波浪の方向、波数
を示し、中心は波長が長い波、中心から離間するに従い
波長が短い波となる。この場合、波浪の方向(波向き)
に関しては、2方向に判断されることになるため、次の
処理を実行する。
The sea surface reflection video signal Sb in which two rotations are stored is supplied to the distance correction circuit 24, which corrects an increase in the strength of the received signal at a short distance of the radar RD. This correction is performed by correcting the level of the distance correction signal Sc so as to be substantially constant irrespective of the distance between the sea surface and the radar receiver. Subsequently, the distance correction signal Sc converted to a constant is XY
The coordinate data is supplied to the coordinate conversion circuit 26, and is converted from the polar coordinates into a rectangular coordinate signal Sd indicating the rectangular coordinates. In the image, as shown in FIG. 2, the processing range of the two-dimensional FFT is set at an arbitrary position by the gate signal Se sent from the processing gate signal generation circuit 28. Here, the two-dimensional FFT circuit 30 performs a two-dimensional Fourier transform for each one revolution of the sea surface reflection signal for two revolutions converted to the rectangular coordinates, and performs a two-dimensional Fourier transform signal Sf
Is derived. FIG. 3 shows an example of an image after Fourier transform of the image shown in FIG. 2, that is, in the two-dimensional Fourier transform signal Sf. This image shows the direction and wave number of the wave, and the center is a wave with a long wavelength at the center and a wave with a short wavelength as the distance from the center increases. In this case, the direction of the waves (wave direction)
Is determined in two directions, the following processing is executed.

先ず、2次元FFT回路30からアンテナ2回転分の海面
反射信号が2次元フーリエ変換されて導出される2次元
フーリエ変換信号Sfはクロススペクトル演算回路32に供
給され、連続するアンテナ2回転の海面反射信号に基づ
く2画面のクロススペクトルが演算される。ここで、振
幅スペクトルとともに位相スペクトルの演算信号Sg(第
4図a、b)が導出される。位相スペクトルの信号は波
の移動があれば第4図bに示されるように位相スペクト
ル(+)φ〜(−)φが得られ、波の移動が無ければ零
となる。
First, the two-dimensional Fourier transform signal Sf derived from the two-dimensional FFT circuit 30 by performing the two-dimensional Fourier transform on the sea surface reflection signal for two antenna rotations is supplied to the cross spectrum calculation circuit 32, and the sea surface reflection signal for two continuous antenna rotations is obtained. A cross spectrum of two screens based on the signal is calculated. Here, the operation signal Sg (FIGS. 4a and 4b) of the phase spectrum is derived together with the amplitude spectrum. The phase spectrum signal has phase spectra (+) φ to (−) φ as shown in FIG. 4B if the wave moves, and becomes zero if the wave does not move.

次に、演算信号Sgは波向/波長/波速演算回路34へ供
給されて、次の処理が行われる。
Next, the calculation signal Sg is supplied to the wave direction / wavelength / wave speed calculation circuit 34, and the following processing is performed.

先ず、第4図aに示される振幅スペクトルは、偶関数
であり、波の移動方向(波向き)が識別できないが、位
相スペクトルは波の移動があれば第4図bに示すように
奇関数になる。この点対称にある位相スペクトル同士で
掛け合わせる。掛け合わせた結果が負の場合は負の位相
を持った側の振幅スペクトラムと位相スペクトルを消去
せしめ、また、同符号の場合は、いずれも残留する信号
処理を行う。この処理を実施した後の振幅スペクトルを
第5図に示す。
First, the amplitude spectrum shown in FIG. 4A is an even function, and the moving direction (wave direction) of the wave cannot be identified, but if the wave moves, the phase spectrum becomes an odd function as shown in FIG. 4B. become. The point spectra are multiplied by each other in phase symmetry. If the result of the multiplication is negative, the amplitude spectrum and the phase spectrum on the side having the negative phase are deleted, and if the result is the same sign, the remaining signal processing is performed. FIG. 5 shows the amplitude spectrum after this processing is performed.

次に、波長と波向きの演算処理を行う。 Next, arithmetic processing of the wavelength and the wave direction is performed.

ここでは、先ず、第5図に示されるように点在した振
幅スペクトルの中から最大値を求めて、最大値が中心に
ある範囲を定め、その範囲で重心を求める。
Here, first, as shown in FIG. 5, the maximum value is obtained from the scattered amplitude spectra, a range in which the maximum value is at the center is determined, and the center of gravity is obtained in the range.

この結果、この例では横軸方向の波の波の数は32、縦
軸方向は16であり、合成すると となる。ここで第5図の一辺の長さは1920mであり、そ
の中に合成した波数が36あることから波長Lは、 となる。
As a result, in this example, the number of waves in the horizontal axis direction is 32 and the vertical axis direction is 16. Becomes Here, the length of one side of FIG. 5 is 1920 m, and the wavelength L is Becomes

波向きAは、 で求められる。The wave direction A is Is required.

さらに、波速を求める場合は、波向、波長を演算した
前記と同様に振幅スペクトルの中から最大値を求め、最
大値を中心に、所定の範囲を設定する。
Further, when obtaining the wave velocity, the maximum value is obtained from the amplitude spectrum in the same manner as described above in which the wave direction and the wavelength are calculated, and a predetermined range is set around the maximum value.

次に、振幅値の高いものから順に10点を選択する。そ
して、各振幅スペクトラムに対応する位相スペクトラム
に振幅スペクトラムの重み付けを施すため、各10点につ
いて振幅スペクトラムの振幅と位相スペクトラムの位相
を掛け合わせて加算する。次に、この結果を前記の各10
点の振幅スペクトラム値を加算した結果で割算処理をし
て位相を求める。
Next, ten points are selected in ascending order of the amplitude value. Then, in order to weight the amplitude spectrum to the phase spectrum corresponding to each amplitude spectrum, the amplitude of the amplitude spectrum is multiplied by the phase of the phase spectrum for each of the ten points and added. Next, this result was calculated for each of the above 10
The phase is obtained by performing a division process on the result of adding the amplitude spectrum values of the points.

そして、この位相と前記で求めた波長から移動距離は
容易に求められる。さらに、移動距離をアンテナ1回転
と2回転に要する時間の差で割算処理を行い波速を求め
ることができる。
The movement distance can be easily obtained from the phase and the wavelength obtained above. Further, the wave length can be obtained by dividing the moving distance by the difference between the times required for one rotation and two rotations of the antenna.

このようにして、波向/波長/波速演算回路34で得ら
れた波長、波速のデータである検出信号Shは、海面反射
検出回路36に供給され、次の計算式(4)において、 の演算により海面反射の強弱を示す演算が行われ海面反
射検出信号Siとして比較器38へ供給される。周知のよう
に式 は波長から波速を求める式であり(淵秀隆/松本次男/
斎藤晃著「海の波」地人書館発行P.2〜3)、この式
(4)は海面反射の強弱評価に好適であることが実験で
確かめられた。海面反射検出信号Siを受けて比較器38で
は、海面反射検出信号Siと基準信号とが比較されて、比
較出力が海面反射判定信号Snとして送出される。基準信
号として例えば後記のように基準値2が用いられる。
In this way, the detection signal Sh, which is the data of the wavelength and the wave speed obtained by the wave direction / wavelength / wave speed calculation circuit 34, is supplied to the sea surface reflection detection circuit 36, and in the following calculation formula (4): The calculation indicating the strength of the sea surface reflection is performed by the calculation, and is supplied to the comparator 38 as the sea surface reflection detection signal Si. Expression as well known Is a formula to calculate the wave speed from the wavelength (Hidetaka Fuchi / Tsuguo Matsumoto /
Experiments have confirmed that Equation (4) is suitable for evaluating the strength of sea surface reflection, by Akira Saito, "Umi no Nami," published by Jinjinshokan, pp. 2-3. Upon receiving the sea surface reflection detection signal Si, the comparator 38 compares the sea surface reflection detection signal Si with the reference signal, and outputs a comparison output as a sea surface reflection determination signal Sn. As the reference signal, for example, a reference value 2 is used as described later.

ここで、海面反射検出回路36の出力とレーダRDの指示
器19のPPIスコープ(図示せず)における海面反射に係
る画像を、目視によって判断した結果と比較して第6図
に示す。
Here, the output of the sea surface reflection detection circuit 36 and the image related to the sea surface reflection on the PPI scope (not shown) of the indicator 19 of the radar RD are compared with the result determined by visual observation in FIG.

さらに、目視による判断基準としてのPPIスコープに
おける画面を第7図に4種類示す。第7図aは海面反射
が非常に強い場合(第6図◎印に対応)を示し、さら
に、第7図bは海面反射率が強い場合(第6図○印に対
応)、さらに、第7図cは海面反射が弱い場合(第6図
△印に対応)である。また、第7図dは海面反射が非常
に弱い場合(第6図×印に対応)を示している。
Further, FIG. 7 shows four types of screens on a PPI scope as visual judgment criteria. FIG. 7a shows a case where the sea surface reflection is very strong (corresponding to the mark ◎ in FIG. 6), and FIG. 7b shows a case where the sea surface reflectance is strong (corresponding to the mark ○ in FIG. 6). FIG. 7c shows a case where the sea surface reflection is weak (corresponding to the mark Δ in FIG. 6). FIG. 7d shows a case where the sea surface reflection is very weak (corresponding to the mark x in FIG. 6).

第6図から容易に理解されるように、海面反射が強、
または非常に強いときは海面反射検出回路36の海面反射
検出信号Siは数値1に近い値を示し、海面反射が非常に
弱いときは、大きな数値、例えば、この例では最大25に
なる。
As can be easily understood from FIG. 6, the sea surface reflection is strong,
Or, when the sea surface reflection is very strong, the sea surface reflection detection signal Si of the sea surface reflection detection circuit 36 shows a value close to the numerical value 1, and when the sea surface reflection is very weak, it becomes a large numerical value, for example, 25 in this example.

また、海面反射検出信号Siが数値1に近い値を示して
いるときは、波長、波速の演算結果は基準となる波高計
に対し比較すると誤差の少ないときである。
Further, when the sea surface reflection detection signal Si indicates a value close to the numerical value 1, the calculation result of the wavelength and the wave velocity has a small error when compared with the reference wave height meter.

この場合、海面反射検出信号Siが入力される比較器38
の基準値を、例えば、2に設定し(第6図参照)、ここ
で2以下であれば海面反射が良好と判断することができ
る海面反射判定信号Snが導出される。
In this case, the comparator 38 to which the sea surface reflection detection signal Si is input
Is set to, for example, 2 (see FIG. 6), and if it is 2 or less, a sea surface reflection determination signal Sn from which sea surface reflection can be determined to be good is derived.

なお、上記の実施例においては、A/D変換回路20、ビ
デオメモリ22の後の回路構成は個別の回路構成をもって
説明したが、マイクロプロセッサ(MPU)等を用いて、
前記と同様の演算処理、すなわち、機能の結合手段を構
成し、前記と同様の作用効果を得ることも本発明に含ま
れる。
In the above-described embodiment, the circuit configuration after the A / D conversion circuit 20 and the video memory 22 has been described with the individual circuit configuration. However, using a microprocessor (MPU) or the like,
The present invention includes the same arithmetic processing as described above, that is, configuring the function combining means and obtaining the same operation and effect as described above.

[発明の効果] 以上のように、本発明の波浪観測レーダによれば、以
下の効果乃至利点を有する。すなわち、海面反射の状態
である波向、波長、波速および波高の波浪状況を明確に
判定することができる。この際、検出される波長、波速
の波浪に係る演算値(観測値)を利用し判定しており、
演算値の信頼性の良否、すなわち、波向、波長、波速の
信頼度の判断が可能になる。これにより、波浪状況の把
握が正確、且つ、安定に得られることになる。加えて、
船舶の安全ならびに効率的運行等に寄与するとともに、
海上管制等の有効な運用が可能である。
[Effects of the Invention] As described above, the wave observation radar of the present invention has the following effects and advantages. That is, it is possible to clearly determine the wave condition of the wave direction, the wavelength, the wave speed, and the wave height, which are the states of sea surface reflection. At this time, the determination is made using the calculated value (observed value) relating to the detected wavelength and wave speed.
It is possible to determine the reliability of the calculated value, that is, the reliability of the wave direction, wavelength, and wave speed. As a result, the wave condition can be accurately and stably obtained. in addition,
Contribute to the safety and efficient operation of ships,
Effective operation such as marine traffic control is possible.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明に係る波浪観測レーダの一実施例の全体
構成を示すブロック図、 第2図は海面反射信号と2次元FFT処理範囲を示す説明
図、 第3図は第2図の2次元FFT処理範囲の2次元FFT処理を
実行するための説明図、 第4図はクロススペクトル演算後の振幅スペクトラムと
位相スペクトラムを示す説明図、 第5図はクロススペクトル演算後の波向きを決定するた
めの処理を実施するための説明図、 第6図は海面反射の程度と本発明の原理に従い算出した
海面反射検出信号を示す説明図、 第7図は海面反射の目視基準図である。 12……アンテナ、14……送受信切換器 16……送信機、18……受信機 19……指示器、20……A/D変換回路 22……ビデオメモリ、24……距離補正回路 26……XY座標変換回路、28……処理ゲート信号発生回路 30……2次元FFT回路、32……クロススペクトル演算回
路 34……波向/波長/波速演算回路、36……海面反射検出
回路 38……比較器、Sb……海面反射ビデオ信号 Sc……距離補正信号、Sd……直交座標信号 Se……ゲート信号、Sf……2次元フーリエ変換信号 Sg……演算信号、Sh……検出信号 Si……海面反射検出信号、Sn……海面反射判定信号
FIG. 1 is a block diagram showing an entire configuration of an embodiment of a wave observation radar according to the present invention, FIG. 2 is an explanatory diagram showing a sea surface reflection signal and a two-dimensional FFT processing range, and FIG. FIG. 4 is an explanatory diagram for performing a two-dimensional FFT process in a two-dimensional FFT process range. FIG. 4 is an explanatory diagram showing an amplitude spectrum and a phase spectrum after a cross spectrum calculation. FIG. 5 is a diagram for determining a wave direction after a cross spectrum calculation. FIG. 6 is an explanatory diagram showing the degree of sea surface reflection and a sea surface reflection detection signal calculated according to the principle of the present invention, and FIG. 7 is a visual reference diagram of sea surface reflection. 12 Antenna, 14 Transmission / reception switch 16 Transmitter, 18 Receiver 19 Indicator, 20 A / D conversion circuit 22 Video memory, 24 Distance correction circuit 26 ... XY coordinate conversion circuit, 28 ... Processing gate signal generation circuit 30 ... 2D FFT circuit, 32 ... Cross spectrum calculation circuit 34 ... Wave direction / wavelength / wave velocity calculation circuit 36 ... Sea surface reflection detection circuit 38 ... ... Comparator, Sb ... Sea surface reflection video signal Sc ... Distance correction signal, Sd ... Cartesian coordinate signal Se ... Gate signal, Sf ... 2D Fourier transform signal Sg ... Computation signal, Sh ... Detection signal Si …… Sea surface reflection detection signal, Sn …… Sea surface reflection judgment signal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 箱田 祐作 東京都三鷹市下連雀5丁目1番1号 日 本無線株式会社内 (56)参考文献 特開 昭60−22680(JP,A) 特開 昭60−381(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Yusaku Hakoda 5-1-1 Shimorenjaku, Mitaka-shi, Tokyo Japan Radio Co., Ltd. (56) References JP-A-60-22680 (JP, A) JP-A Sho 60-381 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】レーダ受信機から導出される海面反射ビデ
オ信号が供給されてデジタル化された海面反射ビデオ信
号を導出するA/D変換回路と、 前記A/D変換回路から導出される海面反射ビデオ信号を
記憶するビデオメモリと、 前記ビデオメモリから導出される海面反射ビデオ信号の
レベルを海面とレーダ受信機との距離に無関係とするべ
く一定化する補正を行い、かつ補正された前記海面反射
ビデオ信号を距離補正信号として導出する距離補正回路
と、 前記距離補正信号を極座標から直交座標に交換して前記
海面反射ビデオ信号の直交座標信号を送出するXY座標変
換回路と、 前記直交座標信号に対して2次元FFTの処理範囲を設定
するゲート信号を導出する処理ゲート信号発生回路と、 前記ゲート信号によって設定された処理範囲内の直交座
標信号について2次元FFT処理を行い2次元フーリエ変
換信号を送出する2次元FFT回路と、 前記2次元フーリエ変換信号から連続するアンテナ2回
転の海面反射信号に基づく2画面のクロススペクトルを
演算するクロススペクトル演算回路と、 前記クロススペクトル演算回路によって演算されたクロ
ススペクトルから波向、波長、波速を演算する波向/波
長/波速演算回路と、 前記波向/波長/波速演算回路によって演算された波長
と波速とから海面反射の強弱を示す海面反射検出信号を
送出する海面反射検出回路と、 前記海面反射検出回路から送出された海面反射検出信号
と基準信号とを比較して海面反射判定信号を導出する比
較器とを備えて、 前記比較器から導出された海面反射判定信号により波
向、波長、波速の信頼度を判断可能とすることを特徴と
する波浪観測レーダ。
An A / D conversion circuit for supplying a sea surface reflection video signal derived from a radar receiver to derive a digitized sea surface reflection video signal, and a sea surface reflection derived from the A / D conversion circuit. A video memory for storing a video signal; a correction for stabilizing a level of a sea surface reflection video signal derived from the video memory so as to be independent of a distance between a sea surface and a radar receiver; and the corrected sea surface reflection. A distance correction circuit that derives a video signal as a distance correction signal, an XY coordinate conversion circuit that exchanges the distance correction signal from polar coordinates to rectangular coordinates and sends a rectangular coordinate signal of the sea surface reflection video signal, A processing gate signal generation circuit for deriving a gate signal for setting a processing range of the two-dimensional FFT, and a rectangular coordinate signal within a processing range set by the gate signal. A two-dimensional FFT circuit that performs two-dimensional FFT processing on the signal and sends out a two-dimensional Fourier transform signal, and a cross spectrum that calculates a two-screen cross spectrum based on the sea surface reflection signal of two consecutive antenna rotations from the two-dimensional Fourier transform signal An arithmetic circuit, a wave direction / wavelength / wave speed arithmetic circuit for calculating a wave direction, a wavelength, and a wave speed from the cross spectrum calculated by the cross spectrum arithmetic circuit; and a wavelength calculated by the wave direction / wavelength / wave speed arithmetic circuit. A sea surface reflection detection circuit for transmitting a sea surface reflection detection signal indicating the strength of sea surface reflection from the wave speed, and a sea surface reflection determination signal derived by comparing the sea surface reflection detection signal sent from the sea surface reflection detection circuit with a reference signal. And a comparator, which can determine the reliability of the wave direction, wavelength, and wave speed based on the sea surface reflection determination signal derived from the comparator. Wave Observation radar characterized the door.
JP2063321A 1990-03-13 1990-03-13 Wave observation radar Expired - Lifetime JP2597027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2063321A JP2597027B2 (en) 1990-03-13 1990-03-13 Wave observation radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2063321A JP2597027B2 (en) 1990-03-13 1990-03-13 Wave observation radar

Publications (2)

Publication Number Publication Date
JPH03262990A JPH03262990A (en) 1991-11-22
JP2597027B2 true JP2597027B2 (en) 1997-04-02

Family

ID=13225888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2063321A Expired - Lifetime JP2597027B2 (en) 1990-03-13 1990-03-13 Wave observation radar

Country Status (1)

Country Link
JP (1) JP2597027B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466908B2 (en) * 1998-02-20 2003-11-17 長野日本無線株式会社 Marine radar using shortwave or ultrashortwave
JP4827330B2 (en) * 2001-07-09 2011-11-30 日本無線株式会社 Radar wave measuring method and apparatus
JP3888671B2 (en) * 2001-12-19 2007-03-07 よこはまティーエルオー株式会社 Wave height calculation device, wave height calculation method, recording medium, and ship
JP3992101B2 (en) * 2003-05-16 2007-10-17 よこはまティーエルオー株式会社 Individual wave prediction / warning system
JP3905880B2 (en) * 2003-11-20 2007-04-18 日本無線株式会社 Wave observation device
JP4646035B2 (en) * 2006-04-07 2011-03-09 株式会社 日立ディスプレイズ Rubbing angle measuring device, liquid crystal display device and optical film manufacturing method
JP2009014697A (en) * 2007-07-06 2009-01-22 Port & Airport Research Institute Wave direction calculating method of buoy-type wave height meter
EP3006956B1 (en) * 2013-05-31 2019-08-14 Furuno Electric Co., Ltd. Surface tidal-current estimation device, radar device, surface tidal-current estimation method and surface tidal-current estimation program
WO2014192529A1 (en) * 2013-05-31 2014-12-04 古野電気株式会社 Device for estimating current-direction change points, current-rip estimation device, radar device, method for estimating current-direction change points, and program for estimating current-direction change points
JP6258310B2 (en) * 2013-05-31 2018-01-10 古野電気株式会社 Pulling wave detection apparatus, radar apparatus, pulling wave detection method, and pulling wave detection program
JP6154218B2 (en) 2013-07-03 2017-06-28 古野電気株式会社 Echo signal processing device, wave radar device, echo signal processing method, and echo signal processing program
CN105572645B (en) * 2015-12-22 2018-02-09 武汉大学 A kind of S-band wave observation radar rf analog front-end circuit
WO2017179343A1 (en) 2016-04-11 2017-10-19 古野電気株式会社 Signal processing device and radar apparatus
CN117388853B (en) * 2023-12-08 2024-02-23 山东省科学院海洋仪器仪表研究所 Wave monitoring system and monitoring method for navigation type radar

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60381A (en) * 1983-05-19 1985-01-05 Japan Radio Co Ltd Measuring device of wave speed and wavelength by radar
JPS6022680A (en) * 1983-07-19 1985-02-05 Japan Radio Co Ltd Wave radar observation system
JPH0230674A (en) * 1988-07-18 1990-02-01 Nec Corp Production of aluminum nitride sintered compact

Also Published As

Publication number Publication date
JPH03262990A (en) 1991-11-22

Similar Documents

Publication Publication Date Title
JP2597027B2 (en) Wave observation radar
US7193930B2 (en) Quantitative echo sounder and method of quantitative sounding of fish
JP5503961B2 (en) Observation signal processor
JP6192151B2 (en) Signal sorting apparatus, signal sorting method, and radar apparatus.
JP4737893B2 (en) Underwater detector
JP5074718B2 (en) Marine radar
JP2019023577A (en) System and method for moving target detection
JP4266669B2 (en) Bistatic orientation detection system and detection method
JP2008304329A (en) Measuring device
JP2005227167A (en) Means for enhancing positioning calculation precision
JP3395683B2 (en) Radar signal processor
EP1678522A1 (en) Improved active element array apparatus for displaced phase center systems
JP2002071795A (en) Radar device for acquiring and tracking target
JP5730565B2 (en) Radar signal processing device and radar image processing device
JPH0367594B2 (en)
JP2609551B2 (en) Method and apparatus for detecting position of object
JP2019132717A (en) Velocity computation device, velocity computation method, and program
JP2001141820A (en) Image radar
JP2541959B2 (en) Direction measuring device for sounding objects
JP2884949B2 (en) Target detector
JPS6093317A (en) Radar crest measuring device
JPS59230165A (en) Measuring method of current speed and current direction by ultrasonic current and direction meter
JP2001174553A (en) Radar system
JP2004301737A (en) Simple substance echo detection method with hull vibration compensation, simple substance echo sensing device, and echo-tracking method
JP2930678B2 (en) Side-looking sonar

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 14